JPH0995748A - Corrosion resistant copper alloy excellent in high temperature ductility and annealing brittleness resistance - Google Patents

Corrosion resistant copper alloy excellent in high temperature ductility and annealing brittleness resistance

Info

Publication number
JPH0995748A
JPH0995748A JP27691195A JP27691195A JPH0995748A JP H0995748 A JPH0995748 A JP H0995748A JP 27691195 A JP27691195 A JP 27691195A JP 27691195 A JP27691195 A JP 27691195A JP H0995748 A JPH0995748 A JP H0995748A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
annealing
high temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27691195A
Other languages
Japanese (ja)
Other versions
JP3046932B2 (en
Inventor
Tetsuya Ando
哲也 安藤
Tetsuo Atsumi
哲郎 渥美
Masami Yoshioka
正己 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP7276911A priority Critical patent/JP3046932B2/en
Publication of JPH0995748A publication Critical patent/JPH0995748A/en
Application granted granted Critical
Publication of JP3046932B2 publication Critical patent/JP3046932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a copper alloy at low material cost and production cost by using a cupro nickel alloy improved in annealing brittleness resistance as the base and regulating the combination of alloy compsns, the amt. of impurities or the like. SOLUTION: This copper alloy has a compsn. contg., by weight, 29 to 33% Ni, 0.4 to 2.3% Fe, 0.2 to 2.5% Mn and 0.001 to 0.05% Zr, in which the content of Zn as an impurity is regulated to <=0.5%, and the balance Cu, the quantitative relation between Mn and Fe satisfies Fe%-1.5<=Mn%<=Fe%+1.5, and the total content of Cu, Ni, Fe and Mn is regulated to >=99.5%. This copper alloy is excellent in high temp. ductility, is free from the generation of cracks caused by annealing brittleness during the process of the production, is furthermore excellent in corrosion resistance and is satisfactory in the case of valued from the total view point of the production cost, the improvement of the productility or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温延性および耐
焼鈍脆性に優れた耐食銅合金、詳しくは、製造工程途中
において焼鈍脆性に起因する割れの発生がなく、耐食性
にも優れた30%キュプロニッケル合金に関する。
TECHNICAL FIELD The present invention relates to a corrosion resistant copper alloy excellent in high temperature ductility and resistance to annealing brittleness, and more specifically, to a corrosion resistant copper alloy having no cracks due to annealing brittleness during the manufacturing process and excellent corrosion resistance. Regarding nickel alloys.

【0002】[0002]

【従来の技術】30%程度のNiを含有するキュプロニ
ッケル合金(JIS H 3300 C7150、BS2871、CN107)やこれ
にFe、Mnを添加した高Fe高Mnキュプロニッケル
合金(JIS H 3300 C7164、BS2871、CN108)は、優れた海
水耐食性をそなえているため、発電プラント、化学プラ
ントなど海水を冷却水とする多管式熱交換器あるいは多
段蒸発式海水淡水化装置の伝熱管として適用されてい
る。
2. Description of the Related Art A cupronickel alloy containing about 30% Ni (JIS H 3300 C7150, BS2871, CN107) and a high Fe high Mn cupronickel alloy (JIS H 3300 C7164, BS2871, Since CN108) has excellent seawater corrosion resistance, it has been applied as a heat transfer tube for multi-tube heat exchangers or multi-stage evaporative seawater desalination equipment that uses seawater as cooling water, such as in power plants and chemical plants.

