JPH093577A - Material for hot extrusion die and its production - Google Patents

Material for hot extrusion die and its production

Info

Publication number
JPH093577A
JPH093577A JP7149197A JP14919795A JPH093577A JP H093577 A JPH093577 A JP H093577A JP 7149197 A JP7149197 A JP 7149197A JP 14919795 A JP14919795 A JP 14919795A JP H093577 A JPH093577 A JP H093577A
Authority
JP
Japan
Prior art keywords
weight
less
grain size
treatment
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7149197A
Other languages
Japanese (ja)
Inventor
Satoru Maejima
悟 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7149197A priority Critical patent/JPH093577A/en
Publication of JPH093577A publication Critical patent/JPH093577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE: To produce a material for hot extrusion die, having long and stable service life. CONSTITUTION: This material is composed of an Ni-base heat resistant alloy having a composition consisting of, by weight, <=0.08% C, <=0.35% Si, <=0.35% Mn, 50.0-55.0% Ni, 17.0-21.0% Cr, 2.80-3.30 Mo, 4.45-5.50% Nb+Ta, 0.65-1.15% Ti, 0.20-0.80% Al, and the balance Fe with inevitable impurities. Further, this material has a structure in which the crystalline grain size, measured by the method for measuring austenitic grain size of steel specified by JIS G 0551, is regulated to grain size No.1 to 4. This material is produced by setting forging finishing temp. to >=950 deg.C or solution heat treatment temp. to 1050-1100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間押出ダイス用材料
とその製造方法に関し、更に詳しくは、銅または銅合金
のビレットを熱間押出するときに用いて好適な熱間押出
ダイス用材料とそれを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for hot extrusion dies and a method for producing the same, and more specifically, a material for hot extrusion dies suitable for hot extrusion of a billet of copper or copper alloy. And the method of manufacturing it.

【0002】[0002]

【従来の技術】例えば銅の熱間押出しは、熱間押出機の
ライナー内に800〜920℃に加熱されている銅ビレ
ットを挿入したのちステムを稼働し、ライナー出口に装
着されているダイスから押出して所定形状の押出品にす
る。ビレットの熱間押出しが終了するたびに、ダイスを
ライナー出口から脱着し、そのダイスに例えば水冷等を
して冷却したのち再びライナー出口に装着して次の銅ビ
レットの熱間押出しに備える。
2. Description of the Related Art For example, in hot extrusion of copper, a copper billet heated to 800 to 920 ° C. is inserted into a liner of a hot extruder, a stem is operated, and a die attached to a liner outlet is used. Extruded into an extruded product having a predetermined shape. Each time the hot extrusion of the billet is completed, the die is detached from the liner outlet, the die is cooled by, for example, water cooling, and then the die is attached again to the liner outlet to prepare for the next hot extrusion of the copper billet.

【0003】したがって、ダイスの表面は、1度の押出
し操作で、10〜数10秒間の熱負荷がかかり、また、
水冷等による急冷の負荷がかかり、可成り過酷な熱環境
に曝される。このようなことから、従来、伸銅用ダイス
を構成する材料には、例えば、SKD61やSKD62
のような耐熱工具鋼,インコネル718のようなNi基
耐熱合金が使用されている。とくに、インコネル718
が広く使用されている。
Therefore, the surface of the die is subjected to a heat load of 10 to several tens of seconds in one extrusion operation, and
A rapid cooling load such as water cooling is applied, and it is exposed to a severe heat environment. For this reason, conventionally, as a material forming the copper die, for example, SKD61 or SKD62 is used.
A heat resistant tool steel such as the above, and a Ni-based heat resistant alloy such as Inconel 718 are used. In particular, Inconel 718
Is widely used.

