JPH0933236A - Measuring method for optical axis of optical module - Google Patents

Measuring method for optical axis of optical module

Info

Publication number
JPH0933236A
JPH0933236A JP17871895A JP17871895A JPH0933236A JP H0933236 A JPH0933236 A JP H0933236A JP 17871895 A JP17871895 A JP 17871895A JP 17871895 A JP17871895 A JP 17871895A JP H0933236 A JPH0933236 A JP H0933236A
Authority
JP
Japan
Prior art keywords
package
axis
optical axis
optical
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17871895A
Other languages
Japanese (ja)
Other versions
JP3454610B2 (en
Inventor
Takeshi Fumeno
毅 冨米野
Shinichiro Iizuka
晋一郎 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17871895A priority Critical patent/JP3454610B2/en
Publication of JPH0933236A publication Critical patent/JPH0933236A/en
Application granted granted Critical
Publication of JP3454610B2 publication Critical patent/JP3454610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method whose reproducibility is excellent even when a deviation exists between the outer circumferential face of a package and the optical axis of an optical module and in which a measurement can be performed with high accuracy by correcting the reference face of the package so as to be perpendicular to the reference optical axis of an optical measuring system and then measuring a displacement angle which is formed by the reference optical axis and by the optical axis of the package. SOLUTION: A control part 30 measures dislocation between the center of a package 2 and a light-emitting point. It outputs a driving signal to operating shafts 13a, 14a on the basis of the image signal of the light-emitting point which has been photographed by an infrared camera 23. It drives an X-axis linear stage 13 and a Y-axis linear stage 14 so as to make the light-emitting point agree with a reference optical axis As. Then, distances up to the reference face 2a of a package 2 are measured in a plurality of points, and an X-axis swivel stage 11 and a Y-axis swivel stage 12 are turned so that the distances becomes equal. Then, the reference face 2a of the package 2 is corrected so as to be perpendicular to the reference optical axis As, a raising and lowering stage 21 is then raised and lowering in Z-axis direction, and a displacement angle which is formed by the reference optical axis As and by the optical axis of the package is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光モジュールの光
軸測定方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring an optical axis of an optical module.

【0002】[0002]

【従来の技術】集光レンズや発光素子等の光部品が収納
されたパッケージに、集光レンズや光ファイバ等を組み
付けて光モジュールを組み立てる場合、自動組立装置が
使用されている。この自動組立装置においては、パッケ
ージの外周面、例えば、外側面や底面を基準面として光
軸測定装置の治具に固定し、治具の所定の軸に対して光
モジュールの光軸測定を行っていた。
2. Description of the Related Art When an optical module is assembled by assembling a condenser lens, an optical fiber or the like into a package containing optical components such as a condenser lens and a light emitting element, an automatic assembling apparatus is used. In this automatic assembly device, the outer peripheral surface of the package, for example, the outer surface or the bottom surface is fixed as a reference surface to the jig of the optical axis measuring device, and the optical axis of the optical module is measured with respect to a predetermined axis of the jig. Was there.

【0003】[0003]

【発明が解決しようとする課題】ところで、以上のよう
にして光モジュールの光軸測定を行う場合、パッケージ
の外側面や底面が光モジュールの光軸に対して平行ある
いは垂直でないと、パッケージ毎に治具への固定位置が
異なって位置再現性が低下してしまうという問題があっ
た。また、治具への固定に際してパッケージの外側面や
底面を光軸測定の際の基準面として使用すると、測定精
度を向上することができず、パッケージに他の光部品を
組み付けるときに、改めて光モジュールの光軸測定をし
直さなければならないという問題があった。
By the way, in the case of measuring the optical axis of the optical module as described above, unless the outer side surface or the bottom surface of the package is parallel or perpendicular to the optical axis of the optical module, There is a problem that the position reproducibility is deteriorated because the fixing position to the jig is different. In addition, if the outer surface or bottom surface of the package is used as a reference surface when measuring the optical axis when fixing to a jig, the measurement accuracy cannot be improved, and when the optical components are assembled to the package, the optical There was a problem that the optical axis of the module had to be measured again.

