JPH0997766A - Horizontal thermal treatment device - Google Patents

Horizontal thermal treatment device

Info

Publication number
JPH0997766A
JPH0997766A JP25163395A JP25163395A JPH0997766A JP H0997766 A JPH0997766 A JP H0997766A JP 25163395 A JP25163395 A JP 25163395A JP 25163395 A JP25163395 A JP 25163395A JP H0997766 A JPH0997766 A JP H0997766A
Authority
JP
Japan
Prior art keywords
gas
processing container
processing
heat treatment
gas introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25163395A
Other languages
Japanese (ja)
Other versions
JP3359474B2 (en
Inventor
Yuko Fukawa
祐子 府川
Kenji Fukui
健次 福井
Michihiro Takayama
道寛 高山
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25163395A priority Critical patent/JP3359474B2/en
Publication of JPH0997766A publication Critical patent/JPH0997766A/en
Application granted granted Critical
Publication of JP3359474B2 publication Critical patent/JP3359474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable works to be enhanced in inter-work surface uniformity and separate surface uniformity by a method wherein treatment gas introducing nozzles each possessed of many gas spouting holes are provided inside a treatment chamber along its lengthwise direction, and a gas flow-rate control device is provided to each treatment gas introducing nozzle. SOLUTION: A boat 4 is housed in a treatment chamber 1 disposed in a horizontal position, and a large number of works 5 such as semiconductor wafers are placed in an upright position on the boat 4. A large number of gas spouting holes 3g are provided in each of gas introduction nozzles 3 (3a to 3f), and gas is fed to the gas introduction nozzles 3 (3a to 3f) from a gas generating source. When the gas introduction nozzles 3 are provided in the treatment chamber 1 as inserted, the treatment chamber 1 can be made uniform in gas concentration along its lengthwise direction, so that the works 5 can be improved in inter-work surface distribution uniformity, and moreover, a gas flow-rate control device 8 is provided in each of the treatment gas introduction nozzles 3, so that the works can be enhanced in separate surface distribution uniformity respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウェハ等に熱
処理を施す熱処理装置に関し、特に処理容器を水平方向
に設置した横型熱処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus for heat-treating semiconductor wafers and the like, and more particularly to a horizontal heat treatment apparatus in which a processing container is installed horizontally.

【0002】[0002]

【従来の技術及び解決しようとする課題】半導体ウェハ
の表面に例えば酸化膜を形成したり、半導体ウェハ内に
不純物を拡散させる場合、熱処理装置が用いられる。こ
のような熱処理装置としては、半導体ウェハの搬入搬出
が容易で量産に適した横型熱処理装置と半導体ウェハの
回転が容易で大口径の半導体ウェハの処理に適した縦型
熱処理装置がある。
2. Description of the Related Art A heat treatment apparatus is used when, for example, an oxide film is formed on the surface of a semiconductor wafer or impurities are diffused in the semiconductor wafer. As such a heat treatment apparatus, there are a horizontal heat treatment apparatus which is easy to carry in and out of a semiconductor wafer and suitable for mass production, and a vertical heat treatment apparatus which is easy to rotate the semiconductor wafer and suitable for processing a large-diameter semiconductor wafer.

【0003】このうち横型熱処理装置は、図3に示すよ
うに、石英製の処理容器21を水平方向に設置したもの
である。処理容器21の一方端にはガス導入口21aが
設けられ、他方端にはキャップ22とこのキャップ22
に形成された排気口22aが設けられている。また、処
理容器21の外周部には、処理容器21内を所定温度に
加熱するためのヒータ23が設けられている。処理容器
21内には、ボート24が収容され、このボート24上
に被処理体である半導体ウェハ25などが起立して載置
されている。
Among them, the horizontal heat treatment apparatus is one in which a quartz processing container 21 is installed horizontally as shown in FIG. A gas inlet 21a is provided at one end of the processing container 21, and a cap 22 and the cap 22 are provided at the other end.
The exhaust port 22a formed in the above is provided. A heater 23 for heating the inside of the processing container 21 to a predetermined temperature is provided on the outer peripheral portion of the processing container 21. A boat 24 is housed in the processing container 21, and a semiconductor wafer 25, which is a target object, is erected on the boat 24.