【0004】ところで、上記したインコネル718のダ
イスは、所定組成から成る合金のインゴットに、熱間鍛
造,溶体化処理,時効処理を順次施したのち、それを所
定形状に加工して製造されている。そして、このときの
熱間鍛造は、その鍛造終止温度が略900℃前後で行な
われ、また、溶体化処理は、通常、1000℃以下の温
度で行なわれている。
By the way, the above-mentioned Inconel 718 die is manufactured by subjecting an alloy ingot having a predetermined composition to hot forging, solution treatment, and aging treatment in that order, and then processing it into a predetermined shape. . The hot forging at this time is performed at a final forging temperature of about 900 ° C, and the solution treatment is usually performed at a temperature of 1000 ° C or less.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このイ
ンコネル718のダイスは、前記した水冷等による冷却
時に破損することがあり、その使用寿命が短いととも
に、使用寿命が製造ロットによってばらつくことが多
く、使用寿命の安定性に欠けるという問題が指摘されて
いる。
However, the Inconel 718 die may be damaged during cooling by water cooling or the like as described above, and its service life is short and the service life often varies depending on the manufacturing lot. It has been pointed out that there is a lack of stability in life.

【0006】本発明は、組成はインコネル718と同じ
であるが、しかし従来のインコネル718のダイスにお
ける上記問題を解決し、長い使用寿命,安定した使用寿
命を備えている熱間押出ダイス用材料とその製造方法の
提供を目的とする。
The present invention has the same composition as Inconel 718, but solves the above problems in the conventional Inconel 718 die, and has a long service life and a stable service life. The purpose is to provide a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明者は、鍛造終止温
度が900℃前後、溶体化温度が1000℃以下で製造
された従来のインコネル718系ダイスの破損原因を解
明する過程で、その組織を調べたところ、JIS G
0551で規定する鋼のオーステナイト結晶粒度試験方
法(GS法)による結晶粒度は、粒度番号(N)が8前
後であり、組織が可成り微細な結晶粒で構成されている
ことが判明した。
Means for Solving the Problems In the process of elucidating the cause of breakage of a conventional Inconel 718 type die manufactured at a forging end temperature of about 900 ° C. and a solutionizing temperature of 1000 ° C. or less, the present inventor Was checked, JIS G
The grain size of the austenite grain size test method (GS method) for steel specified in 0551 was about 8 for grain size number (N), and it was found that the structure was composed of fairly fine grain.

【0008】また、温度750℃、荷重26.35kgf/mm
2 の条件下で、上記ダイス材料の最小クリープ速度を測
定したところ、0.023〜0.031%/hrの値を示し
た。以上のことから、上記したダイスの材料は、粒度番
号が8前後の微細な結晶粒から成りそのクリープ変形抵
抗は小さいので、高温ビレットが圧入されたとき、ダイ
スの面はそのビレットの塑性流が誘発する負荷に抗しき
れずにクリープ変形を起こし、これがダイス破損の原因
になると推定した。
The temperature is 750 ° C. and the load is 26.35 kgf / mm.
When the minimum creep rate of the above die material was measured under the condition of 2 , the value of 0.023 to 0.031% / hr was shown. From the above, the material of the die described above is composed of fine crystal grains with a grain size number of around 8, and its creep deformation resistance is small. Therefore, when a high temperature billet is press-fitted, the die face has a plastic flow of the billet. It was estimated that creep deformation occurred without being able to withstand the induced load, which caused die damage.