【0004】本発明は上記の点に鑑みてなされたもの
で、光モジュールの光軸測定に際し、パッケージ外周面
と光モジュールの光軸との間にずれがあっても、パッケ
ージの位置再現性に優れ、パッケージの外周形状とは無
関係に光モジュールの光軸を高い精度で測定することが
可能な光モジュールの光軸測定方法を提供することを課
題とする。
The present invention has been made in view of the above points, and in measuring the optical axis of the optical module, the positional reproducibility of the package is improved even if the outer peripheral surface of the package is deviated from the optical axis of the optical module. An object of the present invention is to provide an optical axis measuring method of an optical module which is excellent and can measure the optical axis of the optical module with high accuracy regardless of the outer peripheral shape of the package.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するため
本発明の光モジュールの光軸測定方法によれば、光部品
が収納され、光モジュールを構成するパッケージの基準
面を光学測定系の基準光軸に対して垂直に修正した後、
前記光学測定系の基準光軸と前記パッケージの光軸との
なす変位角を測定する構成としたのである。
In order to achieve the above object, according to the optical axis measuring method of an optical module of the present invention, an optical component is housed and a reference surface of a package constituting the optical module is used as a reference of an optical measuring system. After correcting perpendicular to the optical axis,
The displacement angle formed by the reference optical axis of the optical measuring system and the optical axis of the package is measured.

【0006】好ましくは、前記パッケージを、該パッケ
ージの光軸に直交し、互いに直交するX軸及びY軸の軸
回りに調整し、前記パッケージの基準面を前記光学測定
系の基準光軸に対して垂直に修正する。また好ましく
は、前記光学測定系を基準光軸に沿って前記パッケージ
に対して離接させたときの前記基準面における発光点の
位置変化に基づいて、前記光学測定系の基準光軸と前記
パッケージの光軸とのなす変位角を測定する。
Preferably, the package is adjusted about an X-axis and a Y-axis which are orthogonal to the optical axis of the package and are orthogonal to each other, and the reference plane of the package is relative to the reference optical axis of the optical measurement system. To correct vertically. Also preferably, based on the position change of the light emitting point on the reference plane when the optical measurement system is brought into contact with the package along a reference optical axis, the reference optical axis of the optical measurement system and the package. Measure the displacement angle with the optical axis of.

【0007】光モジュールを構成するパッケージの基準
面を光学測定系の基準光軸に対して垂直に修正した後、
光学測定系の基準光軸とパッケージの光軸とのなす変位
角を測定すると、変位角が精度良く測定され、パッケー
ジの良否が判別される。このとき、パッケージを、この
パッケージの光軸に直交し、互いに直交するX軸及びY
軸の軸回りに調整し、パッケージの基準面を光学測定系
の基準光軸に対して垂直に修正すると、パッケージの基
準面が光学測定系の基準光軸に対して細かに調整され
る。
After correcting the reference plane of the package forming the optical module to be perpendicular to the reference optical axis of the optical measurement system,
When the displacement angle formed by the reference optical axis of the optical measurement system and the optical axis of the package is measured, the displacement angle is accurately measured, and the quality of the package is determined. At this time, the package is orthogonal to the optical axis of the package, and the X-axis and the Y-axis which are orthogonal to each other.
If the reference plane of the package is corrected perpendicularly to the reference optical axis of the optical measurement system by adjusting the axis around the axis, the reference plane of the package is finely adjusted with respect to the reference optical axis of the optical measurement system.

【0008】また、光学測定系を基準光軸に沿ってパッ
ケージに対して離接させたときの基準面における発光点
の位置変化に基づいて、光学測定系の基準光軸とパッケ
ージの光軸とのなす変位角を測定すると、変位角が精度
良く測定される。
Further, the reference optical axis of the optical measurement system and the optical axis of the package are determined based on the position change of the light emitting point on the reference plane when the optical measurement system is brought into contact with and separated from the package along the reference optical axis. When the displacement angle formed by is measured, the displacement angle can be accurately measured.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施例を図1乃
至図5に基づいて詳細に説明する。図1は、本発明の光
モジュールの光軸測定方法に用いる測定装置の一例に係
る概略構成を示すもので、測定装置1は、調整台10、
光学測定部20及び制御部30を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 shows a schematic configuration of an example of a measuring device used in the optical axis measuring method of an optical module according to the present invention.
The optical measuring unit 20 and the control unit 30 are provided.