【0004】このような横型熱処理装置では、ヒータ2
3で加熱しながら、例えばPOCl 3 などをガス導入口
21a側からガス排気口22a側へ流すことによって、
半導体ウェハ等の被処理体25にリン(P)を拡散させ
るなどの熱処理を行うために用いる。
In such a horizontal heat treatment apparatus, the heater 2
While heating at 3, for example POCl ThreeGas inlet
By flowing from the 21a side to the gas exhaust port 22a side,
Diffusing phosphorus (P) into the processing target 25 such as a semiconductor wafer
It is used for heat treatment such as heat treatment.

【0005】ところが、この従来の横型熱処理装置で
は、被処理体25におけるガス導入側とガス排気側にお
けるガス濃度の差が大きく、被処理体25における熱処
理の面間均一性が悪いという問題があった。特に希薄処
理ガスを使用した場合に、下流側における処理ガスの回
り込みが悪く、全体にわたって良好な熱処理を行うこと
ができないという問題があった。
However, this conventional horizontal heat treatment apparatus has a problem that the difference in gas concentration between the gas introduction side and the gas exhaust side of the object to be processed 25 is large, and the surface uniformity of the heat treatment in the object to be processed 25 is poor. It was In particular, when a dilute process gas is used, there is a problem that the process gas does not circulate on the downstream side and a good heat treatment cannot be performed on the whole.

【0006】このような問題を解決するために、特開平
7−58045号公報では、図4に示すように、被処理
体25に対して斜め上方又は斜め下方に向けられた多数
のガス噴出孔26aを有する処理ガス導入ノズル26
を、処理容器21の長さ方向に沿って処理容器21の側
部近傍に設けることが提案されている。
In order to solve such a problem, in Japanese Patent Laid-Open No. 7-58045, as shown in FIG. 4, a large number of gas ejection holes directed obliquely upward or downward relative to the object 25 to be processed. Processing gas introduction nozzle 26 having 26a
Is provided near the side portion of the processing container 21 along the length direction of the processing container 21.

【0007】ところが、この従来の横型熱処理装置で
は、処理容器21の長さ方向に沿って多数のガス噴出孔
26aを有する処理ガス導入ノズル26を設けているも
のの、この処理ガス導入ノズル26は、処理容器21の
側部近傍に一本しか設けていないことから、被処理体2
5における熱処理装置の面内均一性がかえって悪くなる
という問題があった。
However, in this conventional horizontal heat treatment apparatus, although the processing gas introducing nozzle 26 having a large number of gas ejection holes 26a is provided along the length direction of the processing container 21, the processing gas introducing nozzle 26 is Since only one is provided in the vicinity of the side of the processing container 21, the object to be processed 2
There was a problem that the in-plane uniformity of the heat treatment apparatus in No. 5 was rather deteriorated.

【0008】すなわち、この種の熱処理装置において
は、被処理体25の面間均一性および面内均一性の双方
が良好なものであることが要求されるが、上述のように
処理容器21の長さ方向に沿って処理ガス導入ノズル2
6を設けたとしても、面内均一性しか向上せず、ガス噴
出孔26a近傍におけるガス流れの乱れによって面内均
一性は却って悪くなる。特に被処理体25が大口径のウ
ェハになるとこの傾向は顕著になる。
That is, in this type of heat treatment apparatus, it is required that both the in-plane uniformity and the in-plane uniformity of the object to be processed 25 are good. Processing gas introduction nozzle 2 along the length direction
Even if 6 is provided, only the in-plane uniformity is improved, and the in-plane uniformity is rather deteriorated due to the turbulence of the gas flow in the vicinity of the gas ejection holes 26a. This tendency becomes remarkable especially when the object to be processed 25 is a large-diameter wafer.