【0003】これらキュプロニッケル合金管の製造は、
一般に、連続鋳造により造塊し、鋳塊を熱間加工(熱間
圧延、熱間押出)し、その後、冷間加工(冷間圧延、冷
間抽伸)、熱処理を経て行われるが、製造工程中、とく
に鋳塊を熱間加工する際、延性の低下に起因して割れが
生じ易く、また熱間加工を行う前の鋳塊加熱の際にも、
鋳塊に残留している応力が緩和する過程で微細割れが生
じ易く、その後の熱間加工または冷間加工における加工
割れ発生の原因となる。これらの現象は焼鈍脆性といわ
れ、キュプロニッケル管製造の障害となっている。
The production of these cupro nickel alloy tubes is as follows.
Generally, it is performed by continuous casting, hot working (hot rolling, hot extrusion) of the ingot, and then cold working (cold rolling, cold drawing) and heat treatment. Medium, especially when hot working the ingot, cracks easily occur due to the decrease in ductility, and also during the ingot heating before performing hot working,
Fine cracks are likely to occur in the process of relaxing the stress remaining in the ingot, which causes work cracks in the subsequent hot working or cold working. These phenomena are called annealing brittleness, which is an obstacle to the production of cupro nickel pipes.

【0004】焼鈍脆性を防止するための対策として、鋳
塊結晶粒度の微細化、熱間加工の際の加工度の制限など
が行われるが、鋳塊結晶粒の微細化については、鋳造
時、注湯温度を低くすることや冷却速度を大きくするこ
となどにより、ある程度までは可能であるものの、鋳造
速度を大きく低下させることとなり、生産性の低下を招
くことになる。また引け巣などの鋳造欠陥が生じ易くな
るという問題がある。鋳造時、電磁撹拌を行うことによ
り結晶粒の微細化が可能となるが、高額な電磁撹拌装置
が必要となり生産コストの増大を招く。さらに鋳塊結晶
粒の微細化のみでは焼鈍脆性を完全に防止することがで
きない。熱間加工時の加工度の制限は、生産能率を低下
させる。
As a measure for preventing the annealing brittleness, the grain size of the ingot is made finer, and the working degree at the time of hot working is limited. Although it is possible to some extent by lowering the pouring temperature or increasing the cooling rate, the casting rate is greatly reduced, and the productivity is reduced. There is also a problem that casting defects such as shrinkage cavities are likely to occur. Although it is possible to make the crystal grains finer by performing electromagnetic stirring during casting, an expensive electromagnetic stirring device is required, resulting in an increase in production cost. Further, annealing brittleness cannot be completely prevented only by refining ingot crystal grains. Limiting the workability during hot working lowers the production efficiency.