【0010】調整台10は、X軸スイベルステージ1
1、Y軸スイベルステージ12、X軸リニアステージ1
3、Y軸リニアステージ14が、上からこれらの順でZ
軸ステージ15に載置されている。X軸スイベルステー
ジ11は、パッケージ2を着脱自在に固定する固定具3
が上部に取り付けられ、操作軸11aによってX軸の回
りに回動される。Y軸スイベルステージ12は、X軸ス
イベルステージ11が載置され、操作軸12aにより前
記X軸と直交するY軸の回りに回動される。X軸リニア
ステージ13は、Y軸スイベルステージ12が載置さ
れ、操作軸13aよる操作によりX軸に沿って移動され
る。Y軸リニアステージ14は、X軸リニアステージ1
3が載置され、操作軸14aよる操作によりY軸に沿っ
て移動される。Z軸ステージ15は、Y軸リニアステー
ジ14が載置され、操作軸15aよる操作により前記X
軸及びY軸に直交するZ軸に沿って上下方向に昇降され
る。
The adjusting table 10 is an X-axis swivel stage 1
1, Y-axis swivel stage 12, X-axis linear stage 1
3 、 Y-axis linear stage 14 is Z in this order from the top
It is mounted on the shaft stage 15. The X-axis swivel stage 11 is a fixture 3 for detachably fixing the package 2.
Is attached to the upper part and is rotated about the X axis by the operation shaft 11a. The Y-axis swivel stage 12 is mounted with the X-axis swivel stage 11, and is rotated about the Y-axis orthogonal to the X-axis by the operation shaft 12a. The Y-axis swivel stage 12 is mounted on the X-axis linear stage 13 and is moved along the X-axis by an operation of the operation shaft 13a. The Y-axis linear stage 14 is the X-axis linear stage 1
3 is placed and moved along the Y axis by the operation of the operation shaft 14a. The Y-axis linear stage 14 is mounted on the Z-axis stage 15, and the X-axis stage 15 is operated by the operation shaft 15a.
It is vertically moved up and down along a Z axis orthogonal to the axis and the Y axis.

【0011】光学測定部20は、昇降ステージ21、測
長センサ22、赤外線カメラ23を有する光学測定系で
ある。昇降ステージ21は、測長センサ22及び赤外線
カメラ23を取り付けて、Z軸方向に昇降させるステー
ジで、操作軸21aにより昇降操作される。測長センサ
22は、オートフォーカス機構を利用してパッケージ2
の基準面2aまでの距離を測定するセンサで、各操作軸
11a〜15a,21aと制御部30を介して接続され
ている。赤外線カメラ23は、パッケージ2の発光点を
波長0.8〜1.6μmの赤外線で撮影し、撮影した画像信
号を制御部30へ出力する。
The optical measuring section 20 is an optical measuring system having an elevating stage 21, a length measuring sensor 22, and an infrared camera 23. The elevating stage 21 is a stage to which the length measuring sensor 22 and the infrared camera 23 are attached and which is moved up and down in the Z-axis direction, and is operated up and down by the operation shaft 21a. The length measurement sensor 22 uses the autofocus mechanism to package the package 2.
Is a sensor for measuring the distance to the reference plane 2a, and is connected to each of the operation shafts 11a to 15a and 21a via the control unit 30. The infrared camera 23 photographs the light emitting point of the package 2 with infrared rays having a wavelength of 0.8 to 1.6 μm and outputs the photographed image signal to the control unit 30.

【0012】制御部30は、光学測定部20の各操作軸
11a〜15a,21aを駆動してパッケージ2の基準
面2aがZ軸に対して垂直となるよう自動的に制御する
と共に、赤外線カメラ23から入力される画像信号に基
づいてパッケージ2の発光点に関する前記Z軸を中心と
するX,Y軸方向における位置並びに測長センサ22並
びに赤外線カメラ23の基準光軸AS とパッケージ2の
光軸との間の変位量(角度)を演算する電子制御装置
(ECU)である。
The control section 30 drives the operation axes 11a to 15a and 21a of the optical measuring section 20 to automatically control the reference plane 2a of the package 2 so as to be perpendicular to the Z axis, and also the infrared camera. The position of the light emitting point of the package 2 in the X and Y axis directions based on the Z axis based on the image signal input from 23, the reference optical axis AS of the length measuring sensor 22 and the infrared camera 23 and the optical axis of the package 2. It is an electronic control unit (ECU) that calculates a displacement amount (angle) between and.