【0009】本発明は、このような従来装置の問題点に
鑑みて発明されたものであり、被処理体における面間均
一性又は面内均一性が低下することを解消した熱処理装
置を提供することを目的とする。
The present invention has been invented in view of the above problems of the conventional apparatus, and provides a heat treatment apparatus in which the decrease of the in-plane uniformity or the in-plane uniformity of the object to be processed is resolved. The purpose is to

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る横型熱処理装置では、水平方向に設置
された処理容器内のボート上に被処理体を載置し、前記
処理容器内に処理ガスを導入しながら前記被処理体を熱
処理する横型熱処理装置において、前記処理容器内に、
多数のガス噴出孔を有する処理ガス導入ノズルを前記処
理容器の長さ方向に沿って複数設けると共に、各処理ガ
ス導入ノズル毎にガス流量制御装置を設けた。
In order to achieve the above object, in a horizontal heat treatment apparatus according to the present invention, an object to be processed is placed on a boat in a processing container installed in a horizontal direction, In a horizontal heat treatment apparatus for heat treating the object to be treated while introducing a treatment gas into the treatment container,
A plurality of processing gas introduction nozzles having a large number of gas ejection holes were provided along the length direction of the processing container, and a gas flow rate control device was provided for each processing gas introduction nozzle.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る横型熱処理装
置の実施形態を添付図面に基づき詳細に説明する。図1
は、本発明に係る横型熱処理装置の一実施形態を示す図
であり、同図(a)は処理容器の長さ方向における断面
図、同図(b)は同図(a)のA−A線断面図であり、
1は処理容器、2はヒータ、3は処理ガス導入ノズル、
3gはガス噴出孔、4はボート、5は被処理体である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a horizontal heat treatment apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG.
FIG. 1 is a diagram showing an embodiment of a horizontal heat treatment apparatus according to the present invention, in which FIG. 1 (a) is a cross-sectional view in the length direction of a processing container, and FIG. 1 (b) is A-A in FIG. It is a line sectional view,
1 is a processing container, 2 is a heater, 3 is a processing gas introduction nozzle,
3 g is a gas ejection hole, 4 is a boat, and 5 is an object to be treated.

【0012】処理容器1は、例えば石英などから成る耐
熱材料で形成されており、一端部が閉塞されて他端部が
開放された円筒状に形成されている。この処理容器1は
水平方向に横置きされる。この処理容器1内には、石英
から成るボート4が収容されており、このボート4上に
は半導体ウェハなどの被処理体5が多数枚起立して載置
されている。上記処理容器1の外周には、ヒータ2が処
理容器1と同軸上に設けられており、処理容器1内の全
体を加熱するように構成されている。
The processing container 1 is made of a heat-resistant material such as quartz, and has a cylindrical shape with one end closed and the other end open. The processing container 1 is horizontally placed horizontally. A boat 4 made of quartz is housed in the processing container 1, and a large number of objects 5 to be processed such as semiconductor wafers are erected on the boat 4. A heater 2 is provided on the outer periphery of the processing container 1 coaxially with the processing container 1, and is configured to heat the entire inside of the processing container 1.

