JPH0997703A - Resistive paste self-contained in low temperature baking substrate - Google Patents

Resistive paste self-contained in low temperature baking substrate

Info

Publication number
JPH0997703A
JPH0997703A JP7274924A JP27492495A JPH0997703A JP H0997703 A JPH0997703 A JP H0997703A JP 7274924 A JP7274924 A JP 7274924A JP 27492495 A JP27492495 A JP 27492495A JP H0997703 A JPH0997703 A JP H0997703A
Authority
JP
Japan
Prior art keywords
oxide
paste
low temperature
contained
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274924A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsumura
吉章 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7274924A priority Critical patent/JPH0997703A/en
Publication of JPH0997703A publication Critical patent/JPH0997703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the title resistive paste self-contained in low temperature baking substrate producing less change in the resistance value even if baking step is repeated. SOLUTION: Within the title resistance paste self-contained in low temperature baking substrate mainly comprising ruthenium oxide and glass, 1-5wt.% of bismuth oxide, copper oxide, manganese oxide in endomictic or mixed state is additionally contained in 99-95wt.% of ruthenium oxide and glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路部品に用
いられる焼成温度1000℃以下の低温焼成基板に内蔵
される抵抗ペーストに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance paste incorporated in a low temperature firing substrate having a firing temperature of 1000.degree.

【0002】[0002]

【従来の技術】最近の電子機器の小型化に伴い、電子回
路を高密度に集積化する要求が高まってきており、電子
機器用のセラミック基板に対しても、多層化、回路のフ
ァインピッチ化、チップのベア実装などに対する要望が
高まっている。これらの要求を満たすためには、導体抵
抗が低くファインパターン化の可能なAu、Ag、Cu
等の導体と同時焼成をすることができるような温度、即
ち1000℃以下での焼成が可能なセラミックス基板が
必要となる。
2. Description of the Related Art With the recent miniaturization of electronic devices, the demand for high-density integration of electronic circuits has increased, and ceramic substrates for electronic devices have multiple layers and fine pitch circuits. The demand for bare mounting of chips is increasing. In order to meet these requirements, Au, Ag, and Cu having a low conductor resistance and capable of fine patterning
A ceramic substrate that can be fired at a temperature at which it can be fired at the same time as a conductor such as 1000 ° C. is required.

【0003】従来、電子機器用の基板としては、アルミ
ナやガラスエポキシ基板が用いられている。しかしなが
らガラスエポキシ基板では熱膨脹率が50×10−1
℃程度と大きいし、また熱伝導率もアルミナと比較して
劣るなど、上記の要求を満たすには不向きである。ま
た、アルミナにおいても、焼成に1600℃程度の高温
を必要とするために、多層化を行なう場合に内部導体と
して導体抵抗の比較的高いWやMoを使用しなければな
らず、このため回路のファインパターン化には限界があ
った。
Conventionally, alumina or glass epoxy substrates have been used as substrates for electronic equipment. However, the coefficient of thermal expansion of the glass epoxy substrate is 50 × 10 −1 /
It is unsuitable for satisfying the above requirements, such as a large temperature of about 0 ° C and a poor thermal conductivity as compared with alumina. Further, since alumina requires a high temperature of about 1600 ° C. for firing, W or Mo having a relatively high conductor resistance must be used as an internal conductor when multilayering is performed. There was a limit to fine patterning.

【0004】このような問題に対応するため、導体抵抗
の低いAu、Ag、Cu等、とくにコスト的にも有利で
あるAgおよびAg合金を内部導体として使用すること
ができ、かつ熱伝導率がガラスエポキシ基板よりも優れ
たガラス、金属酸化物等の無機フィラーの組成物からな
る低温焼成基板の開発が進められている。
In order to cope with such a problem, Au, Ag, Cu or the like having a low conductor resistance, particularly Ag and Ag alloy which are advantageous in terms of cost, can be used as the inner conductor, and the thermal conductivity is high. Development of a low-temperature fired substrate made of a composition of glass, an inorganic filler such as a metal oxide, which is superior to that of a glass epoxy substrate, is under way.