【0013】本発明の光モジュールの光軸測定方法は、
測定装置1を用いて以下のように実行される。先ず、測
定装置1をオンした後、X軸スイベルステージ11に取
り付けた固定具3に測定対象のパッケージ2を固定す
る。すると、制御部30は、測定装置1の作動を制御し
ながら、パッケージ2に関する以下の測定を自動的に行
う。
The optical axis measuring method of the optical module of the present invention is
It is performed as follows using the measuring device 1. First, after turning on the measuring device 1, the package 2 to be measured is fixed to the fixture 3 attached to the X-axis swivel stage 11. Then, the control unit 30 automatically performs the following measurement on the package 2 while controlling the operation of the measuring device 1.

【0014】先ず、赤外線カメラ23がパッケージ2の
発光点を撮影し、発光点の画像信号を制御部30に出力
する。制御部30では、まず、パッケージ2の中心C
(図2(b),2(c)参照)と発光点との位置ずれを
測定し、次に、制御部30は、赤外線カメラ23から入
力される前記発光点の画像信号に基づき、各操作軸13
a,14aに駆動信号を出力し、発光点が基準光軸AS
と一致するようにX軸リニアステージ13及びY軸リニ
アステージ14を駆動する。
First, the infrared camera 23 photographs the light emitting point of the package 2 and outputs an image signal of the light emitting point to the control unit 30. In the control unit 30, first, the center C of the package 2 is
(Refer to FIGS. 2 (b) and 2 (c)) and the light emitting point are measured for positional deviation, and then the control unit 30 performs each operation based on the image signal of the light emitting point input from the infrared camera 23. Axis 13
The drive signal is output to a and 14a, and the light emission point is the reference optical axis AS.
The X-axis linear stage 13 and the Y-axis linear stage 14 are driven so that

【0015】次に、制御部30は、測長センサ22を駆
動し、図3に示すように、パッケージ2の基準面2aま
での距離を複数点(3点以上)で測定し、その測定結果
である距離信号を制御装置30に出力する。次いで、制
御装置30は、入力された距離信号に基づいて、X軸ス
イベルステージ11及びY軸スイベルステージ12をX
軸及びY軸の回りに回動すべき回動量をそれぞれ演算す
る。
Next, the control unit 30 drives the length measuring sensor 22 to measure the distance to the reference surface 2a of the package 2 at a plurality of points (three or more points) as shown in FIG. The distance signal is output to the control device 30. Next, the control device 30 sets the X-axis swivel stage 11 and the Y-axis swivel stage 12 to X based on the input distance signal.
The amount of rotation to be rotated about the axis and the Y-axis is calculated respectively.

【0016】そして、制御装置30は、この演算結果に
基づき、各操作軸11a,12aに駆動信号を出力し、
複数点で測定した基準面2aまでの距離が等しくなるよ
うにX軸スイベルステージ11及びY軸スイベルステー
ジ12をそれぞれX軸及びY軸の回りに回動する。これ
により、測長センサ22から基準面2aまでの複数点で
測定した距離が等しく、即ち、パッケージ2の基準面2
aが基準光軸AS に対して垂直になるように修正され
る。
Then, the control device 30 outputs a drive signal to each of the operation shafts 11a and 12a based on the calculation result,
The X-axis swivel stage 11 and the Y-axis swivel stage 12 are rotated around the X-axis and the Y-axis, respectively, so that the distances to the reference plane 2a measured at a plurality of points become equal. As a result, the distances measured at a plurality of points from the length measuring sensor 22 to the reference surface 2a are equal, that is, the reference surface 2 of the package 2 is the same.
It is corrected so that a is perpendicular to the reference optical axis AS.