【0005】合金組成を調整し、例えば、24〜38%
Ni、2.3〜3.8%のCrを含有し、2%未満のM
n、0.02%以下の炭素、0.8%以下のZrを含有
し、残部が実質的に銅であり、熱間加工性を改良した銅
ニッケル合金(特公昭51-44089号公報) 、29〜33%
Ni、0.01〜1%Fe、0.01〜1.5%Mn、
0.05〜0.5%Zrを含有し、残部が実質的に銅か
らなり、耐焼鈍脆性を改善したキュプロニッケル合金
(英国特許1,144,334 号) も提案されているが、耐焼鈍
脆性に加え、耐食性、生産コスト、生産性の向上などの
総合的観点から評価した場合、必ずしも十分なものでは
ない。
The alloy composition is adjusted to, for example, 24 to 38%.
Ni, containing 2.3-3.8% Cr and less than 2% M
a copper-nickel alloy containing n, 0.02% or less of carbon, 0.8% or less of Zr, the balance being substantially copper, and having improved hot workability (Japanese Patent Publication No. 51-44089), 29-33%
Ni, 0.01-1% Fe, 0.01-1.5% Mn,
A cupronickel alloy (British Patent No. 1,144,334) containing 0.05 to 0.5% Zr and the balance being substantially copper and having improved annealing brittleness resistance has been proposed, but in addition to the annealing brittleness resistance, It is not always sufficient when evaluated from a comprehensive viewpoint such as corrosion resistance, production cost, and improvement of productivity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、耐焼鈍脆性
を改善した上記のキュプロニッケル合金を基本として、
総合的に優れた合金を得るために、合金組成の組合わ
せ、不純物量などについて種々の実験検討を行った結果
としてなされたものであり、その目的は、高温延性、耐
焼鈍脆性が優れ、鋳塊加熱時や熱間加工時に割れを生じ
ることがなく、耐孔食性、耐隙間腐食性、耐潰食性など
の耐食性に優れ、上記のキュプロニッケル合金に比較し
て材料コスト、生産コストが低減され、生産性向上も達
成できる高温延性および耐焼鈍脆性に優れた耐食銅合金
を提供することにある。
DISCLOSURE OF THE INVENTION The present invention is based on the above cupro-nickel alloy having improved resistance to annealing and brittleness.
In order to obtain a comprehensively excellent alloy, it was made as a result of various experimental studies on the combination of alloy compositions, the amount of impurities, etc. It does not cause cracks during ingot heating or hot working, and has excellent corrosion resistance such as pitting corrosion resistance, crevice corrosion resistance, and erosion resistance. Material cost and production cost are reduced compared to the above cupro nickel alloy. Another object of the present invention is to provide a corrosion-resistant copper alloy excellent in high temperature ductility and resistance to annealing and brittleness that can also improve productivity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による高温延性および耐焼鈍脆性に優れた耐
食銅合金は、Ni:29〜33%、Fe:0.4〜2.
3%、Mn:0.2〜2.5%、Zr:0.001%以
上0.05%未満を含有し、不純物としてのZnを0.
5%以下とし、残部Cuおよび不可避不純物からなり、
MnとFeとの量的関係がFe%−1.5≦Mn≦Fe
%+1.5を満たし、Cu、Ni、FeおよびMnの合
計量が99.5%以上であることを構成上の特徴とす
る。
The corrosion resistant copper alloy excellent in high temperature ductility and annealing brittleness according to the present invention for achieving the above object is Ni: 29-33%, Fe: 0.4-2.
3%, Mn: 0.2 to 2.5%, Zr: 0.001% or more and less than 0.05%, and Zn as an impurity is less than 0.1%.
5% or less, the balance Cu and unavoidable impurities,
The quantitative relationship between Mn and Fe is Fe% -1.5 ≦ Mn ≦ Fe
% + 1.5, and the total amount of Cu, Ni, Fe and Mn is 99.5% or more.

【0008】本発明における合金成分添加の意義および
限定理由について説明すると、Niは、合金の耐食性を
確保するために必要であり、好ましい含有範囲は29〜
33%である。Ni量が29%未満では耐食性が十分で
なく、33%を越えて含有すると、水素の固溶度が増大
して焼鈍脆化が生じ易くなる。
Explaining the significance and the reason for limiting the addition of alloying components in the present invention, Ni is necessary for ensuring the corrosion resistance of the alloy, and the preferable content range is 29-.
33%. If the Ni content is less than 29%, the corrosion resistance is not sufficient, and if it exceeds 33%, the solid solubility of hydrogen increases and annealing embrittlement easily occurs.

【0009】Feは、Cu−Ni合金の耐潰食性を向上
させる。とくに0.4%以上添加した場合にその効果が
顕著である。好ましい含有量は0.4〜2.3%の範囲
であり、2.5%を越えると、耐孔食性、耐隙間腐食性
が低下する。Mnも、合金にFeと同様の効果を与え
る。好ましい含有範囲は0.2〜2.5%の範囲であ
り、Mnが2.5%を越えると、Feの場合と同様、耐
孔食性、耐隙間腐食性が低下する。
Fe improves the erosion resistance of the Cu-Ni alloy. The effect is particularly remarkable when 0.4% or more is added. The preferable content is in the range of 0.4 to 2.3%, and when it exceeds 2.5%, the pitting corrosion resistance and the crevice corrosion resistance decrease. Mn also gives the alloy the same effect as Fe. The preferable content range is 0.2 to 2.5%, and when Mn exceeds 2.5%, the pitting corrosion resistance and the crevice corrosion resistance are reduced as in the case of Fe.