【0009】したがって、材料の結晶粒度を粗くして高
温クリープ強度を高めれば、上に推論した破損原因を解
消することができるとの着想を得、その着想に基づいて
研究を重ねた結果、本発明の熱間押出ダイス用材料とそ
の製造方法を開発するに至った。すなわち、本発明の熱
間押出ダイス用材料は、C:0.08重量%以下、Si:
0.35重量%以下、Mn:0.35重量%以下、Ni:5
0.0〜55.0重量%、Cr:17.0〜21.0重量%,M
o:2.80〜3.30重量%以下、Nb+Ta:4.45〜
5.50重量%、Ti:0.65〜1.15重量%,Al:0.
20〜0.80重量%,残部がFeと不可避的不純物から
成り、かつ、JIS G 0551のGS法で測定した
ときの結晶粒度が、粒度番号で1〜4の範囲にある組織
を有するNi基耐熱合金から成ることを特徴とし、その
第1の製造方法は、前記Ni基耐熱合金を溶製する工
程;前記工程で得られた合金のインゴットに、950℃
以上の鍛造終止温度で鍛造処理を施して、結晶粒度を調
節する工程;および、前記鍛造品に、溶体化処理,時効
処理を順次施す工程を備えていることを特徴とし、ま
た、その第2の製造方法は、前記Ni基耐熱合金を溶製
する工程;前記工程で得られた合金のインゴットに鍛造
処理を施す工程;前記鍛造品に、1050〜1100℃
で溶体化処理を施して、結晶粒度を調節する工程;およ
び、時効処理を施す工程を備えていることを特徴とす
る。
[0009] Therefore, the idea that the cause of damage estimated above can be eliminated by making the grain size of the material coarse and increasing the high temperature creep strength was obtained, and as a result of repeated research based on the idea, The invention has led to the development of a material for hot extrusion dies and a method for producing the same. That is, the material for the hot extrusion die of the present invention has C: 0.08% by weight or less and Si:
0.35% by weight or less, Mn: 0.35% by weight or less, Ni: 5
0.0-55.0% by weight, Cr: 17.0-21.0% by weight, M
o: 2.80 to 3.30% by weight or less, Nb + Ta: 4.45 to
5.50% by weight, Ti: 0.65 to 1.15% by weight, Al: 0.
Ni group having 20 to 0.80% by weight, the balance being Fe and inevitable impurities, and having a structure in which the grain size measured by the GS method of JIS G 0551 is in the range of 1 to 4 in grain size number. The first manufacturing method is characterized by comprising a heat-resistant alloy, the step of melting the Ni-based heat-resistant alloy;
And a step of sequentially subjecting the forged product to a solution treatment and an aging treatment, the second step being a forging step at which the grain size is controlled by performing a forging treatment at the above forging end temperature. The manufacturing method of the step is a step of smelting the Ni-base heat-resistant alloy; a step of subjecting the alloy ingot obtained in the step to a forging treatment;
And a step of subjecting the solution to a solution treatment to adjust the crystal grain size; and a step of performing an aging treatment.

【0010】本発明の材料において、まず、Cは、C
r,Mo,Tiなどの炭化物形成元素と結合して炭化物
を生成することにより、ダイスの高温強度を高めて熱間
押出し時におけるダイス強度を確保するために寄与する
成分であるが、あまり多く含有させると、靱延性が損な
われて高温下における衝撃値の低下を招いて、熱間押出
し時にダイスが割れるというような問題が生ずるので、
その含有量は0.08重量%以下にする。
In the material of the present invention, first, C is C
It is a component that contributes to increasing the high temperature strength of the die and securing the die strength during hot extrusion by forming carbides by combining with carbide forming elements such as r, Mo, Ti, etc. Then, the toughness and ductility are impaired, the impact value is lowered at high temperature, and a problem such as cracking of the die during hot extrusion occurs,
Its content should be 0.08% by weight or less.

【0011】Siは、合金の溶製時における脱酸剤とし
て機能する成分であるが、あまり多く含有させると、靱
延性が低下してダイスの耐割れ性の劣化を生ずるので、
その含有量は0.35重量%以下にする。Mnは、主とし
て、合金溶製時の脱酸剤と脱硫剤として機能する成分で
あるが、あまり多く含有されていると、靱延性が低下し
てダイスの耐割れ性の劣化を生ずるので、その含有量は
0.35重量%以下にする。
Si is a component that functions as a deoxidizer during melting of the alloy, but if it is contained too much, the toughness and ductility deteriorate and the cracking resistance of the die deteriorates.
Its content should be 0.35% by weight or less. Mn is a component that mainly functions as a deoxidizing agent and a desulfurizing agent at the time of alloy melting, but if it is contained in too much, the toughness and ductility deteriorates and the crack resistance of the die deteriorates. The content is
It should be 0.35 wt% or less.

【0012】Niは、安定したオーステナイト組織を形
成してダイスの耐食性および耐熱性の向上に資する成分
であり、その含有量が50.0重量%未満の場合は上記効
果が充分に発揮されず、また、55.0重量%を越えても
上記効果は顕著に発現せず、徒らにコストの上昇を招く
ので、その含有量は50.0〜55.0重量%に設定され
る。
[0012] Ni is a component that forms a stable austenite structure and contributes to the improvement of the corrosion resistance and heat resistance of the die. If the content is less than 5.0% by weight, the above effect is not sufficiently exhibited, Further, even if it exceeds 55.0% by weight, the above-mentioned effect is not remarkably exhibited and the cost is unnecessarily increased. Therefore, the content thereof is set to 50.0 to 55.0% by weight.