【0017】しかる後、制御装置30は、操作軸21a
に駆動信号を出力し、図2(a)に示すように、昇降ス
テージ21をZ軸方向に昇降させて、基準光軸AS とパ
ッケージ2の光軸とのなす変位角を測定する。即ち、制
御装置30は、図2(b),(c)に示すように、測長
センサ22と基準面2aとの距離がそれぞれL1,L2と
なる2つの位置で赤外線カメラ23が撮影したパッケー
ジ2の発光点PL1,PL2に基づき、両位置におけるX,
Y,Z軸方向の座標を演算すると共に、基準光軸AS に
対するパッケージ2の光軸とのなす角度、即ち、変位角
を演算し、その結果をメモリに記憶して本発明の光モジ
ュールの光軸測定方法が完了する。
Thereafter, the control device 30 controls the operation shaft 21a.
2A, the elevating stage 21 is moved up and down in the Z-axis direction to measure the displacement angle between the reference optical axis AS and the optical axis of the package 2, as shown in FIG. That is, as shown in FIGS. 2 (b) and 2 (c), the control device 30 packages the infrared camera 23 at two positions where the distances between the length measuring sensor 22 and the reference surface 2a are L1 and L2, respectively. Based on the two emission points PL1 and PL2, X at both positions,
In addition to calculating the coordinates in the Y and Z axis directions, the angle formed by the optical axis of the package 2 with respect to the reference optical axis AS, that is, the displacement angle is calculated, and the result is stored in a memory and the light of the optical module of the present invention is calculated. The axis measurement method is complete.

【0018】上記光軸測定方法によって測定した変位角
及びこの測定前に行ったパッケージ2の中心Cと発光点
PL1,PL2との位置ずれが、予め設定した許容範囲より
も大きいパッケージ2は、不良品として排除される。一
方、測定した変位角及びパッケージ2の中心Cと発光点
PL1,PL2との位置ずれが許容範囲内のパッケージ2
は、例えば、図4に示すように、集光部5を基準面2a
で位置決めして垂直にマウントし、YAG溶接で溶接す
ると共に、ファイバ部6を集光部5に同様にして溶接し
て光モジュールに自動的に組み立てられる。
The package 2 in which the displacement angle measured by the above optical axis measuring method and the positional deviation between the center C of the package 2 and the light emitting points PL1 and PL2 before this measurement is larger than a preset allowable range is It is rejected as a good product. On the other hand, the measured displacement angle and the positional deviation between the center C of the package 2 and the light emitting points PL1 and PL2 are within the allowable range.
Is, for example, as shown in FIG.
The optical module is automatically assembled by positioning with, mounting vertically, welding with YAG welding, and welding the fiber portion 6 to the condensing portion 5 in the same manner.

【0019】ここで、パッケージ2は、図4に示すよう
に、内部に配置される発光部2b内に第1集光レンズ2
cと発光素子2dが収納されており、基準面2aは開口
している。集光部5は、レンズケース5aと第2集光レ
ンズ5bを有している。レンズケース5aは、基準面2
aの開口よりも小径の嵌合部5cを有する筒体で、レン
ズケース5a内に第2集光レンズ5bが取り付けられて
いる。また、ファイバ部6は、ファイバケース6aと光
ファイバ6bを有し、ファイバケース6aの端部にはレ
ンズケース5aの端部に嵌め込まれる嵌合部6cが形成
され、ファイバ孔6dに光ファイバ6bの端部が接着さ
れている。
Here, as shown in FIG. 4, the package 2 includes a first condenser lens 2 inside a light emitting portion 2b arranged therein.
c and the light emitting element 2d are housed therein, and the reference surface 2a is open. The condensing unit 5 has a lens case 5a and a second condensing lens 5b. The lens case 5a has a reference surface 2
The second condensing lens 5b is mounted in the lens case 5a with a cylindrical body having a fitting portion 5c having a diameter smaller than the opening of a. Further, the fiber portion 6 has a fiber case 6a and an optical fiber 6b, a fitting portion 6c to be fitted into the end portion of the lens case 5a is formed at the end portion of the fiber case 6a, and the optical fiber 6b is provided in the fiber hole 6d. The edges are glued.

【0020】このとき、パッケージ2は、測定した変位
角がゼロであっても、パッケージ2の光軸と測長センサ
22及び赤外線カメラ23の基準光軸AS とが平行にず
れている場合がある。この場合には、パッケージ2に組
み付ける集光部5を光軸と直交する方向へ僅かに平行移
動させればよい。ところで、測長センサ22は、パッケ
ージ2の基準面2aまでの距離を求める精度が1/10
00mmあり、従って、1/1000mmの位置再現性
を有している。このことから、上記した本発明方法で
は、基準面2aの直径が4.2mmであるから、測長セン
サ22及び赤外線カメラ23の基準光軸AS の傾斜誤差
θとしては逆三角関数による計算からθ=0.0136゜
となる。
At this time, even if the measured displacement angle of the package 2 is zero, the optical axis of the package 2 and the reference optical axis AS of the length measuring sensor 22 and the infrared camera 23 may be displaced in parallel. . In this case, the light collecting section 5 to be mounted on the package 2 may be slightly moved in the direction orthogonal to the optical axis. By the way, the length measuring sensor 22 has an accuracy of 1/10 for obtaining the distance to the reference surface 2a of the package 2.
It has a position reproducibility of 1/1000 mm. From this, in the above-described method of the present invention, since the diameter of the reference surface 2a is 4.2 mm, the inclination error θ of the reference optical axis AS of the length measuring sensor 22 and the infrared camera 23 is calculated by the inverse trigonometric function. = 0.0136 °.