【0010】Zrは、合金中の他の成分との組合わせに
おいて、合金の高温延性を向上し、耐焼鈍脆性を改善す
るための重要な成分である。好ましい含有量は、0.0
01%以上0.05%未満の範囲であり、この範囲の含
有で、結晶粒が微細化されるとともに、焼鈍脆性の原因
となる粒界の偏析した硫黄(S)、過飽和水素を捕捉す
る機能を有する。また、結晶粒界に金属間化合物(N
i、Cu)5 Zrを晶出させて粒界結合力を高めるよう
作用する。
Zr is an important component for improving the high temperature ductility of the alloy and improving the annealing embrittlement resistance in combination with other components in the alloy. The preferred content is 0.0
The content is in the range of 01% or more and less than 0.05%, and the content of this range makes the crystal grains finer and also functions to capture sulfur (S) and segregated hydrogen in the grain boundaries that cause annealing brittleness. Have. In addition, intermetallic compounds (N
i, Cu) 5 Zr is crystallized to act to increase the grain boundary bonding force.

【0011】Zrが0.001%未満ではその効果が小
さく、0.05%以上では、合金の再結晶温度が高くな
るとともに、合金の熱処理工程においてZrの析出によ
る析出硬化が生じるため、高温度で長時間の軟化処理が
必要となり、生産性の低下および生産コストの上昇をも
たらす。またZr自体が高価なため、材料コストが増大
する。Zrのさらに好ましい含有範囲は0.01〜0.
03%である。
If Zr is less than 0.001%, the effect is small, and if it is 0.05% or more, the recrystallization temperature of the alloy becomes high, and precipitation hardening occurs due to the precipitation of Zr in the heat treatment step of the alloy, so that the high temperature is high. Therefore, softening treatment for a long time is required, resulting in a decrease in productivity and an increase in production cost. Moreover, since Zr itself is expensive, the material cost increases. A more preferable content range of Zr is 0.01 to 0.
It is 03%.

【0012】不純物としてのZnは、0.5%以下に限
定することが必要であり、0.5%を越えると耐隙間腐
食が劣化し易くなる。その他の不純物としては、硫黄
(S)は0.001%以下、水素(H)は0.0005
%以下、炭素は0.16%以下に限定するのが、耐焼鈍
脆性の観点から望ましい。
Zn as an impurity needs to be limited to 0.5% or less, and if it exceeds 0.5%, crevice corrosion resistance tends to deteriorate. As other impurities, sulfur (S) is 0.001% or less and hydrogen (H) is 0.0005.
% Or less, and carbon is preferably limited to 0.16% or less from the viewpoint of annealing brittleness resistance.

【0013】FeとMnの量的関係については、Fe%
−1.5≦Mn≦Fe%+1.5の関係式を満たすよう
にし、確実に耐食性が得られるようにする。この関係式
を外れる場合には、潰食や隙間腐食が生じ易くなる。ま
た、上記の含有成分および不純物量を考慮し、高温延
性、耐焼鈍脆性および耐食性を確実に確保するために
は、Cu、Ni、FeおよびMnの合計量を99.5%
以上とし、不純物を極力少なくする必要がある。
Regarding the quantitative relationship between Fe and Mn, Fe%
The relational expression of −1.5 ≦ Mn ≦ Fe% + 1.5 is satisfied to ensure that corrosion resistance is obtained. If this relational expression is not satisfied, erosion and crevice corrosion are likely to occur. Further, in order to ensure the high temperature ductility, the annealing brittleness resistance and the corrosion resistance in consideration of the above-mentioned components and impurities, the total amount of Cu, Ni, Fe and Mn is 99.5%.
As described above, it is necessary to reduce impurities as much as possible.