【0013】上記処理容器1の開放端は、例えば石英な
どから成るキャップ7で閉塞され、このキャップ7には
ガス排気孔7aが設けられている。また上記処理容器1
には、閉塞端を貫通して複数のガス導入ノズル(3a〜
3f)が設けられている。図1に示す例では、処理容器
1内の上下部分に各1本(3a、3d)、下方側部に2
本(3c、3e)、上方側部に2本(3b、3f)の計
6本が設けられている。また、各ガス導入ノズル3(3
a〜3f)には、多数のガス噴出孔3gが設けられてい
ると共に、それぞれの処理ガス導入ノズル3には、ガス
発生源8からガスが供給される。この処理ガス導入ノズ
ル3の直径は約10mmに設定されると共に、ガス噴出
孔3gのピッチは被処理体5の配列ピッチと略同一にな
るように設定することが望ましい。
The open end of the processing container 1 is closed by a cap 7 made of, for example, quartz, and the cap 7 is provided with a gas exhaust hole 7a. In addition, the processing container 1
Includes a plurality of gas introduction nozzles (3a-
3f) is provided. In the example shown in FIG. 1, one (3a, 3d) is provided in each of the upper and lower parts of the processing container 1, and two are provided in the lower part.
A total of six (3c, 3e) and two (3b, 3f) on the upper side are provided. In addition, each gas introduction nozzle 3 (3
a to 3f) are provided with a large number of gas ejection holes 3g, and a gas is supplied from a gas generation source 8 to each of the processing gas introduction nozzles 3. It is desirable that the diameter of the processing gas introduction nozzle 3 is set to about 10 mm, and the pitch of the gas ejection holes 3g is set to be substantially the same as the arrangement pitch of the objects 5 to be processed.

【0014】図2に図1中のガス発生源を示す。このガ
ス発生源8は、窒素(N2 )ガス源9、酸素(O2 )ガ
ス源10、バブリング槽11で主として構成される。窒
素ガス源9部分にはマスフローコントローラ12と電磁
バルブ15が設けられ、酸素ガス源10部分にはマスフ
ローコントローラ13と電磁バルブ16が設けられる。
また窒素ガス源9とバブリング槽11間には、マスフロ
ーコントローラ14と電磁弁17が設けられる。バブリ
ング槽11と処理ガス導入ノズル3との間には、電磁バ
ルブ18、21が設けられる。マスフローコントローラ
14と電磁バルブ17の間から分岐して電磁バルブ19
が設けられ、電磁バルブ18と電磁バルブ21との間か
ら分岐して電磁バルブ20が設けられる。さらに、バブ
リング槽11には、恒温維持装置22が設けられる。マ
スフローコントローラ12、13、14で流量制御装置
6が構成される。なお、マスフローコントローラ12、
13、14に代えて、流量計を用いてもよい。
FIG. 2 shows the gas generating source in FIG. The gas generating source 8 is mainly composed of a nitrogen (N 2 ) gas source 9, an oxygen (O 2 ) gas source 10, and a bubbling tank 11. A mass flow controller 12 and an electromagnetic valve 15 are provided in the nitrogen gas source 9 portion, and a mass flow controller 13 and an electromagnetic valve 16 are provided in the oxygen gas source 10 portion.
A mass flow controller 14 and a solenoid valve 17 are provided between the nitrogen gas source 9 and the bubbling tank 11. Electromagnetic valves 18 and 21 are provided between the bubbling tank 11 and the processing gas introduction nozzle 3. The electromagnetic valve 19 branches off from between the mass flow controller 14 and the electromagnetic valve 17.
Is provided, and the electromagnetic valve 20 is provided branching from between the electromagnetic valve 18 and the electromagnetic valve 21. Further, the bubbling tank 11 is provided with a constant temperature maintaining device 22. The mass flow controllers 12, 13, 14 constitute the flow rate control device 6. The mass flow controller 12,
A flow meter may be used in place of 13, 14.

【0015】このようなガス発生源では、電磁バルブ1
9、20以外の全ての電磁バルブを開き、バブリング槽
11に例えば液体のPOCl3 を導入して、マスフロー
コントローラ12、13、14を開く。すると窒素ガス
および酸素ガスは直接処理ガス導入ノズル3に送られる
と共に、一部の窒素ガスはバブリング装置11に送られ
て液体のPOCl3 をバブリングして気体のPOCl3
が処理ガス導入ノズル3に送られることになる。この場
合、マスフローコントローラ12、13、14で窒素ガ
ス9および酸素ガス10の流量を調整できることから、
処理ガス導入ノズル3からのガス噴出量を調整できる。
In such a gas generating source, the electromagnetic valve 1
All the electromagnetic valves other than 9 and 20 are opened, liquid POCl 3 is introduced into the bubbling tank 11, and the mass flow controllers 12, 13 and 14 are opened. Then, the nitrogen gas and the oxygen gas are directly sent to the process gas introduction nozzle 3, and a part of the nitrogen gas is sent to the bubbling device 11 to bubble the liquid POCl 3 to make the gaseous POCl 3.
Will be sent to the process gas introduction nozzle 3. In this case, since the mass flow controllers 12, 13 and 14 can adjust the flow rates of the nitrogen gas 9 and the oxygen gas 10,
The amount of gas ejected from the processing gas introduction nozzle 3 can be adjusted.

【0016】図1に示すように、処理ガス導入ノズル3
を処理容器1内に挿入して設けると、処理容器1内の長
さ方向におけるガス濃度差を抑制でき、面間分布の均一
性が図れるばかりでなく、本発明ではそれぞれの処理ガ
ス導入ノズル3にガス流量制御装置8を設けていること
から、それぞれの処理ガス導入ノズル3に供給されるガ
ス流量を調整しながら処理容器1にガスを導入すること
ができ、被処理体5における面内分布の均一性も向上さ
せることができる。
As shown in FIG. 1, the processing gas introducing nozzle 3
When the gas is inserted into the processing container 1, the gas concentration difference in the length direction in the processing container 1 can be suppressed, and not only the uniformity of the inter-plane distribution can be achieved. Since the gas flow rate control device 8 is provided in each of the processing gas introduction nozzles 3, the gas can be introduced into the processing container 1 while adjusting the flow rate of the gas supplied to each processing gas introduction nozzle 3, and the in-plane distribution of the object 5 to be processed can be adjusted. The uniformity can be improved.

【0017】上述のように構成した熱処理装置の動作を
説明する。まず、処理容器1のキャップ7を取り外し
て、被処理体5を処理容器1内に搬入した後に、キャッ
プ7で覆蓋する。次に、ヒータ2を駆動することによっ
て、処理容器1内を所定の温度、例えば900℃になる
まで加熱して安定させる。次に、処理容器1内に処理ガ
ス導入ノズル3から処理ガスを導入しつつ、常圧で熱処
理、例えばリン拡散を行う。
The operation of the heat treatment apparatus configured as described above will be described. First, the cap 7 of the processing container 1 is removed, the object 5 to be processed is loaded into the processing container 1, and then covered with the cap 7. Next, by driving the heater 2, the inside of the processing container 1 is heated to a predetermined temperature, for example, 900 ° C., and is stabilized. Next, while introducing the processing gas from the processing gas introduction nozzle 3 into the processing container 1, heat treatment such as phosphorus diffusion is performed at normal pressure.

【0018】ここで処理ガスを発生させるためには、ガ
ス発生源8のバブリング槽11内に貯めた液体POCl
3 を加熱しつつ窒素ガスによりバブリングしてPOCl
3 を気化させて、ガス導入ノズル3へ供給される。この
気化したPOCl3 はガス導入ノズル3内を流れなが
ら、各ガス噴出孔3aから噴出される。
Here, in order to generate the processing gas, the liquid POCl stored in the bubbling tank 11 of the gas generation source 8 is used.
Bubbling with nitrogen gas while heating 3 POCl
3 is vaporized and supplied to the gas introduction nozzle 3. The vaporized POCl 3 flows through the gas introduction nozzle 3 and is ejected from each gas ejection hole 3a.

【0019】例えば半導体ウェハにリンを拡散させる場
合、液体POCl3 を窒素ガスでバブリングして窒素ガ
ス及び酸素ガスと共に流し、ボロンを拡散する場合には
液体のBBr3 上に窒素ガスを流して窒素ガス及び酸素
ガスと共に処理容器1内へ流す。この場合、POCl3
やBBr3 は比重が大きく、処理容器1の下側に溜まり
やすくなる。これによって、半導体ウェハ内の面内に拡
散の不均一性が発生するが、本発明では複数のガス導入
ノズルごとにガス流量やガス濃度を変えることができ、
比重の大きいガスが処理容器1の下側に溜まることを防
止できる。
For example, when diffusing phosphorus into a semiconductor wafer, liquid POCl 3 is bubbled with nitrogen gas and made to flow together with nitrogen gas and oxygen gas, and when diffusing boron, nitrogen gas is made to flow over liquid BBr 3 by flowing nitrogen gas. Flow into the processing container 1 together with gas and oxygen gas. In this case, POCl 3
Since BBr 3 and BBr 3 have a large specific gravity, they tend to accumulate in the lower side of the processing container 1. This causes non-uniform diffusion in the surface of the semiconductor wafer, but in the present invention, the gas flow rate and the gas concentration can be changed for each of the plurality of gas introduction nozzles.
It is possible to prevent the gas having a large specific gravity from accumulating below the processing container 1.

【0020】また、半導体ウェハ内へリンを拡散する場
合、通常、処理容器1内に窒素ガスを流す前処理、液体
POCl3 を窒素ガスでバブリングして窒素ガス及び酸
素ガスと共に処理容器1に流す拡散処理、及び処理容器
1内に窒素ガスを流す後処理の順番で行われる。前処理
から拡散処理に切り替わるとき、従来の処理容器1であ
ると処理容器1の下側からPOCl3 を含んだガスが溜
まる。また拡散処理から後処理へ切り替わる場合はPO
Cl3 を含んだガスが処理容器1の下側に残る。そこ
で、前処理から拡散処理へ切り替わるときには、処理容
器1の上部にあるものから順に、また拡散処理から後処
理へ切り替わるときには、下部にあるものから順に切り
換えればこの面内均一性を向上させることができる。
When phosphorus is diffused into the semiconductor wafer, usually, a pretreatment is carried out in which nitrogen gas is flown into the processing container 1, liquid POCl 3 is bubbled with nitrogen gas, and the liquid POCl 3 is flown into the processing container 1 together with nitrogen gas and oxygen gas. The diffusion process and the post-process of flowing nitrogen gas into the process container 1 are performed in this order. When switching from the pretreatment to the diffusion treatment, in the case of the conventional processing container 1, the gas containing POCl 3 accumulates from the lower side of the processing container 1. Also, when switching from diffusion processing to post-processing, PO
The gas containing Cl 3 remains below the processing container 1. Therefore, when switching from the pretreatment to the diffusion treatment, the treatment is performed from the top of the processing container 1 in order, and when the diffusion treatment is changed to the posttreatment, the treatment from the bottom is changed in order to improve the in-plane uniformity. You can

【0021】また、ノズルに形成したガス噴出孔3aの
向きを調整することによってガス流れをつくり、縦型炉
で半導体ウェハを回転させるのと同様の効果が得られる
と共に、各々の処理ガス導入ノズル3ごとにガス噴出孔
3gの位置と吸気と排気を切り換え可能にしておけば処
理容器1内のガスの流れを自由に作ることが可能にな
る。
Further, by adjusting the direction of the gas ejection holes 3a formed in the nozzle, a gas flow is created, and the same effect as that of rotating a semiconductor wafer in a vertical furnace can be obtained, and each processing gas introduction nozzle If the position of the gas ejection hole 3g and the intake and the exhaust can be switched for each unit 3, the flow of gas in the processing container 1 can be freely created.