【0021】これに対し、パッケージの外周面、例え
ば、外側面や底面を基準面として光軸測定装置の治具に
固定して行う従来の測定方法では、位置再現性は1/1
00mm程度で、パッケージの底辺の長さが8.2mmで
あることから、傾斜誤差θを同様にして求めると、θ=
0.0699゜となり、本発明方法は光モジュールの光軸
を高い精度で測定することが分かった。
On the other hand, in the conventional measuring method in which the outer peripheral surface of the package, for example, the outer surface or the bottom surface is used as the reference surface and is fixed to the jig of the optical axis measuring device, the position reproducibility is 1/1.
Since the bottom length of the package is about 00 mm and the length of the package is 8.2 mm, the tilt error θ is calculated in the same manner.
It became 0.0699 °, and it was found that the method of the present invention measures the optical axis of the optical module with high accuracy.

【0022】尚、上記実施例では、測長センサ22とパ
ッケージ2の基準面2aとの間の距離をオートフォーカ
ス機構を利用した測長センサで測定したが、これに限定
されるものでないことは言うまでもなく、例えば、図5
に示す反射型レーザ変位センサ25を使用することもで
きる。
In the above embodiment, the distance between the length measuring sensor 22 and the reference surface 2a of the package 2 was measured by the length measuring sensor using the autofocus mechanism, but the present invention is not limited to this. Needless to say, for example, in FIG.
It is also possible to use the reflection type laser displacement sensor 25 shown in FIG.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明の
光モジュールの光軸測定方法によれば、光モジュールの
光軸測定に際し、パッケージ外周面と光モジュールの光
軸との間にずれがあっても、パッケージの位置再現性に
優れ、パッケージの外周形状とは無関係に光モジュール
の光軸を高い精度で測定することができる。
As is apparent from the above description, according to the optical axis measuring method for an optical module of the present invention, when measuring the optical axis of the optical module, there is a gap between the outer peripheral surface of the package and the optical axis of the optical module. Even if there is, the position reproducibility of the package is excellent, and the optical axis of the optical module can be measured with high accuracy regardless of the outer peripheral shape of the package.

【0024】このとき、パッケージを、このパッケージ
の光軸に直交し、互いに直交するX軸及びY軸の軸回り
に調整し、パッケージの基準面を光学測定系の基準光軸
に対して垂直に修正するので、パッケージの基準面を光
学測定系の基準光軸に対して細かに調整することができ
る。また、光学測定系を基準光軸に沿ってパッケージに
対して離接させたときの基準面における発光点の位置変
化に基づいて、光学測定系の基準光軸とパッケージの光
軸とのなす変位角を測定するので、変位角を精度良く測
定することができる。
At this time, the package is adjusted around the X axis and the Y axis which are orthogonal to the optical axis of the package and are orthogonal to each other, and the reference plane of the package is perpendicular to the reference optical axis of the optical measurement system. Since the correction is performed, the reference plane of the package can be finely adjusted with respect to the reference optical axis of the optical measurement system. Also, based on the change in the position of the light emitting point on the reference plane when the optical measurement system is moved toward and away from the package along the reference optical axis, the displacement made by the reference optical axis of the optical measurement system and the optical axis of the package Since the angle is measured, the displacement angle can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実行する測定装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a measuring apparatus that executes the method of the present invention.

【図2】光学測定系の基準光軸とパッケージの光軸との
なす変位角の測定方法を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a method of measuring a displacement angle formed by a reference optical axis of an optical measurement system and an optical axis of a package.