【0014】[0014]

【発明の実施の形態】本発明の銅合金は、管材または板
材として、熱交換器などの部材として使用されるが、そ
の製造は従来と同様、連続鋳造または半連続鋳造により
造塊し、熱間圧延または熱間押出を行い、冷間圧延また
は冷間抽伸、熱処理することにより行われる。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention is used as a pipe material or a plate material as a member such as a heat exchanger. It is carried out by carrying out cold rolling or hot extrusion, cold rolling or cold drawing, and heat treatment.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成のCu−Ni合金を、真空溶解炉を使用
し、炉内を約1.3Pa まで減圧後、アルゴンガスに置換し
て溶解し、直径100mm 、長さ150mm の鋳塊を製造し、各
鋳塊について以下の試験、測定を行った。結果を表2に
示す。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A Cu-Ni alloy having the composition shown in Table 1 was used in a vacuum melting furnace, the pressure inside the furnace was reduced to about 1.3 Pa, and the ingot was replaced with argon gas to be melted, and an ingot having a diameter of 100 mm and a length of 150 mm was formed. Was manufactured, and the following tests and measurements were performed for each ingot. Table 2 shows the results.

【0016】(1)結晶粒径の測定 (2)熱間鍛造試験:各鋳塊から直径25mm、高さ25mmの
試験片を切り出し、これらの試験片を800 〜1000℃に設
定した電気炉内に1 時間保持したのち、10秒以内に圧縮
率70%の鍛造加工を行い、試験片の割れ発生の有無から
高温延性の評価を行った。試験温度は、800 ℃、850
℃、900 ℃、950 ℃および1000℃とした。 (3)高温引張試験:各鋳塊からJIS Z 2201に準拠した
4 号試験片を切り出し、インストロン試験機を使用し、
各試験片を試験機に付帯した電気炉内で850 ℃に加熱し
て15分保持したのち、歪速度1.4 ×10-2s -1で破断する
まで引張変形を行い、伸びおよび断面減少率から高温延
性および焼鈍脆性を評価した。 (4)軟化温度の測定:従来の合金と比べ、実生産にお
ける熱処理条件の変更の要否をみるために、各鋳塊につ
いて、実生産における標準的な加工(熱間加工度80%、
冷間加工度75%)を加えたのち、500 〜800 ℃に設定さ
れた電気炉内で10.5分間熱処理を施し、ビッカース硬度
を測定して、測定値が急激に低下する温度を軟化温度と
した。
(1) Measurement of grain size (2) Hot forging test: Test pieces each having a diameter of 25 mm and a height of 25 mm were cut out from each ingot, and these test pieces were set in an electric furnace set at 800 to 1000 ° C. After holding for 1 hour, a forging process with a compression rate of 70% was performed within 10 seconds, and the hot ductility was evaluated from the presence or absence of cracking of the test piece. Test temperature is 800 ℃, 850
℃, 900 ℃, 950 ℃ and 1000 ℃. (3) High temperature tensile test: In accordance with JIS Z 2201 from each ingot
Cut out the No. 4 test piece and use an Instron tester,
Each test piece was heated to 850 ℃ in an electric furnace attached to the tester and held for 15 minutes, then subjected to tensile deformation at a strain rate of 1.4 × 10 -2 s -1 until it broke, and from the elongation and cross-section reduction rate. The hot ductility and the annealing brittleness were evaluated. (4) Measurement of softening temperature: Compared with conventional alloys, in order to see the necessity of changing the heat treatment conditions in actual production, for each ingot, standard processing in actual production (hot working ratio 80%,
Cold workability (75%) was added, and then heat treatment was performed for 10.5 minutes in an electric furnace set at 500 to 800 ° C, Vickers hardness was measured, and the temperature at which the measured value suddenly dropped was defined as the softening temperature. .

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、本発明に従う試験材は
いずれも、鋳塊の結晶粒径が1mm 以下と微細であり、熱
間鍛造試験において割れを生じることななく、高温引張
試験における伸びおよび断面減少率が30%以上の優れた
高温延性をそなえ、軟化温度も600 〜640 ℃で従来の熱
処理条件を変更する必要がない。
As shown in Table 2, in all the test materials according to the present invention, the crystal grain size of the ingot is as fine as 1 mm or less, cracks do not occur in the hot forging test, and the elongation in the high temperature tensile test is not generated. Also, it has excellent hot ductility with a cross-section reduction rate of 30% or more, and has a softening temperature of 600 to 640 ° C, so there is no need to change conventional heat treatment conditions.