【0022】[0022]

【発明の効果】以上のように、本発明に係る横型熱処理
装置によれば、処理容器内に多数のガス噴出孔を有する
処理ガス導入ノズルを前記処理容器の長さ方向に沿って
複数設けると共に、各処理ガス導入ノズル毎に処理ガス
の流量制御装置を設けたことから、被処理体における面
間均一性および面内均一性の双方を向上させることがで
きると共に、大口径の被処理体でも面内均一性を向上さ
せることができ、縦型炉と横型炉の双方の特徴を具備し
た横型熱処理装置となる。
As described above, according to the horizontal heat treatment apparatus of the present invention, a plurality of processing gas introduction nozzles having a large number of gas ejection holes are provided in the processing container along the length direction of the processing container. Since the processing gas flow rate control device is provided for each processing gas introduction nozzle, it is possible to improve both the in-plane uniformity and the in-plane uniformity of the object to be processed, and also to the object having a large diameter. The horizontal heat treatment apparatus can improve the in-plane uniformity and has the characteristics of both the vertical furnace and the horizontal furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る横型熱処理装置の一実施形態を示
す図であり、同図(a)は長さ方向における断面図、同
図(b)は同図(a)のA−A線断面図である。
FIG. 1 is a diagram showing an embodiment of a horizontal heat treatment apparatus according to the present invention, in which FIG. 1 (a) is a cross-sectional view in the longitudinal direction and FIG. 1 (b) is a line AA in FIG. 1 (a). FIG.

【図2】本発明に係る横型熱処理装置のガス発生源部分
を示す図である。
FIG. 2 is a diagram showing a gas generation source portion of a horizontal heat treatment apparatus according to the present invention.

【図3】従来の横型熱処理装置を示す図である。FIG. 3 is a diagram showing a conventional horizontal heat treatment apparatus.

【図4】従来の他の横型熱処理装置を示す図である。FIG. 4 is a diagram showing another conventional horizontal heat treatment apparatus.

【符号の説明】[Explanation of symbols]

1・・・処理容器、2・・・ヒータ、3・・・処理ガス
導入ノズル、3a・・・ガス噴出孔、4・・・ボート、
5・・・被処理体、6・・・ガス流量制御装置
1 ... Processing container, 2 ... Heater, 3 ... Processing gas introducing nozzle, 3a ... Gas ejection hole, 4 ... Boat,
5 ... Object to be treated, 6 ... Gas flow rate control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白沢 勝彦 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Shirasawa 6 16-1166 Haseno, Jamizo Town, Yokaichi City, Shiga Prefecture Kyocera Corporation Shiga Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水平方向に設置された処理容器内のボー
ト上に被処理体を載置し、前記処理容器内に処理ガスを
導入しながら前記被処理体を熱処理する横型熱処理装置
において、前記処理容器内に、多数のガス噴出孔を有す
る処理ガス導入ノズルを前記処理容器の長さ方向に沿っ
て複数設けると共に、各処理ガス導入ノズル毎にガス流
量制御装置を設けたことを特徴とする横型熱処理装置。
1. A horizontal heat treatment apparatus in which an object to be processed is placed on a boat in a processing container installed in a horizontal direction, and the object to be processed is heat-treated while introducing a processing gas into the processing container. In the processing container, a plurality of processing gas introduction nozzles having a large number of gas ejection holes are provided along the length direction of the processing container, and a gas flow rate control device is provided for each processing gas introduction nozzle. Horizontal heat treatment equipment.
JP25163395A 1995-09-28 1995-09-28 Horizontal heat treatment equipment Expired - Fee Related JP3359474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25163395A JP3359474B2 (en) 1995-09-28 1995-09-28 Horizontal heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25163395A JP3359474B2 (en) 1995-09-28 1995-09-28 Horizontal heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH0997766A true JPH0997766A (en) 1997-04-08
JP3359474B2 JP3359474B2 (en) 2002-12-24