【0013】Crは、耐酸化性、高温耐食性を確保する
ために有効な成分であり、その含有量は17.0〜21.0
重量%に設定される。17.0重量%より少ない場合は、
上記効果が充分に発揮されず高温ビレットからの熱で表
面酸化を起こすようになり、また21.0重量%より多く
なると高温耐食性は向上するものの、一方では、靱延性
が低下することにより高温下における衝撃特性が低下し
てダイスの耐割れ性の劣化を生ずるからである。
Cr is an effective component for ensuring oxidation resistance and high temperature corrosion resistance, and its content is 17.0 to 21.0.
Set to% by weight. If less than 17.0% by weight,
The above effects are not sufficiently exhibited, and surface oxidation is caused by heat from the high temperature billet. If it exceeds 21.0% by weight, high temperature corrosion resistance is improved, but on the other hand, due to the decrease in toughness and ductility, This is because the impact properties of the die deteriorate and the crack resistance of the die deteriorates.

【0014】Moは、ダイスの高温引張強度と高温クリ
ープ強度の向上に資する成分であり、その含有量は2.8
0〜3.30重量%に設定される。2.80重量%より少な
い場合は、上記した効果が充分に発揮されず、また3.3
0重量%より多く含有させても高温強度の向上は顕著に
発現せず、むしろ加工性の悪化とともに高温衝撃特性の
劣化を生ずるからである。
Mo is a component that contributes to the high temperature tensile strength and high temperature creep strength of the die, and its content is 2.8.
It is set to 0 to 3.30% by weight. If the amount is less than 2.80% by weight, the above-mentioned effects are not sufficiently exhibited, and 3.3
This is because even if it is contained in an amount of more than 0% by weight, the high temperature strength is not significantly improved, and rather the workability is deteriorated and the high temperature impact characteristics are deteriorated.

【0015】Nb+Taは、炭化物を生成するとともに
基地組織を微細化してダイスの高温強度と靱性を向上さ
せ、高温下における引張強度とクリープ破断強度を低下
させることなく高温衝撃特性の向上に資する成分であ
り、その含有量は4.45〜5.50重量%に設定される。
4.45重量%より少ない場合は、上記効果が充分に発揮
されず、また、5.50重量%より多くなると、靱性低下
を招くとともに加工性が悪化してダイス製作が行ないに
くくなるというような問題を生ずるからである。
Nb + Ta is a component that produces carbides and refines the matrix structure to improve the high temperature strength and toughness of the die, and contributes to the improvement of high temperature impact properties without lowering the tensile strength and creep rupture strength at high temperatures. And its content is set to 4.45 to 5.50% by weight.
If it is less than 4.45% by weight, the above effect is not sufficiently exhibited, and if it is more than 5.50% by weight, toughness lowers and workability deteriorates, making it difficult to manufacture dies. Because it causes a problem.

【0016】Tiは、ダイスの高温強度の向上に資する
成分であり、その含有量は0.65〜1.15重量%に設定
される。0.65重量%より少ない場合は、上記した効果
が充分に発揮されず、また、1.15重量%より多くなる
と、逆に高温特性が低下するというような問題を生ずる
からである。AlはTiと結合して化合物となり、時効
硬化に寄与する成分であり、その含有量は0.20〜0.8
0重量%に設定される。0.20重量%より少ない場合
は、上記した効果が充分に発揮されず、また、0.80重
量%より多くなると加工性に難点が生ずるからである。
Ti is a component that contributes to the improvement of the high temperature strength of the die, and its content is set to 0.65 to 1.15% by weight. This is because if it is less than 0.65% by weight, the above-mentioned effects are not sufficiently exhibited, and if it is more than 1.15% by weight, there arises a problem that the high temperature characteristics are deteriorated. Al is a component that combines with Ti to form a compound and contributes to age hardening, and the content thereof is 0.20 to 0.8.
It is set to 0% by weight. When the amount is less than 0.20% by weight, the above-mentioned effects are not sufficiently exhibited, and when the amount is more than 0.80% by weight, there is a problem in workability.

【0017】なお、本発明の材料には、更に、P,S,
Coなどが含まれていてもよいが、Pは0.015重量%
以下、Sは0.015重量%,Coは1.00重量%以下に
制御されていることが好ましい。本発明の材料における
結晶粒度は、その組織を構成する結晶粒の平均断面積
(mm2)と単位面積1(mm2)当たりの結晶粒の数を表す粒
度番号(N)は、JISG 0551のGS法で測定し
たときのN値が1〜4の範囲にある。
The material of the present invention further comprises P, S,
Co may be included, but P is 0.015% by weight
Hereinafter, it is preferable that S is controlled to 0.015% by weight and Co is controlled to 1.00% by weight or less. The crystal grain size in the material of the present invention is the average cross-sectional area (mm 2 ) of crystal grains constituting the structure and the grain size number (N) representing the number of crystal grains per unit area 1 (mm 2 ) is defined in JIS G 0551. The N value measured by the GS method is in the range of 1 to 4.

【0018】すなわち、材料の組織は、Nが1〜4の各
粒度番号で示される結晶粒度の結晶粒が混在した状態に
なっている。本発明の材料では、最も細かい結晶粒でも
その結晶粒度は粒度番号で示したときに4である。そし
て、全体の組織は、粒度番号Nが上記範囲内において、
低位番号の粗大な結晶粒度から成る結晶粒の間にそれよ
りも細かい高位番号の結晶粒度から成る結晶粒がモザイ
ク状に噛み込んだ状態で集合しているので、高温下であ
っても結晶粒界でのすべりは起こりずらくなり、優れた
クリープ強度を発揮するものと考えられる。
That is, the structure of the material is in a state in which crystal grains having a grain size indicated by each grain size number of 1 to 4 are mixed. In the material of the present invention, even the finest crystal grain has a grain size of 4 when indicated by a grain size number. And the whole organization has a grain size number N within the above range,
Even if the temperature is high, the grains are aggregated in a mosaic pattern between the grains with a coarse grain size with a low number and grains with a grain size with a higher number that is finer than that. Slip in the field is unlikely to occur, and it is considered that excellent creep strength is exhibited.

【0019】本発明の材料は、次のような2つの方法で
製造することができる。第1の方法は、まず、上記した
組成の合金を例えば電気炉で溶製したのちそのインゴッ
トを製造する。ついで、このインゴットに熱間鍛造を施
す。この鍛造過程で、インゴットの鍛造組織を微細化
し、同時に、次段の溶体化処理を施したときに、粒度番
号Nが1〜4で示される結晶粒度の結晶粒が析出して混
在するようなエネルギーが供給される。
The material of the present invention can be manufactured by the following two methods. In the first method, first, an alloy having the above composition is melted in, for example, an electric furnace, and then an ingot is manufactured. Then, this ingot is hot forged. In this forging process, the forged structure of the ingot is refined, and at the same time, when the solution treatment of the next stage is performed, the crystal grains of the crystal grain size indicated by the grain size numbers N of 1 to 4 are precipitated and mixed. Energy is supplied.

【0020】この鍛造過程における鍛造終止温度は95
0℃以上に設定される。鍛造終止温度が950℃より低
い場合には、次段の溶体化処理の温度を従来と同じよう
に1000℃以下にしたとき、目的とする粒度番号Nの
結晶粒度が得られないからである。鍛造終止温度を高く
しすぎることは熱経済的に不利であると同時に、結晶粒
の粗粒化が進んで鍛造時における割れなどが多発しはじ
めるので、通常は、980℃前後にすることが好まし
い。
The forging end temperature in this forging process is 95
It is set to 0 ° C or higher. This is because when the final forging temperature is lower than 950 ° C., the desired grain size of grain size number N cannot be obtained when the temperature of the solution treatment in the next stage is set to 1000 ° C. or lower as in the conventional case. Too high a final forging temperature is disadvantageous in terms of thermo-economics and, at the same time, coarsening of crystal grains progresses and cracks often start during forging. ..

【0021】この程度の鍛造終止温度のときは、好適な
粒度番号Nの結晶粒が得やすいとともに、結晶粒の粒界
にはCr炭化物も析出しはじめて粒界強度の更なる向上
も得られるようになる。ついで、鍛造品は溶体化処理さ
れる。そのときの温度は、従来と同じように、1000
℃以下であればよい。具体的には、980℃近辺の温度
で2〜3時間程度処理すればよい。
At such a final temperature of forging, it is easy to obtain crystal grains having a suitable grain size number N, and also Cr carbides start to precipitate at the grain boundaries of the crystal grains, so that the grain boundary strength can be further improved. become. The forged product is then solution treated. The temperature at that time is 1000
It may be ℃ or less. Specifically, the treatment may be performed at a temperature near 980 ° C. for about 2 to 3 hours.

【0022】この過程で、粒度番号Nが1〜4で示され
る結晶粒度の結晶粒が混在した状態で析出した組織が得
られる。最後に、時効処理が施される。その処理条件は
格別限定されないが、720℃と620℃の温度で各8
時間程度であればよい。つぎに第2の製造方法を説明す
る。
In this process, a structure is obtained in which the crystal grains having the grain sizes of 1 to 4 are mixed and precipitated. Finally, an aging treatment is applied. The treatment conditions are not particularly limited, but at temperatures of 720 ° C. and 620 ° C., each 8
It should be about an hour. Next, the second manufacturing method will be described.

【0023】この方法では、まず、第1の方法と同じよ
うにして所定組成のインゴットが製造される。そして、
このインゴットには、従来と同じような条件で熱間鍛造
が施される。具体的には、900℃程度の鍛造終止温度
で鍛造される。得られた鍛造品には溶体化処理が施され
る。この第2の方法では、溶体化処理の温度を管理する
ことによって結晶粒度の粒度番号Nが調節される。
In this method, first, an ingot having a predetermined composition is manufactured in the same manner as the first method. And
This ingot is hot forged under the same conditions as in the past. Specifically, it is forged at a final forging temperature of about 900 ° C. The obtained forged product is subjected to solution treatment. In this second method, the grain size number N of the grain size is adjusted by controlling the temperature of the solution treatment.

【0024】すなわち、溶体化処理の温度は、1050
〜1100℃に設定される。この温度が1050℃より
低い場合は、析出する結晶粒はその粒度番号Nが4より
高位になって細粒化し、充分な高温クリープ強度を有す
る組織が得られず、また、1100℃より高い温度にす
ると、結晶粒は大幅に粗大化して所望する高温強度が得
られなくなる。この溶体化処理は、通常、2〜8時間程
度行なえばよい。
That is, the solution treatment temperature is 1050.
It is set to ˜1100 ° C. If this temperature is lower than 1050 ° C, the precipitated crystal grains become finer because the grain size number N is higher than 4, a structure having sufficient high temperature creep strength cannot be obtained, and if the temperature is higher than 1100 ° C. If this is the case, the crystal grains will be significantly coarsened and the desired high temperature strength will not be obtained. This solution treatment may be performed usually for about 2 to 8 hours.

【0025】このような高温下での溶体化処理を行なう
と、時効が遅れやすくなるので、次段の時効処理は、従
来の時効処理よりも高温側で約2倍程度の時間をかけて
行なうことが好ましい。具体的には、720℃前後の温
度で約16時間程度行なうのが好適である。
When the solution treatment is performed at such a high temperature, the aging tends to be delayed. Therefore, the aging treatment in the next stage takes about twice as much time at the high temperature side as the conventional aging treatment. It is preferable. Specifically, it is suitable to carry out at a temperature of about 720 ° C. for about 16 hours.

【0026】[0026]

【実施例】【Example】

実施例1〜3,比較例1,2 表1で示した組成の合金を電気炉で溶製し、表示の条件
で鍛造,溶体化処理,時効処理を順次行なって伸銅用ダ
イスの材料にした。これらの材料の最小クリープ強度
を、温度750℃,荷重26.35kgf/mm2 の条件で測定
し、また、JIS G 0551のGS法により粒度番
号を測定した。
Examples 1 to 3 and Comparative Examples 1 and 2 Alloys having the compositions shown in Table 1 were melted in an electric furnace and subjected to forging, solution treatment and aging treatment in the indicated conditions in order to obtain a material for a copper die. did. The minimum creep strength of these materials was measured under the conditions of a temperature of 750 ° C. and a load of 26.35 kgf / mm 2 , and the particle size number was measured by the GS method of JIS G 0551.

【0027】これらの材料で伸銅ダイスを製作し、温度
900℃の銅合金ビレットを押出し、押出し終了後はダ
イスを冷水し、ダイスの破壊が起こるまでの回数を調べ
た。以上の結果を一括して表1に示した。
Copper wrought dies were produced from these materials, a copper alloy billet at a temperature of 900 ° C. was extruded, and after the extruding was completed, the dies were cooled with water and the number of times until the dies were broken was examined. Table 1 summarizes the above results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上の説明で明らかなように、本発明の
材料は、粒度番号が1〜4の範囲内で、粗粒と細粒の結
晶粒が互いに混在した状態の組織になっているので、高
温クリープ強度は優れている。この材料は、使用寿命が
長く、しかも寿命が安定していて、伸銅ダイスの材料と
して非常に有用である。
As is clear from the above description, the material of the present invention has a structure in which coarse grains and fine grains are mixed with each other within the grain size number range of 1 to 4. Therefore, the high temperature creep strength is excellent. This material has a long service life and a stable life, and is very useful as a material for copper dies.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.08重量%以下、Si:0.35重
量%以下、Mn:0.35重量%以下、Ni:50.0〜5
5.0重量%、Cr:17.0〜21.0重量%,Mo:2.8
0〜3.30重量%以下、Nb+Ta:4.45〜5.50重
量%、Ti:0.65〜1.15重量%,Al:0.20〜0.
80重量%,残部がFeと不可避的不純物から成り、か
つ、JIS G 0551で規定する鋼のオーステナイ
ト結晶粒度試験方法で測定したときの結晶粒度が、粒度
番号で1〜4の範囲にある組織を有するNi基耐熱合金
から成ることを特徴とする熱間押出ダイス用材料。
1. C: 0.08% by weight or less, Si: 0.35% by weight or less, Mn: 0.35% by weight or less, Ni: 5.0-5.
5.0 wt%, Cr: 17.0 to 21.0 wt%, Mo: 2.8
0 to 3.30 wt% or less, Nb + Ta: 4.45 to 5.50 wt%, Ti: 0.65 to 1.15 wt%, Al: 0.20 to 0.
80% by weight, the balance consisting of Fe and inevitable impurities, and the grain size when measured by the austenite grain size test method for steel specified in JIS G 0551, have a grain size number in the range of 1 to 4 A material for a hot extrusion die, characterized by comprising a Ni-based heat-resistant alloy having
【請求項2】 C:0.08重量%以下、Si:0.35重
量%以下、Mn:0.35重量%以下、Ni:50.0〜5
5.0重量%、Cr:17.0〜21.0重量%,Mo:2.8
0〜3.30重量%以下、Nb+Ta:4.45〜5.50重
量%、Ti:0.65〜1.15重量%,Al:0.20〜0.
80重量%,残部がFeと不可避的不純物から成るNi
基耐熱合金を溶製する工程;前記工程で得られた合金の
インゴットに、950℃以上の鍛造終止温度で鍛造処理
を施して、結晶粒度を調節する工程;および、前記鍛造
品に、溶体化処理,時効処理を順次施す工程を備えてい
ることを特徴とする熱間押出ダイス用材料の製造方法。
2. C: 0.08% by weight or less, Si: 0.35% by weight or less, Mn: 0.35% by weight or less, Ni: 5.0-5.
5.0 wt%, Cr: 17.0 to 21.0 wt%, Mo: 2.8
0 to 3.30 wt% or less, Nb + Ta: 4.45 to 5.50 wt%, Ti: 0.65 to 1.15 wt%, Al: 0.20 to 0.
Ni containing 80% by weight and the balance Fe and inevitable impurities
A step of melting the base heat-resistant alloy; a step of subjecting the alloy ingot obtained in the above step to a forging treatment at a forging end temperature of 950 ° C. or higher to adjust the grain size; and a solution treatment of the forged product. A method for manufacturing a material for a hot extrusion die, comprising a step of sequentially performing a treatment and an aging treatment.
【請求項3】 C:0.08重量%以下、Si:0.35重
量%以下、Mn:0.35重量%以下、Ni:50.0〜5
5.0重量%、Cr:17.0〜21.0重量%,Mo:2.8
0〜3.30重量%以下、Nb+Ta:4.45〜5.50重
量%、Ti:0.65〜1.15重量%,Al:0.20〜0.
80重量%,残部がFeと不可避的不純物から成るNi
基耐熱合金を溶製する工程;前記工程で得られた合金の
インゴットに鍛造処理を施す工程;前記鍛造品に、10
50〜1100℃で溶体化処理を施して、結晶粒度を調
節する工程;および、時効処理を施す工程を備えている
ことを特徴とする熱間押出ダイス溶材料の製造方法。
3. C: 0.08% by weight or less, Si: 0.35% by weight or less, Mn: 0.35% by weight or less, Ni: 5.0-5.
5.0 wt%, Cr: 17.0 to 21.0 wt%, Mo: 2.8
0 to 3.30 wt% or less, Nb + Ta: 4.45 to 5.50 wt%, Ti: 0.65 to 1.15 wt%, Al: 0.20 to 0.
Ni containing 80% by weight and the balance Fe and inevitable impurities
A step of melting the base heat-resistant alloy; a step of forging the alloy ingot obtained in the above step;
A method for producing a hot-extrusion die melt material, comprising: a step of performing a solution heat treatment at 50 to 1100 ° C. to adjust a crystal grain size; and a step of performing an aging treatment.
JP7149197A 1995-06-15 1995-06-15 Material for hot extrusion die and its production Pending JPH093577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7149197A JPH093577A (en) 1995-06-15 1995-06-15 Material for hot extrusion die and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7149197A JPH093577A (en) 1995-06-15 1995-06-15 Material for hot extrusion die and its production