【0005】また、低温焼成基板は、1000℃以下の
温度で焼成することが可能であることから、内部に酸化
ルテニウム系抵抗等の機能部品を同時焼成によって内蔵
させることができるといった特徴もある。しかし、この
ようにして得られた抵抗は、同時焼成により得られるた
めに焼成後の抵抗値の修正が不可能であり、また低温焼
成基板の製造時の工程の変化に伴って抵抗値が変化して
しまうという問題があった。例えば、表面にペーストに
よって導体のみを形成する場合と、抵抗体まで形成する
場合とでは、後者の方が同時焼成後の再焼成(表面導体
及び抵抗体を焼き付けるための)回数が多くなる。従っ
てこの再焼成の回数によって内部抵抗の抵抗値が変化す
るので最終的な抵抗値を合致させるのが極めて困難であ
る。
Further, since the low-temperature fired substrate can be fired at a temperature of 1000 ° C. or lower, it has a feature that a functional component such as a ruthenium oxide-based resistor can be incorporated inside by simultaneous firing. However, since the resistance thus obtained is obtained by co-firing, it is impossible to modify the resistance value after firing, and the resistance value changes with the changes in the process of manufacturing the low temperature firing substrate. There was a problem of doing. For example, in the case where only the conductor is formed on the surface by the paste and the case where the resistor is also formed, in the latter case, the number of times of re-baking (for baking the surface conductor and the resistor) after simultaneous baking becomes larger. Therefore, since the resistance value of the internal resistance changes depending on the number of times of this re-baking, it is extremely difficult to match the final resistance value.

【0006】[0006]

【発明が解決しようとする課題】本発明は、抵抗ペース
トに特定の酸化物を添加することにより、焼成を繰り返
しても抵抗値の変化が小さい低温焼成基板内蔵用抵抗ペ
ーストを提供することを目的とするものである。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a resistance paste for embedding in a low temperature firing substrate, which has a small change in resistance value even if firing is repeated by adding a specific oxide to the resistance paste. It is what

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、酸化ルテニウムとガラスを主成分とする
抵抗ペーストにおいて、酸化ルテニウムおよびガラスに
対して、酸化ビスマス、酸化銅、酸化マンガンを単独、
または混合した状態で1〜5重量%添加含有させてなる
ことを特徴とする低温焼成基板内蔵用抵抗ペーストであ
る。
The present invention for achieving the above object provides a resistance paste containing ruthenium oxide and glass as main components, wherein bismuth oxide, copper oxide and manganese oxide are added to ruthenium oxide and glass. Alone,
Alternatively, it is a resistance paste for embedding in a low temperature firing substrate, which is characterized by being added and contained in an amount of 1 to 5% by weight in a mixed state.

【0008】[0008]

【発明の実施の形態】一般に低温焼成基板を製造するに
は、先ずガラス、無機フィラーおよび樹脂等よりなるグ
リーンシートをドクターブレード法等を用いて作成し、
内蔵する導体、抵抗体のペーストを印刷により形成す
る。得られたグリーンシートを積層して同時焼成し、内
部回路の形成されたセラミック基板を得る。次に表面導
体を印刷してさらに焼成する。さらに抵抗体を表面に形
成するためには、さらに抵抗体ペーストを印刷して焼成
する。従って、表面に形成する回路、抵抗体の数によっ
て同時焼成後の再焼成の回数が異なってくる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, in order to manufacture a low temperature fired substrate, first, a green sheet made of glass, an inorganic filler, a resin and the like is prepared by using a doctor blade method or the like,
The built-in conductor and resistor paste are formed by printing. The obtained green sheets are laminated and co-fired to obtain a ceramic substrate having an internal circuit. The surface conductor is then printed and further fired. In order to further form a resistor on the surface, a resistor paste is further printed and fired. Therefore, the number of times of re-firing after simultaneous firing differs depending on the number of circuits and resistors formed on the surface.