【0020】比較例1 表3に示す組成のCu−Ni合金を、実施例1と同じ方
法で鋳造し、得られた鋳塊について実施例1と同一の試
験、測定を行った。結果を表4に示す。なお、表3にお
いて、本発明の条件を外れたものには下線を付した。
Comparative Example 1 A Cu-Ni alloy having the composition shown in Table 3 was cast by the same method as in Example 1, and the obtained ingot was subjected to the same tests and measurements as in Example 1. The results are shown in Table 4. In Table 3, those that do not satisfy the conditions of the present invention are underlined.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】表4にみられるように、試験材No.6はNi
の含有量が多いため、固溶水素濃度が高く、十分な高温
延性が得られない。試験材No.7はZrの含有量が少な過
ぎるため、結晶粒径が大きく、高温延性が劣り、高温引
張試験後の試験片の破断面を観察したところ脆性破断を
示した。試験材No.8はZr量が多いため、軟化温度が高
くなり、この種の合金における一般的な熱処理(780 ℃
×10.5分) を施しても十分な軟化がみられず、熱処理温
度を高くして長時間の処理が必要となるため、生産性低
下および生産コストの上昇をもたらす。
As shown in Table 4, the test material No. 6 is Ni
Since the content of hydrogen is high, the concentration of solid solution hydrogen is high and sufficient hot ductility cannot be obtained. Since the Zr content of Test Material No. 7 was too small, the crystal grain size was large and the high temperature ductility was poor, and the fracture surface of the test piece after the high temperature tensile test was observed and showed brittle fracture. Since the test material No. 8 has a large amount of Zr, the softening temperature becomes high, and the general heat treatment (780 ℃
(× 10.5 minutes) does not show sufficient softening, and requires high heat treatment temperature for a long time, resulting in lower productivity and higher production cost.

【0024】実施例2、比較例2 表5に示す組成のCu−Ni合金を、電気炉(チャージ
量:2ton) を用いて溶解し、連続鋳造により造塊し、得
られた各鋳塊を、熱間押出、冷間抽伸、軟化処理するこ
とにより、直径30mm、厚さ1mm の管材を製造した。これ
らの管材について、以下に示すジェット試験および隙間
腐食試験を行い、耐潰食性および耐隙間腐食性を評価し
た。結果を表6に示す。なお、表5において、本発明の
条件を外れたものには下線を付した。
Example 2, Comparative Example 2 A Cu-Ni alloy having the composition shown in Table 5 was melted using an electric furnace (charge amount: 2 ton), and was ingot-cast by continuous casting. A tube material with a diameter of 30 mm and a thickness of 1 mm was manufactured by hot extrusion, cold drawing and softening treatment. These pipes were subjected to the jet test and crevice corrosion test shown below to evaluate erosion resistance and crevice corrosion resistance. Table 6 shows the results. In Table 5, those outside the conditions of the present invention are underlined.