Family

ID=17225733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25163395A Expired - Fee Related JP3359474B2 (en) 1995-09-28 1995-09-28 Horizontal heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3359474B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003771A (en) * 2009-06-19 2011-01-06 Shin-Etsu Chemical Co Ltd Semiconductor-substrate diffusion furnace
JP2012119453A (en) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp Impurity diffusion apparatus
US8277891B2 (en) 2006-05-23 2012-10-02 Tokyo Electron Limited Method for suppressing particle generation during semiconductor manufacturing
JP2015188095A (en) * 2015-05-20 2015-10-29 光洋サーモシステム株式会社 Continuous diffusion processing apparatus
JP2015201650A (en) * 2015-05-20 2015-11-12 光洋サーモシステム株式会社 Continuous diffusion processing apparatus
JP2020017729A (en) * 2018-07-24 2020-01-30 エルジー エレクトロニクス インコーポレイティド Vapor deposition equipment for solar cell and deposition method using the same
KR20200036595A (en) * 2018-09-28 2020-04-07 엘지전자 주식회사 Silicon layer deposition equipment of solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277891B2 (en) 2006-05-23 2012-10-02 Tokyo Electron Limited Method for suppressing particle generation during semiconductor manufacturing
JP2011003771A (en) * 2009-06-19 2011-01-06 Shin-Etsu Chemical Co Ltd Semiconductor-substrate diffusion furnace
JP2012119453A (en) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp Impurity diffusion apparatus
JP2015188095A (en) * 2015-05-20 2015-10-29 光洋サーモシステム株式会社 Continuous diffusion processing apparatus
JP2015201650A (en) * 2015-05-20 2015-11-12 光洋サーモシステム株式会社 Continuous diffusion processing apparatus
JP2020017729A (en) * 2018-07-24 2020-01-30 エルジー エレクトロニクス インコーポレイティド Vapor deposition equipment for solar cell and deposition method using the same
US10971646B2 (en) 2018-07-24 2021-04-06 Lg Electronics Inc. Chemical vapor deposition equipment for solar cell and deposition method thereof
KR20200036595A (en) * 2018-09-28 2020-04-07 엘지전자 주식회사 Silicon layer deposition equipment of solar cell

Also Published As

Publication number Publication date
JP3359474B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
CN108074845A (en) The manufacturing method of substrate board treatment, reaction tube and semiconductor device
US4033286A (en) Chemical vapor deposition reactor
JP6752851B2 (en) Manufacturing methods for cooling units, substrate processing equipment, and semiconductor equipment
US20090017638A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP2009135551A (en) Method of manufacturing semiconductor device
CN109037095A (en) Device for processing a substrate
CN103649368B (en) Gas injection device, apparatus for atomic layer deposition and use the Atomic layer deposition method of this apparatus for atomic layer deposition
JPH0997766A (en) Horizontal thermal treatment device
TWI463549B (en) Substrate liquid treatment method, treatment liquid producing method, and computer readable storage medium recorded with program for producing treatment liquid
JP2928210B1 (en) Semiconductor substrate impurity diffusion treatment method and semiconductor manufacturing apparatus
JP2641351B2 (en) Variable distribution gas flow reaction chamber
JP2004006551A (en) Device and method for treating substrate
JPS57128940A (en) Heat treating method for substrate
JPWO2004097913A1 (en) Vacuum film forming apparatus, vacuum film forming method, and solar cell material
JP2839621B2 (en) Thermal diffusion equipment for semiconductor manufacturing
KR20100030620A (en) Method for controlling process gas concentration
US20040118161A1 (en) Fusing acceleration and improved process control
JP3388555B2 (en) Heat treatment apparatus and heat treatment method
JPS59104123A (en) Impurity diffusion device
JPH11195611A (en) Manufacture of reactor and semiconductor member
JPH0547685A (en) Method of diffusing impurity to semiconductor wafer
JPH01295425A (en) Oxidizing apparatus
JPS61110767A (en) Cvd device
JPS63200536A (en) Apparatus for forming silicon oxide film
JPH0758045A (en) Lateral heat treatment apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101011

LAPS Cancellation because of no payment of annual fees