【0009】内蔵型の抵抗ペーストの場合には同時焼成
後の抵抗値の修正は困難であり、設計通りの抵抗値を有
する内蔵抵抗を得るには再焼成による抵抗値変化を把握
した上で内蔵抵抗ペーストの組成を定める必要がある。
また焼成による抵抗値の変化が大きければ、表面に形成
する回路毎の抵抗ペースト組成の変更が必要となるの
で、コストの上昇や設計の自由度の低下をきたすという
問題を生ずる。それ故再焼成による抵抗値の変化の少な
い内蔵用ペーストが要望されている。
In the case of a built-in resistance paste, it is difficult to correct the resistance value after simultaneous firing, and in order to obtain a built-in resistor having a resistance value as designed, it is necessary to grasp the change in resistance value due to re-firing and then incorporate It is necessary to determine the composition of the resistance paste.
Further, if the change in resistance value due to firing is large, it is necessary to change the composition of the resistance paste for each circuit formed on the surface, which raises the problem of increased cost and reduced design flexibility. Therefore, there is a demand for a paste for embedding which has a small change in resistance value due to re-firing.

【0010】このような要求に即応する内蔵用ペースト
について種々研究の結果、酸化ルテニウムおよびガラス
を主成分とする内蔵用ペースト内に、酸化ルテニウムお
よびガラスの99〜95重量%に対して、酸化ビスマ
ス、酸化銅、酸化マンガンをそれぞれ単独で、または混
合した状態で1〜5重量%含有させることにより、再焼
成による抵抗値の変化を極めて小さくすることができる
ことを実験的に見出し本発明を完成した。
As a result of various researches on an embedding paste which immediately meets such requirements, in an embedding paste mainly composed of ruthenium oxide and glass, bismuth oxide was added to 99 to 95% by weight of ruthenium oxide and glass. It was found experimentally that the change in resistance value due to re-baking can be extremely reduced by adding 1 to 5% by weight of copper oxide, copper oxide, and manganese oxide individually or in a mixed state, and the present invention has been completed. .

【0011】上記本発明の内蔵用ペーストにおいて、酸
化ルテニウム−ガラスペースト中に添加含有させるべき
酸化ビスマス、酸化銅および酸化マンガンによる添加物
は、該ペースト総量に対して1重量%未満であるとき
は、その効果が十分でなく、また5重量%を超えること
きは抵抗値の変化がかえって大きくなるのいずれも好ま
しくない。
In the above-mentioned paste for embedding of the present invention, when the content of bismuth oxide, copper oxide and manganese oxide to be added to the ruthenium oxide-glass paste is less than 1% by weight based on the total amount of the paste. However, the effect is not sufficient, and when it exceeds 5% by weight, the change of the resistance value becomes rather large, which is not preferable.

【0012】[0012]

【実施例】以下に本発明の実施例について説明する。本
発明はこの実施例に限定されるものでないことはいうま
でもない。
EXAMPLES Examples of the present invention will be described below. It goes without saying that the present invention is not limited to this embodiment.

【0013】SiO−Al−B−ZnO
−CaO系結晶化ガラス粉末(SiO:35重量%、
Al:25重量%、B:8重量%、Zn
O:19重量%、CaO:13重量%)とAl
末を重量比で62:38になるようにボールミルを用い
て混合し、低温焼成基板用組成物を得た。なお、ここで
Al粉末には、平均粒径0.5〜1μmのものを
用いた。
SiO 2 --Al 2 O 3 --B 2 O 3 --ZnO
-CaO based crystallized glass powder (SiO 2: 35 wt%,
Al 2 O 3 : 25% by weight, B 2 O 3 : 8% by weight, Zn
O: 19% by weight, CaO: 13% by weight) and Al 2 O 3 powder were mixed in a weight ratio of 62:38 by using a ball mill to obtain a composition for low temperature firing substrate. The Al 2 O 3 powder used here had an average particle size of 0.5 to 1 μm.

【0014】得られた低温焼成基板用組成物100重量
部に対してブチラール樹脂10重量部、可塑剤としてフ
タル酸ジブチル70重量部、溶剤としてイソプロピルア
ルコール50重量部およびメチルエチルケトン50重量
部を加え、48時間ボールミル混合を行ってスラリーを
調製し、PETフィルム上にドクターブレード法によっ
てグリーンシートを作製した。
48 parts by weight of butyral resin, 70 parts by weight of dibutyl phthalate as a plasticizer, 50 parts by weight of isopropyl alcohol and 50 parts by weight of methyl ethyl ketone as a solvent were added to 100 parts by weight of the composition for a low temperature fired substrate thus obtained. Ball mill mixing was performed for a time to prepare a slurry, and a green sheet was produced on a PET film by a doctor blade method.

【0015】次に、酸化ルテニウムと表1に示した組成
を有するガラス粉末と各酸化物(酸化ビスマス、酸化
銅、酸化マンガン)を表2に示す割合で混合し、これら
の混合物100重量部に対し、エチルセルローズのター
ピネオール溶液をビヒクルとして35重量部加え、スリ
ーロールミルで混練して各々均一なペーストを作成し
た。表2中、試料番号2〜10および試料番号14の試
料は、本発明の組成範囲のペースト例であり、また試料
番号1および試料番号11〜13は本発明の組成範囲外
の比較ペースト例である。
Next, ruthenium oxide, glass powder having the composition shown in Table 1 and each oxide (bismuth oxide, copper oxide, manganese oxide) were mixed at the ratio shown in Table 2, and 100 parts by weight of the mixture was added. On the other hand, 35 parts by weight of a terpineol solution of ethyl cellulose as a vehicle was added and kneaded with a three-roll mill to prepare a uniform paste. In Table 2, samples Nos. 2 to 10 and Sample No. 14 are paste examples in the composition range of the present invention, and Sample Nos. 1 and 11 to 13 are comparative paste examples outside the composition range of the present invention. is there.

【0016】[0016]

【表1】成 分 重量(%) SiO : 33 Al : 24 B : 9 ZnO : 19 CaO : 15TABLE 1 Ingredient wt (%) SiO 2: 33 Al 2 O 3: 24 B 2 O 3: 9 ZnO: 19 CaO: 15

【0017】[0017]

【表2】 組成(重量%) 試料番号 RuO ガラス Bi CuO Mn 備 考 ──────────────────────────────────── 1 88 12 0 0 0 比較例 2 87.5 11.5 1 0 0 発明例 3 87.5 11.5 0 1 0 発明例 4 87.5 11.5 0 0 1 発明例 5 86.5 10.5 3 0 0 発明例 6 86.5 10.5 0 3 0 発明例 7 86.5 10.5 0 0 3 発明例 8 85.5 9.5 5 0 0 発明例 9 85.5 9.5 0 5 0 発明例 10 85.5 9.5 0 0 5 発明例 11 84.5 8.5 7 0 0 比較例 12 84.5 8.5 0 7 0 比較例 13 84.5 8.5 0 0 7 比較例 14 86.5 10.5 2 1 0 発明例[Table 2] Composition (% by weight) Sample number RuO 2 glass Bi 2 O 3 CuO Mn 3 O 4 Remarks ────────────────────────── ─────────── 1 88 12 0 0 0 Comparative Example 2 87.5 11.5 1 0 0 Invention Example 3 87.5 11.5 0 1 0 Invention Example 4 87.5 11.5 0 0 1 Inventive Example 5 86.5 10.5 3 0 0 Inventive Example 6 86.5 10.5 0 3 0 Inventive Example 7 86.5 10.5 0 0 3 Inventive Example 8 85.5 9.5 5 5 0 Invention Example 9 85.5 9.5 0 0 5 0 Invention Example 10 85.5 9.5 0 0 5 Invention Example 11 84.5 8.5 7 0 0 Comparative Example 12 84.5 8.5 0 7 0 Comparison Example 13 84.5 8.5 0 0 7 Comparative Example 14 86.5 10.5 2 1 0 Invention Example

【0018】次に、上記のグリーンシートに電極として
銀ペーストを印刷し、120℃で20分間乾燥して電極
付きのグリーンシートを準備した。そして先に示した方
法で得られた抵抗ペーストを上記の電極付きグリーンシ
ート上に1mm×1mmの印刷パターンを用いてスクリ
ーン印刷し、120℃で20分間乾燥した。
Next, a silver paste was printed as an electrode on the above green sheet and dried at 120 ° C. for 20 minutes to prepare a green sheet with an electrode. Then, the resistance paste obtained by the method described above was screen-printed on the above-mentioned green sheet with electrodes using a printing pattern of 1 mm × 1 mm, and dried at 120 ° C. for 20 minutes.

【0019】以上のようにして導体および抵抗体が形成
されたグリーンシートを中央に挟む形でグリーンシート
3枚を60〜80℃で、100kgf/cmで5分間
加圧圧着した後、所定の大きさにシートを切断し、最高
温度875℃、該最高温度での保持時間を20分間にし
て焼成した。そして、最上層に電気特性測定用の銀電極
を設け、該電極と内部電極とを銀ペーストを用いたビア
ホールで連結することにより内部抵抗の電気特性を測定
し得るように構成した。
The three green sheets with the conductor and the resistor formed as described above are sandwiched in the center and pressure-bonded at 60 to 80 ° C. at 100 kgf / cm 2 for 5 minutes, and then, a predetermined amount is obtained. The sheet was cut into a size, and baked at a maximum temperature of 875 ° C. and a holding time at the maximum temperature of 20 minutes. Then, a silver electrode for measuring electric characteristics was provided on the uppermost layer, and the electric characteristics of the internal resistance could be measured by connecting the electrode and the internal electrode with a via hole using a silver paste.

【0020】以上のように構成した試料を、全加熱時間
30分間、最高温度850℃で9分間保持する焼成工程
条件で2回繰り返して焼成し、得られた抵抗内蔵低温焼
成基板について、抵抗値の測定を行い、得られた結果を
表3に示した。なお、得られた試料の断面を光学顕微鏡
で観察した結果、内蔵抵抗の膜厚は約10μmであっ
た。
The sample thus constructed was repeatedly fired twice under the firing process conditions of a total heating time of 30 minutes and a maximum temperature of 850 ° C. for 9 minutes. Was measured, and the obtained results are shown in Table 3. As a result of observing the cross section of the obtained sample with an optical microscope, the film thickness of the built-in resistor was about 10 μm.

【0021】[0021]

【表3】 試料番号 抵抗値(KΩ/sq) 抵抗値変化率(%) 備 考 ─────────────────────────────── 1 5 −7.4 比較例 2 4.1 −3 発明例 3 6.9 −2 発明例 4 4.1 −2.8 発明例 5 3 0 発明例 6 7.5 0.5 発明例 7 3.5 −0.1 発明例 8 2.3 2.5 発明例 9 7.7 3.1 発明例 10 3.1 2.9 比較例 11 2.2 6.5 比較例 12 7.8 7.2 比較例 13 3 6.2 比較例 14 4.7 −0.1 発明例[Table 3] Sample number Resistance value (KΩ / sq) Resistance value change rate (%) Remark ───────────────────────────── ─── 15-7.4 Comparative Example 2 4.1-3 Invention Example 3 6.9-2 Invention Example 4 4.1-2.8 Invention Example 5 3 0 Invention Example 6 7.5 0.5 Invention Example 7 3.5-0.1 Invention Example 8 2.3 2.5 Invention Example 9 7.7 3.1 Invention Example 10 3.1 2.9 Comparative Example 11 2.2 6.5 Comparative Example 12 7. 8 7.2 Comparative Example 13 3 6.2 Comparative Example 14 4.7-0.1 Invention Example

【0022】表3の結果より、抵抗ペースト内に酸化ル
テニウム及びガラス99〜95重量%に対して酸化ビス
マス、酸化銅、酸化マンガンを単独または混合して1〜
5重量%添加含有させた本発明例によるペースト(試料
番号2〜10および試料番号14)は、再焼成を施した
場合であっても抵抗値の変化率を±5%以内に抑えるこ
とができ、これに対して、酸化ビスマス、酸化銅、酸化
マンガンを全く添加しないペースト(試料番号1)およ
び添加しても本発明の範囲を逸脱する量で添加したペー
スト(試料番号12〜13)は、変化率が著しく大きい
ことが分かる。即ち、本発明によれば抵抗値変化の少な
い低温焼成基板内蔵用抵抗ペーストを得ることができる
ことが分かる。
From the results shown in Table 3, bismuth oxide, copper oxide, and manganese oxide were added to the resistance paste in an amount of 1 to 1 by mixing bismuth oxide, copper oxide, and manganese oxide with respect to 99 to 95% by weight of glass.
The pastes (Sample Nos. 2 to 10 and Sample No. 14) according to the present invention containing 5 wt% added can suppress the rate of change in resistance value within ± 5% even when re-baking is performed. On the other hand, the paste containing no bismuth oxide, copper oxide or manganese oxide (Sample No. 1) and the paste added even in an amount that deviates from the scope of the present invention (Sample Nos. 12 to 13) are It can be seen that the rate of change is extremely large. That is, according to the present invention, it can be seen that a resistance paste for embedding in a low temperature fired substrate with a small change in resistance value can be obtained.

【0023】[0023]

【発明の効果】以上述べたことから、本発明の抵抗ペー
ストは、再焼成によってもその抵抗値が大幅に変化する
ことがないので、低温焼成基板内蔵用抵抗ペーストとし
て設計上極めて有効であるということができる。
As described above, the resistance paste of the present invention does not significantly change its resistance value even if it is re-fired, so that it is very effective in design as a low-temperature firing substrate built-in resistance paste. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化ルテニウムとガラスを主成分とする
抵抗ペーストにおいて、酸化ルテニウムおよびガラスに
対して、酸化ビスマス、酸化銅および酸化マンガンをそ
れぞれ単独で、または混合した状態で1〜5重量%添加
含有させることを特徴とする低温焼成基板内蔵用抵抗ペ
ースト。
1. In a resistance paste containing ruthenium oxide and glass as main components, 1 to 5% by weight of bismuth oxide, copper oxide and manganese oxide are added to ruthenium oxide and glass individually or in a mixed state. A resistance paste for embedding in a low-temperature fired substrate, characterized by being contained.
JP7274924A 1995-09-28 1995-09-28 Resistive paste self-contained in low temperature baking substrate Pending JPH0997703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274924A JPH0997703A (en) 1995-09-28 1995-09-28 Resistive paste self-contained in low temperature baking substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274924A JPH0997703A (en) 1995-09-28 1995-09-28 Resistive paste self-contained in low temperature baking substrate

Publications (1)

Publication Number Publication Date
JPH0997703A true JPH0997703A (en) 1997-04-08

Family

ID=17548447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274924A Pending JPH0997703A (en) 1995-09-28 1995-09-28 Resistive paste self-contained in low temperature baking substrate

Country Status (1)

Country Link
JP (1) JPH0997703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013913A (en) * 2018-07-19 2020-01-23 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013913A (en) * 2018-07-19 2020-01-23 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Similar Documents

Publication Publication Date Title
US6436316B2 (en) Conductive paste and printed wiring board using the same
US4695403A (en) Thick film conductor composition
EP0223220A2 (en) Multilayer ceramic circuit board fired at a low temperature
JP3785903B2 (en) Multilayer substrate and manufacturing method thereof
EP1744327A1 (en) High thermal cycle conductor system
EP1178713B1 (en) Multilayered board and method for fabricating the same
JP2898121B2 (en) Conductor paste and wiring board
US5011530A (en) Metallizing composition for use with ceramics
JPH0997703A (en) Resistive paste self-contained in low temperature baking substrate
JPS61275161A (en) Low temperature burnt multilayer ceramic substrate
JP2989936B2 (en) Glass frit, resistor paste and wiring board
EP1655742B1 (en) Resistor material, resistive paste and resistor using the resistor material, and multi-layered ceramic substrate
JPS61274399A (en) Low temperature baked multilayer ceramic substrate
JPH04328207A (en) Conductor compound and wiring board
JPH09153681A (en) Built-in resistor paste for manufacture of lowtemperature fired substrate
JPH0797447B2 (en) Metallized composition
JP2929955B2 (en) Resistive paste for low-temperature fired substrate
JP4906258B2 (en) Wiring board and manufacturing method thereof
JPH0612911A (en) Conductive composition and multilayer circuit board
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JP2004356306A (en) Resistor paste, ceramic wiring board with resistor and manufacturing method therefor
JP2589570B2 (en) Conductive paste for multilayer circuit board and method for manufacturing multilayer circuit board
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPH09139563A (en) Manufacture of low temperature baking board built in resistor
JPH0554718B2 (en)