Publications (1)

Publication Number Publication Date
JPH093577A true JPH093577A (en) 1997-01-07

Family

ID=15469951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7149197A Pending JPH093577A (en) 1995-06-15 1995-06-15 Material for hot extrusion die and its production

Country Status (1)

Country Link
JP (1) JPH093577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977040B1 (en) * 2007-10-31 2010-08-19 김정한 Dies manufactured by Vertical or Horizontal Centrifugal Casting and the Method for manufactured the Same
JP2015117413A (en) * 2013-12-19 2015-06-25 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY MEMBER AND Ni-BASED HEAT RESISTANT ALLOY BASE MATERIAL
WO2016013433A1 (en) * 2014-07-23 2016-01-28 株式会社Ihi PRODUCTION METHOD FOR Ni ALLOY COMPONENT
CN114892013A (en) * 2022-05-18 2022-08-12 江苏宇钛新材料有限公司 Cobalt-containing nickel-chromium-based high-temperature alloy and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977040B1 (en) * 2007-10-31 2010-08-19 김정한 Dies manufactured by Vertical or Horizontal Centrifugal Casting and the Method for manufactured the Same
JP2015117413A (en) * 2013-12-19 2015-06-25 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY MEMBER AND Ni-BASED HEAT RESISTANT ALLOY BASE MATERIAL
WO2016013433A1 (en) * 2014-07-23 2016-01-28 株式会社Ihi PRODUCTION METHOD FOR Ni ALLOY COMPONENT
JPWO2016013433A1 (en) * 2014-07-23 2017-04-27 株式会社Ihi Manufacturing method of Ni alloy parts
US10702923B2 (en) 2014-07-23 2020-07-07 Ihi Corporation Method of manufacturing ni alloy part
US11273493B2 (en) 2014-07-23 2022-03-15 Ihi Corporation Method of manufacturing Ni alloy part
CN114892013A (en) * 2022-05-18 2022-08-12 江苏宇钛新材料有限公司 Cobalt-containing nickel-chromium-based high-temperature alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
KR101280114B1 (en) Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
EP3327158B1 (en) Method for producing ni-based superalloy material
EP3327157B1 (en) Method for producing ni-based superalloy material
CN111118422B (en) Preparation method of high-tungsten high-cobalt nickel alloy fine-grain plate
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JP6160787B2 (en) Thin plate and manufacturing method thereof
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP4774630B2 (en) Manufacturing method of aluminum forged parts
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JPH10121170A (en) Nickel-chromium alloy excellent in corrosion resistance and production thereof
JPH093577A (en) Material for hot extrusion die and its production
EP3520915A1 (en) Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP6805583B2 (en) Manufacturing method of precipitation type heat resistant Ni-based alloy
JP2003532795A (en) Steel composition, method for producing the same and parts produced from said composition, in particular valves
JP2020169378A (en) Aluminum alloy for compressor slide components and compressor slide component forging
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
RU2791029C1 (en) Nickel alloy with good corrosion resistance and high tensile strength and method for production of semi-products
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030