【図3】パッケージの基準面と光学測定系との間の距離
を測定し、パッケージの基準面を光学測定系の基準光軸
に対して垂直に修正する方法を説明する斜視図である。
FIG. 3 is a perspective view illustrating a method of measuring the distance between the reference surface of the package and the optical measurement system and correcting the reference surface of the package perpendicular to the reference optical axis of the optical measurement system.

【図4】光軸測定が終了したパッケージに他の光部品を
組み付けて光モジュールを組み立てる状態を、これらの
部品類を断面にして示した分解図である。
FIG. 4 is an exploded view showing a state of assembling an optical module by assembling another optical component in a package whose optical axis measurement has been completed, with these components being cross-sectioned.

【図5】パッケージの基準面と光学測定系との間の距離
を測定する他の測長センサの例を示す斜視図である。
FIG. 5 is a perspective view showing another example of a length measurement sensor that measures a distance between a reference plane of a package and an optical measurement system.

【符号の説明】[Explanation of symbols]

1 測定装置 2 パッケージ 2a 基準面 3 固定具 5 集光部 6 ファイバ部 10 調整台 11 X軸スイベルステージ 12 Y軸スイベルステージ 13 X軸リニアステージ 14 Y軸リニアステージ 15 Z軸ステージ 20 光学測定部 21 昇降ステージ 22 測長センサ 23 赤外線カメラ 30 制御部 AS 基準光軸 DESCRIPTION OF SYMBOLS 1 Measuring device 2 Package 2a Reference plane 3 Fixing device 5 Converging part 6 Fiber part 10 Adjusting stand 11 X-axis swivel stage 12 Y-axis swivel stage 13 X-axis linear stage 14 Y-axis linear stage 15 Z-axis stage 20 Optical measuring part 21 Lifting stage 22 Length measurement sensor 23 Infrared camera 30 Control unit AS Reference optical axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光部品が収納され、光モジュールを構成
するパッケージの基準面を光学測定系の基準光軸に対し
て垂直に修正した後、前記光学測定系の基準光軸と前記
パッケージの光軸とのなす変位角を測定することを特徴
とする光モジュールの光軸測定方法。
1. A reference optical axis of the optical measurement system and an optical axis of the package after correcting a reference surface of a package that houses an optical component and constitutes an optical module so as to be perpendicular to the reference optical axis of the optical measurement system. A method for measuring an optical axis of an optical module, which comprises measuring a displacement angle formed with an axis.
【請求項2】 前記パッケージを、該パッケージの光軸
に直交し、互いに直交するX軸及びY軸の軸回りに調整
し、前記パッケージの基準面を前記光学測定系の基準光
軸に対して垂直に修正する、請求項1の光モジュールの
光軸測定方法。
2. The package is adjusted about an X-axis and a Y-axis that are orthogonal to the optical axis of the package and are orthogonal to each other, and a reference plane of the package is relative to a reference optical axis of the optical measurement system. The method for measuring an optical axis of an optical module according to claim 1, wherein the optical axis is corrected vertically.
【請求項3】 前記光学測定系を基準光軸に沿って前記
パッケージに対して離接させたときの前記基準面におけ
る発光点の位置変化に基づいて、前記光学測定系の基準
光軸と前記パッケージの光軸とのなす変位角を測定す
る、請求項1の光モジュールの光軸測定方法。
3. The reference optical axis of the optical measurement system and the reference optical axis of the optical measurement system based on a change in the position of a light emitting point on the reference surface when the optical measurement system is brought into contact with and separated from the package along the reference optical axis. The optical axis measuring method for an optical module according to claim 1, wherein the displacement angle formed by the optical axis of the package is measured.
JP17871895A 1995-07-14 1995-07-14 Optical axis measurement method for optical module Expired - Lifetime JP3454610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17871895A JP3454610B2 (en) 1995-07-14 1995-07-14 Optical axis measurement method for optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17871895A JP3454610B2 (en) 1995-07-14 1995-07-14 Optical axis measurement method for optical module

Publications (2)

Publication Number Publication Date
JPH0933236A true JPH0933236A (en) 1997-02-07
JP3454610B2 JP3454610B2 (en) 2003-10-06

Family

ID=16053357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17871895A Expired - Lifetime JP3454610B2 (en) 1995-07-14 1995-07-14 Optical axis measurement method for optical module

Country Status (1)

Country Link
JP (1) JP3454610B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046514A (en) * 1998-07-27 2000-02-18 Aisin Takaoka Ltd Method for detecting position of worked hole of casting
JP2003023203A (en) 2001-07-05 2003-01-24 Furukawa Electric Co Ltd:The Apparatus for soldering mounting base for semiconductor laser element and method for manufacturing semiconductor laser module
JP2003057499A (en) * 2001-08-10 2003-02-26 Furukawa Electric Co Ltd:The Manufacturing method for semiconductor laser module
WO2004114392A1 (en) * 2003-06-20 2004-12-29 Tokyo Electron Limited Method and equipment for inspecting electric characteristics of specimen
JP2015119129A (en) * 2013-12-20 2015-06-25 三菱電機株式会社 Optical module bonding device and method of manufacturing optical module
CN106959705A (en) * 2017-05-02 2017-07-18 西安赛隆金属材料有限责任公司 A kind of precision of powder laying compensation system and method for quickly shaping device
CN111964611A (en) * 2020-08-18 2020-11-20 山东理工大学 Axle type part straightness accuracy error measuring device based on machine vision

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046514A (en) * 1998-07-27 2000-02-18 Aisin Takaoka Ltd Method for detecting position of worked hole of casting
JP2003023203A (en) 2001-07-05 2003-01-24 Furukawa Electric Co Ltd:The Apparatus for soldering mounting base for semiconductor laser element and method for manufacturing semiconductor laser module
JP2003057499A (en) * 2001-08-10 2003-02-26 Furukawa Electric Co Ltd:The Manufacturing method for semiconductor laser module
WO2004114392A1 (en) * 2003-06-20 2004-12-29 Tokyo Electron Limited Method and equipment for inspecting electric characteristics of specimen
US7135883B2 (en) 2003-06-20 2006-11-14 Tokyo Electron Limited Inspection method and inspection apparatus for inspecting electrical characteristics of inspection object
US7262618B2 (en) 2003-06-20 2007-08-28 Tokyo Electron Limited Inspection method and inspection apparatus for inspecting electrical characteristics of inspection object
JP2015119129A (en) * 2013-12-20 2015-06-25 三菱電機株式会社 Optical module bonding device and method of manufacturing optical module
CN106959705A (en) * 2017-05-02 2017-07-18 西安赛隆金属材料有限责任公司 A kind of precision of powder laying compensation system and method for quickly shaping device
CN106959705B (en) * 2017-05-02 2023-06-09 西安赛隆金属材料有限责任公司 Powder spreading precision compensation system and method for rapid prototyping equipment
CN111964611A (en) * 2020-08-18 2020-11-20 山东理工大学 Axle type part straightness accuracy error measuring device based on machine vision

Also Published As

Publication number Publication date
JP3454610B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US5536916A (en) Method for performing automatic alignment-adjustment of laser robot and the device
KR100860246B1 (en) Carrier shape measurement device
JP4028814B2 (en) Mapping device
JPH0933236A (en) Measuring method for optical axis of optical module
JPH0122977B2 (en)
JP2004207569A (en) Chip bonding apparatus
JP2002156562A (en) Semiconductor laser module and method for manufacturing the same
JP3285256B2 (en) Automatic alignment adjustment method and apparatus for laser robot
JP4753657B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2578015B2 (en) Optical fiber alignment fixing device for light source module manufacturing
JPH08327332A (en) Apparatus for measuring film thickness of solder paste
US6331891B1 (en) Apparatus and method for assembling semiconductor device and semiconductor device thus fabricated
JP2621416B2 (en) Plate for measuring travel distance
JP2007232629A (en) Lens shape measuring instrument
JP4078025B2 (en) Optical pickup unit adjustment assembly equipment
JP3778754B2 (en) Measuring device for position adjustment
JPS6227641A (en) Mirror position control device in projection-characteristic measuring apparatus of lens
JPH064256Y2 (en) Reflector device
JP3042762B2 (en) Device bonding method and device
JP3806532B2 (en) Method for assembling semiconductor laser device
JPS6227640A (en) Mirror position control device in projection characteristic measuring apparatus of lens
JPH04268746A (en) Orientation flat detecting stage
JPH1074687A (en) Stage device
JP2003294994A (en) Two-way communication optical module
JP3247920B2 (en) Control method of electronic component mounting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

EXPY Cancellation because of completion of term