【0025】(1)ジェット試験:1 〜2vol%の空気泡
を混入した海水を、半割りした管材の内面に8m/sで7 日
間噴射して、潰食深さを測定し、同時に試験したJIS H
3300C7150合金管材およびC7164 合金管材の耐潰食性と
比較した。 (2)隙間腐食試験:半割りした長さ55mmの管材の内面
に、20mm×20mm×1mmのテフロンシートを敷き、これを
外径22mmの塩化ビニル管で押さえ、輪ゴムで止めたの
ち、20日間海水中に浸漬し、腐食深さを測定して、同時
に試験したJIS H3300 C7150合金管材およびC7164 合金
管材と比較した。
(1) Jet test: Seawater mixed with 1 to 2 vol% of air bubbles was sprayed on the inner surface of the halved pipe material at 8 m / s for 7 days, and the erosion depth was measured and tested simultaneously. JIS H
The erosion resistance of 3300 C7150 alloy tubing and C7164 alloy tubing was compared. (2) Crevice corrosion test: Teflon sheet of 20 mm x 20 mm x 1 mm is laid on the inner surface of a pipe material with a length of 55 mm, and it is pressed with a vinyl chloride tube with an outer diameter of 22 mm and stopped with a rubber band, then for 20 days. It was immersed in seawater, the corrosion depth was measured, and it was compared with JIS H3300 C7150 alloy pipe material and C7164 alloy pipe material tested at the same time.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 《表注》○:JIS H 3300 C7150、C7164 と同等以上
×:JIS H3300 C7150、C7164 より劣る。
[Table 6] <Table Note> ○: JIS H 3300 C7150, C7164 equivalent or above
×: Inferior to JIS H3300 C7150, C7164.

【0028】表6に示すように、本発明に従う試験材N
o.9〜No.11 はいずれも、熱交換器用部材として十分な
耐食性をそなえている。一方、試験材No.12 はZn量が
多いため、耐隙間腐食が劣り、試験材No.13 はNiの含
有量が少ないため、耐潰食性がよくない。試験材No.14
はFe量が高く、試験材No.17 はMn量が高いため、い
ずれも耐隙間腐食性が劣り、試験材No.15 はFe量が低
く、試験材No.16 はMn量が低いため、耐潰食性がわる
い。試験材No.18 はFeとMnとの関係式を満たさない
ため耐隙間腐食性が劣る。
As shown in Table 6, test material N according to the present invention
All of o.9 to No.11 have sufficient corrosion resistance as heat exchanger members. On the other hand, the test material No. 12 has a large amount of Zn and thus is inferior in crevice corrosion resistance, and the test material No. 13 has a low content of Ni and therefore has poor erosion resistance. Test Material No.14
Has a high Fe content, and the test material No. 17 has a high Mn content, and thus both have poor crevice corrosion resistance. The test material No. 15 has a low Fe content and the test material No. 16 has a low Mn content. Poor erosion resistance. Test material No. 18 is inferior in crevice corrosion resistance because it does not satisfy the relational expression between Fe and Mn.

【0029】[0029]

【発明の効果】以上のとおり、本発明によれば、Ni2
9〜33%を含有するキュプロニッケル合金において、
耐食性に優れ、製造工程途中において、焼鈍脆化に起因
する割れの発生を防止することができ、材料コスト、製
造コストを低減し、生産性の向上を可能とする高温延性
および焼鈍脆性に優れた耐食銅合金が提供される。
As described above, according to the present invention, Ni2
In a cupro nickel alloy containing 9-33%,
Excellent corrosion resistance, it is possible to prevent the occurrence of cracks due to annealing embrittlement during the manufacturing process, reduce material cost, manufacturing cost, improve productivity, and high temperature ductility and annealing brittleness. A corrosion resistant copper alloy is provided.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月6日[Submission date] November 6, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】Feは、Cu−Ni合金の耐潰食性を向上
させる。とくに0.4%以上添加した場合にその効果が
顕著である。好ましい含有量は0.4〜2.3%の範囲
であり、2.3%を越えると、耐孔食性、耐隙間腐食性
が低下する。Mnも、合金にFeと同様の効果を与え
る。好ましい含有範囲は0.2〜2.5%の範囲であ
り、Mnが2.5%を越えると、Feの場合と同様、耐
孔食性、耐隙間腐食性が低下する。
Fe improves the erosion resistance of the Cu-Ni alloy. The effect is particularly remarkable when 0.4% or more is added. The preferable content is in the range of 0.4 to 2.3% , and when it exceeds 2.3% , the pitting corrosion resistance and the crevice corrosion resistance decrease. Mn also gives the alloy the same effect as Fe. The preferable content range is 0.2 to 2.5%, and when Mn exceeds 2.5%, the pitting corrosion resistance and the crevice corrosion resistance are reduced as in the case of Fe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni:29〜33%(重量%、以下同
じ)、Fe:0.4〜2.3%、Mn:0.2〜2.5
%、Zr:0.001%以上0.05%未満を含有し、
不純物としてのZnの含有量を0.5%以下とし、残部
Cuおよび不可避的不純からなり、MnとFeとの量的
関係がFe%−1.5≦Mn%≦Fe%+1.5を満た
し、Cu、Ni、FeおよびMnの合計量が99.5%
以上であることを特徴とする高温延性および耐焼鈍脆性
に優れた耐食銅合金
1. Ni: 29 to 33% (weight%, the same hereinafter), Fe: 0.4 to 2.3%, Mn: 0.2 to 2.5.
%, Zr: 0.001% or more and less than 0.05%,
The content of Zn as an impurity is 0.5% or less, the balance is Cu and unavoidable impurities, and the quantitative relationship between Mn and Fe satisfies Fe% −1.5 ≦ Mn% ≦ Fe% + 1.5. , Cu, Ni, Fe and Mn total amount is 99.5%
Corrosion resistant copper alloy excellent in high temperature ductility and annealing brittleness characterized by the above
JP7276911A 1995-09-29 1995-09-29 Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness Expired - Fee Related JP3046932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7276911A JP3046932B2 (en) 1995-09-29 1995-09-29 Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7276911A JP3046932B2 (en) 1995-09-29 1995-09-29 Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness

Publications (2)

Publication Number Publication Date
JPH0995748A true JPH0995748A (en) 1997-04-08
JP3046932B2 JP3046932B2 (en) 2000-05-29

Family

ID=17576113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7276911A Expired - Fee Related JP3046932B2 (en) 1995-09-29 1995-09-29 Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness

Country Status (1)

Country Link
JP (1) JP3046932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254360A (en) * 2017-12-26 2018-07-06 中国航天空气动力技术研究院 Electro-arc heater copper electrode ablation quantitative diagnosis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254360A (en) * 2017-12-26 2018-07-06 中国航天空气动力技术研究院 Electro-arc heater copper electrode ablation quantitative diagnosis system
CN108254360B (en) * 2017-12-26 2020-10-23 中国航天空气动力技术研究院 Quantitative diagnosis system for copper electrode ablation of electric arc heater

Also Published As

Publication number Publication date
JP3046932B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP4433230B2 (en) High-strength Ni-base alloy tube for nuclear power and its manufacturing method
WO2009150989A1 (en) Process for producing high-alloy seamless pipe
JP2017524830A (en) Nickel-chromium-iron-molybdenum corrosion resistant alloys, products and methods for their production
JP2004003000A (en) Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat- and pressure-resistant member made of this and its manufacturing process
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
JP2020105572A (en) Austenitic heat resistant steel
JPH10121170A (en) Nickel-chromium alloy excellent in corrosion resistance and production thereof
JP5035250B2 (en) Nickel materials for chemical plants
JPH0995748A (en) Corrosion resistant copper alloy excellent in high temperature ductility and annealing brittleness resistance
JP6822563B2 (en) Ni-based alloy pipe for nuclear power
JP2624224B2 (en) Steam turbine
JP3243479B2 (en) Copper base alloy for heat exchanger
JP5792696B2 (en) High strength copper alloy tube
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH0711403A (en) Production of ni-base alloy having intergranular fracture resistance
JP2020164919A (en) Austenitic heat-resistant steel
JPH05311294A (en) Copper base alloy for heat exchanger and its manufacture
JPH0533092A (en) Nickel-base heat resistant alloy
JP2002194466A (en) Nickel based alloy clad steel and its production method
JP6806158B2 (en) Nickel material and manufacturing method of nickel material
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH093577A (en) Material for hot extrusion die and its production
JPH0688177A (en) Production of copper alloy pipe
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature
KR100366843B1 (en) copper alloy and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees