JPH0994674A - Control method for resistance welding - Google Patents
Control method for resistance weldingInfo
- Publication number
- JPH0994674A JPH0994674A JP25372395A JP25372395A JPH0994674A JP H0994674 A JPH0994674 A JP H0994674A JP 25372395 A JP25372395 A JP 25372395A JP 25372395 A JP25372395 A JP 25372395A JP H0994674 A JPH0994674 A JP H0994674A
- Authority
- JP
- Japan
- Prior art keywords
- displacement amount
- displacement
- side electrode
- electrode
- set value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Resistance Welding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ワークに加圧力を
加えながら溶接電流を流すことによりワークを溶接する
抵抗溶接制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance welding control method for welding a work by passing a welding current while applying a pressing force to the work.
【0002】[0002]
【従来の技術】加圧力、溶接電流及び通電時間を固定し
て行う従来からの一般的な抵抗溶接方法によると、電極
の表面状態、ワークの表面状態等の変動により安定した
良好な溶接品質もしくは溶接強度を得ることが難しい。2. Description of the Related Art According to a conventional general resistance welding method in which the pressing force, welding current and energization time are fixed, stable and good welding quality is achieved due to changes in the electrode surface condition, work surface condition, etc. It is difficult to obtain welding strength.
【0003】そこで、最近では、溶接時に発生するワー
クの熱膨張量を移動側電極に取り付けた変位センサにて
計測し、電極変位量が予め設定した変位量に到達した時
点で通電を停止させる電極変位量制御が行われるように
なった。Therefore, recently, the amount of thermal expansion of the work generated during welding is measured by a displacement sensor attached to the moving side electrode, and the electrode is turned off when the amount of electrode displacement reaches a preset amount of displacement. Displacement amount control has come to be performed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
ような従来の抵抗溶接制御方法によると、通電時間の経
過にしたがって電極変位量が増加するパターンには有効
であるが、一般的には確実に所要のナゲット径が得られ
る溶接条件では図11に示すような最大値をもった電極
変位量波形となる。However, according to the conventional resistance welding control method as described above, it is effective for a pattern in which the amount of electrode displacement increases with the passage of energization time, but in general Under welding conditions where the required nugget diameter is obtained, the electrode displacement amount waveform has a maximum value as shown in FIG.
【0005】また、図8に示すように、投入熱量が過大
であったり加圧力が不足している場合などに溶接スパー
クが発生して通電途中で電極変位量が降下するパターン
に対しても、電極変位量が変位量設定値に到達しなくな
り、このため強制的に通電停止するまで溶接電流が流れ
るため(通電時間が長くなる)安定した良好な溶接品質
もしくは溶接強度を得ることが難しい。Further, as shown in FIG. 8, even in a pattern in which a welding spark is generated when the input heat amount is excessive or the applied pressure is insufficient, and the electrode displacement amount drops during energization, The electrode displacement amount does not reach the displacement amount set value, and therefore the welding current flows until the energization is forcibly stopped (the energization time becomes long), and it is difficult to obtain stable and good welding quality or welding strength.
【0006】また、従来方法によると、図9に示すよう
に、通電停止のための変位量設定値は、溶接毎のばらつ
き等を考慮して、最適変位量(最適膨張量)よりも低い
値に設定されているため、最適通電時間よりも短い時間
で通電が停止され、このため、安定した良好な溶接品質
もしくは溶接強度を確保できないという問題がある。そ
のため、図10に示すように、変位量が最適変位量の7
0〜80%(任意設定値)に到達した時点から一定時間
(任意設定値)通電を継続させ、その後通電を停止する
方法もあるが、この方法においても、電極の先端形状、
ワーク表面状態、加圧力変動等によって最適変位量の7
0〜80%に到達した後の最適通電時間は変化するた
め、安定した良好な溶接品質もしくは溶接強度が得られ
ない。なお、その他の従来例としては、特開平3−85
85号公報、特開昭58−181488号公報、特開昭
57−202988号公報などに記載されるものがあ
る。Further, according to the conventional method, as shown in FIG. 9, the displacement amount set value for stopping energization is a value lower than the optimum displacement amount (optimal expansion amount) in consideration of variations for each welding. Therefore, the energization is stopped in a time shorter than the optimum energization time, and there is a problem that stable and favorable welding quality or welding strength cannot be secured. Therefore, as shown in FIG. 10, the displacement amount is 7
There is also a method of continuing energization for a fixed time (arbitrary set value) from the time when 0% to 80% (arbitrary set value) is reached, and then stopping energization.
The optimum amount of displacement is 7 depending on the work surface condition, applied pressure fluctuation, etc.
Since the optimum energization time after reaching 0 to 80% changes, stable and good welding quality or welding strength cannot be obtained. Incidentally, as another conventional example, Japanese Patent Laid-Open No. 3-85
85, JP-A-58-181488, JP-A-57-202988 and the like.
【0007】本発明は、上記問題点にかんがみ、電極の
変位量だけではなく、電極の最大変位量からの変位量降
下値、最大変位量到達時点からの通電時間、最大変位量
到達時点からの電極間抵抗の降下抵抗値なども安定した
良好な溶接品質もしくは溶接強度を得るための重要な制
御因子である点に着目し、これらの制御因子に基づいて
抵抗溶接制御を行うことにより安定した良好な溶接品質
もしくは溶接強度を得ることを課題とする。In view of the above problems, the present invention considers not only the displacement amount of the electrode but also the displacement drop value from the maximum displacement amount of the electrode, the energization time from the time point when the maximum displacement amount is reached, and the time when the maximum displacement amount is reached. Paying attention to the fact that the drop resistance value of the inter-electrode resistance is also an important control factor for obtaining stable and good welding quality or welding strength, and performing stable resistance welding control based on these control factors The task is to obtain a good welding quality or welding strength.
【0008】[0008]
【課題を解決するための手段】請求項1の発明による
と、溶接時に、移動側電極の変位量、降下変位量、通電
時間及び降下抵抗値のうちの少なくとも1つが、移動
側電極の最適変位量を示す最適変位量設定値、移動側
電極の最大変位量からの降下変位量を示す第1の降下変
位量設定値、移動側電極の最大変位量到達時点からの
通電時間を示す通電時間設定値、移動側電極の最大変
位量到達時点以降の計測サイクル毎の降下変位量を示す
第2の降下変位量設定値、移動側電極、固定側電極間
の電極間抵抗値の降下抵抗値設定値であって、移動側電
極の最大変位量到達時点での電極間抵抗値からの降下抵
抗値を示す降下抵抗値設定値からなる5つの設定値のう
ちの対応する設定値に到達した時点で、直ちに移動側電
極及び固定側電極への通電を停止するようにしたため、
安定した良好な溶接品質もしくは溶接強度を得ることが
可能になる。According to the first aspect of the present invention, at the time of welding, at least one of the displacement amount of the moving side electrode, the amount of drop displacement, the energization time and the drop resistance value is the optimum displacement of the moving side electrode. Amount, an optimum displacement amount setting value, a first descending displacement amount setting value indicating a descending displacement amount from the maximum displacement amount of the moving side electrode, and an energizing time setting indicating an energizing time from when the moving side electrode reaches the maximum displacement amount. Value, the second set value of drop displacement amount indicating the drop displacement amount for each measurement cycle after the maximum displacement amount of the moving side electrode is reached, and the drop resistance value set value of the interelectrode resistance value between the moving side electrode and the fixed side electrode At the time when the corresponding set value among the five set values including the drop resistance value set value indicating the drop resistance value from the inter-electrode resistance value at the time when the maximum displacement amount of the moving side electrode is reached, Immediately stop energizing the moving and fixed electrodes. Because of the way,
It is possible to obtain stable and good welding quality or welding strength.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0010】図1は、一実施形態である抵抗溶接制御方
法を実施するためのシステム構成図を示す。FIG. 1 is a system configuration diagram for carrying out a resistance welding control method according to an embodiment.
【0011】図1において、加圧装置1によって昇降可
能な移動側電極2は、固定側電極3と対向配置され、移
動側電極2と固定側電極3との間に配置されたワーク4
を加圧しながら電源回路5によって移動側電極2、固定
側電極3間に溶接電流を流すことによってワーク4を溶
接する。この溶接時、移動側電極2の移動に従って移動
する可動部材6によって作動するリニアゲージなどの変
位量センサ7から制御回路8に変位量信号が入力される
とともに、電流センサ9から制御回路8に移動側電極
2、固定側電極3間に流れる溶接電流を示す電流信号が
入力され、また、移動側電極2、固定側電極3間の電圧
を示す電圧信号が制御回路8に入力される。In FIG. 1, a movable electrode 2 that can be moved up and down by a pressure device 1 is arranged to face a fixed electrode 3, and a work 4 is arranged between the movable electrode 2 and the fixed electrode 3.
The workpiece 4 is welded by applying a welding current between the moving side electrode 2 and the fixed side electrode 3 by the power supply circuit 5 while pressurizing. At the time of welding, a displacement amount signal such as a linear gauge operated by a movable member 6 that moves according to the movement of the moving electrode 2 is input to a control circuit 8 and a current sensor 9 moves to the control circuit 8. A current signal indicating the welding current flowing between the side electrode 2 and the fixed side electrode 3 is input, and a voltage signal indicating the voltage between the moving side electrode 2 and the fixed side electrode 3 is input to the control circuit 8.
【0012】制御回路8は、変位量信号に基づいて変位
量(l)を計測する変位量計測回路81と、電流信号に
基づいて電流(i)を計測する電流計測回路82と、電
圧信号に基づいて電圧(V)を計測する電圧計測回路8
3とを備える。各計測回路81〜83の出力側には、計
測された変位量(l)、電流(i)及び電圧(V)に基
づいて、移動側電極2の最大変位量からの降下変位量
(Δl)、移動側電極2の最大変位量到達時点からの
通電時間(Δt)、移動側電極2の最大変位量到達時
点以降の計測サイクル毎の降下変位量(Δlt )、移
動側電極2、固定側電極3間の電極間抵抗値の降下抵抗
値(Δr)であって、移動側電極2の最大変位量到達時
点での電極間抵抗値からの降下抵抗値(Δr)を演算す
る演算回路84が接続されている。さらに、制御回路8
は、移動側電極2の最適変位量を示す最適変位量設定
値(L)(図2参照)、移動側電極2の最大変位量か
らの降下変位量を示す第1の降下変位量設定値(ΔL)
(図2参照)、移動側電極2の最大変位量到達時点か
らの通電時間を示す通電時間設定値(ΔT)(図2参
照)、移動側電極2の最大変位量到達時点以降の計測
サイクル毎の降下変位量を示す第2の降下変位量設定値
(ΔLT )(図2参照)、移動側電極2、固定側電極
3間の電極間抵抗値の降下抵抗値設定値(ΔR)であっ
て、移動側電極2の最大変位量到達時点での電極間抵抗
値からの降下抵抗値を示す降下抵抗値設定値(ΔR)
(図2参照)からなる5つの設定値が設定された設定回
路85を備える。演算回路84及び設定回路85の出力
側には、変位量(l)と最適変位量設定値(L)、降下
変位量(Δl)と第1の降下変位量設定値(ΔL)、通
電時間(Δt)と通電時間設定値(ΔT)、降下変位量
(Δlt )と第2の降下変位量設定値(ΔLT )、降下
抵抗値(Δr)と降下抵抗値設定値(ΔR)をそれぞれ
比較する比較回路86が接続されている。比較回路86
の出力側には、比較回路86の出力に応じて電源回路5
による供給電流を制御する電流制御回路87が接続され
ている。The control circuit 8 uses a displacement amount measuring circuit 81 for measuring the displacement amount (l) based on the displacement amount signal, a current measuring circuit 82 for measuring the current (i) based on the current signal, and a voltage signal. Voltage measuring circuit 8 for measuring voltage (V) based on
3 is provided. On the output side of each of the measurement circuits 81 to 83, the displacement amount (Δl) from the maximum displacement amount of the moving-side electrode 2 is decreased based on the measured displacement amount (l), current (i) and voltage (V). , the maximum displacement of the energizing time from the arrival time point of the movable electrode 2 (Delta] t), drop the amount of displacement of each measurement cycle the maximum displacement reached after the time point of the movable electrode 2 (.DELTA.l t), movable electrode 2, the fixed-side An arithmetic circuit 84 for calculating the drop resistance value (Δr) of the inter-electrode resistance value between the electrodes 3 and the drop resistance value (Δr) from the inter-electrode resistance value at the time when the maximum displacement amount of the moving electrode 2 is reached. It is connected. Further, the control circuit 8
Is an optimum displacement amount set value (L) indicating the optimum displacement amount of the moving side electrode 2 (see FIG. 2) and a first descending displacement amount setting value (L) indicating a descending displacement amount from the maximum displacement amount of the moving side electrode 2 ( ΔL)
(See FIG. 2), energization time set value (ΔT) indicating the energization time from the time when the maximum displacement amount of the moving side electrode 2 is reached (see FIG. 2), every measurement cycle after the time when the maximum displacement amount of the moving side electrode 2 is reached The second set value (ΔL T ) of the drop displacement amount indicating the drop displacement amount (see FIG. 2), and the drop resistance value set value (ΔR) of the inter-electrode resistance value between the moving side electrode 2 and the fixed side electrode 3. The drop resistance value set value (ΔR) indicating the drop resistance value from the inter-electrode resistance value at the time when the maximum displacement amount of the moving electrode 2 is reached.
(See FIG. 2) A setting circuit 85 is provided in which five setting values are set. On the output side of the arithmetic circuit 84 and the setting circuit 85, the displacement amount (l) and the optimum displacement amount set value (L), the drop displacement amount (Δl) and the first drop displacement amount set value (ΔL), and the energization time ( Delta] t) and energization time set value ([Delta] T), compared drop displacement (.DELTA.l t) and the second drop displacement amount set value ([Delta] L T), drop resistance value ([Delta] r) drop resistance setting value ([Delta] R), respectively The comparison circuit 86 is connected. Comparison circuit 86
The output side of the power supply circuit 5 depending on the output of the comparison circuit 86.
A current control circuit 87 for controlling the supply current is connected.
【0013】上記のように構成されたシステムにおい
て、比較回路86は、変位量(l)が最適変位量設定
値(L)に到達した時点、降下変位量(Δl)が第1
の降下変位量設定値(ΔL)に到達した時点、通電時
間(Δt)が通電時間設定値(ΔT)に到達した時点、
降下変位量(Δlt )が第2の降下変位量設定値(Δ
LT )に到達した時点、降下抵抗値(Δr)が降下抵
抗値設定値(ΔR)に到達した時点のうち最も早い時点
で、電源回路5による通電を停止させるための指示信号
を電流制御回路87に出力するよう動作する。In the system configured as described above, the comparison circuit 86 determines that the descending displacement amount (Δl) is the first when the displacement amount (l) reaches the optimum displacement amount setting value (L).
When the set value (ΔL) of the drop displacement amount is reached, when the energization time (Δt) reaches the set value (ΔT) of the energization time,
The descending displacement amount (Δl t ) is the second descending displacement amount set value (Δ
L T ), and the drop resistance value (Δr) reaches the drop resistance value set value (ΔR) at the earliest, an instruction signal for stopping energization by the power supply circuit 5 is supplied to the current control circuit. It operates so as to output to 87.
【0014】このように、変位量(l)が最適変位量設
定値(L)に到達した時点で通電を停止させることによ
り、最適変位量設定値(L)が従来の変位量設定値と比
べ大きな値であるため、安定した良好な溶接品質もしく
は溶接強度を得ることが可能になる。As described above, the energization is stopped when the displacement amount (l) reaches the optimum displacement amount set value (L), so that the optimum displacement amount set value (L) is compared with the conventional displacement amount set value. Since the value is large, it is possible to obtain stable and good welding quality or welding strength.
【0015】また、図3に示すようにナゲット径と降下
変位量とには強い相関関係があることから、第1の降下
変位量設定値(ΔL)を適正値に設定し、降下変位量
(Δl)が第1の降下変位量設定値(ΔL)に到達した
時点で通電を停止させることにより、安定した良好な溶
接品質もしくは溶接強度を得ることが可能になる。Further, since there is a strong correlation between the nugget diameter and the descending displacement amount as shown in FIG. 3, the first descending displacement amount setting value (ΔL) is set to an appropriate value, and the descending displacement amount ( It is possible to obtain stable and good welding quality or welding strength by stopping the energization when Δl) reaches the first set value (ΔL) of the displacement.
【0016】また、溶接打点数が増加すると電極の先端
径が大きくなり降下変位量(Δl)が小さく(傾きが緩
やかに)なるため、降下変位量(Δl)による制御では
通電時間が長くなり溶接スパッタ等の不良が発生する
が、図4に示すように、ナゲット径と最大変位量到達時
点(最大膨張時点)からの通電時間(Δt)とには強い
相関関係があることから、通電時間設定値(ΔT)を適
正値に設定し、通電時間(Δt)が通電時間設定値(Δ
T)に到達した時点で通電を停止させることにより、安
定した良好な溶接品質もしくは溶接強度を得ることが可
能になる。Further, as the number of welding spots increases, the tip diameter of the electrode increases and the amount of downward displacement (Δl) decreases (gradiently slopes). Therefore, the control by the amount of downward displacement (Δl) lengthens the energization time and welding Although a defect such as spatter occurs, as shown in FIG. 4, there is a strong correlation between the nugget diameter and the energization time (Δt) from the time when the maximum displacement amount is reached (the time when the maximum expansion occurs). Set the value (ΔT) to an appropriate value, and set the energization time (Δt) to the energization time set value (ΔT).
By stopping the energization when T) is reached, stable and good welding quality or welding strength can be obtained.
【0017】また、降下変位量(Δlt )が第2の降下
変位量設定値(ΔLT )に到達した時点で通電を停止さ
せることにより、図5に示すように、溶接スパークの発
生を最小限に抑え、電極の寿命を向上させることができ
る。Further, the generation of welding sparks is minimized as shown in FIG. 5 by stopping the energization at the time when the descending displacement amount (Δl t ) reaches the second descending displacement amount setting value (ΔL T ). It can be suppressed to the limit and the life of the electrode can be improved.
【0018】また、図6に示すように、電極変位量が最
大変位量に到達した時点はナゲット径が成長する開始点
であり、また、図7に示すように、ナゲット径と最大変
位量到達時点(最大膨張時点)からの降下抵抗値(Δ
r)とには強い相関関係があることから、降下抵抗値設
定値(ΔR)を適正値に設定し、降下抵抗値(Δr)が
降下抵抗値設定値(ΔR)に到達した時点で通電を停止
させることにより、安定した良好な溶接品質もしくは溶
接強度を得ることが可能になる。Further, as shown in FIG. 6, the point at which the electrode displacement amount reaches the maximum displacement amount is the starting point for the nugget diameter to grow, and as shown in FIG. 7, the nugget diameter and the maximum displacement amount are reached. The drop resistance value (Δ) from the point of time (the point of maximum expansion)
Since there is a strong correlation with r), the drop resistance value set value (ΔR) is set to an appropriate value, and the energization is performed when the drop resistance value (Δr) reaches the drop resistance value set value (ΔR). By stopping, it becomes possible to obtain stable and good welding quality or welding strength.
【図1】一実施形態である抵抗溶接制御方法を実施する
ためのシステムの概念的構成図FIG. 1 is a conceptual configuration diagram of a system for implementing a resistance welding control method according to an embodiment.
【図2】最適変位量設定値等を説明するための波形図FIG. 2 is a waveform diagram for explaining optimum displacement amount set values and the like.
【図3】降下変位量とナゲット径との相関関係を示すグ
ラフFIG. 3 is a graph showing the correlation between the amount of drop displacement and the nugget diameter.
【図4】最大膨張後の通電時間とナゲット径との相関関
係を示すグラフFIG. 4 is a graph showing the correlation between the energization time after maximum expansion and the nugget diameter.
【図5】計測サイクル毎の降下変位量と通電停止との関
係を示す波形図FIG. 5 is a waveform diagram showing the relationship between the amount of downward displacement and the stoppage of energization for each measurement cycle.
【図6】通電時間に対するナゲット径、電極変位量の変
化を示すグラフFIG. 6 is a graph showing changes in nugget diameter and electrode displacement with respect to energization time.
【図7】最大膨張後の降下抵抗値とナゲット径との相関
関係を示すグラフFIG. 7 is a graph showing the correlation between the drop resistance value after maximum expansion and the nugget diameter.
【図8】従来の問題点を示す波形図FIG. 8 is a waveform diagram showing conventional problems.
【図9】同じく従来の問題点を示す波形図FIG. 9 is a waveform diagram showing a conventional problem.
【図10】同じく従来の問題点を示す波形図FIG. 10 is a waveform diagram showing a conventional problem.
【図11】同じく従来の問題点を示す波形図FIG. 11 is a waveform diagram showing a conventional problem.
1 加圧装置 2 移動側電極 3 固定側電極 4 ワーク 5 電源回路 7 変位量センサ 8 制御回路 9 電流センサ 1 Pressurizing Device 2 Moving Side Electrode 3 Fixed Side Electrode 4 Work 5 Power Supply Circuit 7 Displacement Sensor 8 Control Circuit 9 Current Sensor
Claims (1)
最適変位量設定値、移動側電極の最大変位量からの降
下変位量を示す第1の降下変位量設定値、移動側電極
の最大変位量到達時点からの通電時間を示す通電時間設
定値、移動側電極の最大変位量到達時点以降の計測サ
イクル毎の降下変位量を示す第2の降下変位量設定値、
移動側電極、固定側電極間の電極間抵抗値の降下抵抗
値設定値であって、移動側電極の最大変位量到達時点で
の電極間抵抗値からの降下抵抗値を示す降下抵抗値設定
値を、それぞれ、通電停止条件のための設定値として設
定しておき、 溶接時に、移動側電極の変位量、降下変位量、通電時間
及び降下抵抗値を計測し、移動側電極の変位量、降下変
位量、通電時間及び降下抵抗値のうちの少なくとも1つ
が、前記〜に示す対応する設定値に到達した時点
で、直ちに移動側電極及び固定側電極への通電を停止す
ることを特徴とする抵抗溶接制御方法。1. An optimum displacement amount set value indicating an optimum displacement amount of a moving electrode, a first descending displacement amount setting value indicating a descending displacement amount from a maximum displacement amount of a moving electrode, and a moving electrode maximum. An energization time set value indicating the energization time from the time when the displacement amount is reached, a second descending displacement amount set value indicating the descending displacement amount for each measurement cycle after the maximum displacement amount of the moving electrode is reached,
A drop resistance value set value of the inter-electrode resistance value between the moving side electrode and the fixed side electrode, which indicates the drop resistance value from the inter electrode resistance value at the time when the maximum displacement amount of the moving side electrode is reached. Are set as set values for the energization stop condition, and the displacement amount of the moving side electrode, the amount of drop displacement, the energization time and the drop resistance value are measured during welding, and the amount of displacement of the moving side electrode At least one of the displacement amount, the energization time and the drop resistance value reaches the corresponding set value shown in the above items 1 to 3, immediately stopping energization to the moving side electrode and the fixed side electrode. Welding control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25372395A JP3588874B2 (en) | 1995-09-29 | 1995-09-29 | Resistance welding control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25372395A JP3588874B2 (en) | 1995-09-29 | 1995-09-29 | Resistance welding control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0994674A true JPH0994674A (en) | 1997-04-08 |
JP3588874B2 JP3588874B2 (en) | 2004-11-17 |
Family
ID=17255253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25372395A Expired - Lifetime JP3588874B2 (en) | 1995-09-29 | 1995-09-29 | Resistance welding control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3588874B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321959A (en) * | 2000-05-12 | 2001-11-20 | Sekisui Chem Co Ltd | Nondestructive testing method for projection welding |
WO2011129467A1 (en) * | 2010-04-12 | 2011-10-20 | 주식회사 코닥트 | Spot-welder automatic monitoring device |
JP2015134367A (en) * | 2014-01-17 | 2015-07-27 | 日本アビオニクス株式会社 | Welding device |
-
1995
- 1995-09-29 JP JP25372395A patent/JP3588874B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321959A (en) * | 2000-05-12 | 2001-11-20 | Sekisui Chem Co Ltd | Nondestructive testing method for projection welding |
WO2011129467A1 (en) * | 2010-04-12 | 2011-10-20 | 주식회사 코닥트 | Spot-welder automatic monitoring device |
JP2015134367A (en) * | 2014-01-17 | 2015-07-27 | 日本アビオニクス株式会社 | Welding device |
Also Published As
Publication number | Publication date |
---|---|
JP3588874B2 (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5133490B2 (en) | Spot welding apparatus and method for detecting welding conditions in real time | |
WO2014156290A1 (en) | Resistance spot welding system | |
JP5582277B1 (en) | Resistance spot welding system | |
JPH0994674A (en) | Control method for resistance welding | |
JP3117543B2 (en) | Resistance welding control device | |
US20220055136A1 (en) | Arc welding method and arc welding device | |
JP4151777B2 (en) | Hot wire welding method and apparatus | |
JPH0127825B2 (en) | ||
KR19990000244A (en) | Current control device and method of spot welding machine using dynamic resistance value | |
JP2943559B2 (en) | Resistance spot welding method | |
JP2019118921A (en) | Welding device | |
JP2000135573A (en) | Welding control device of resistance welding machine | |
JP2577120B2 (en) | Control device for spot welding | |
JPH0929450A (en) | Joining method | |
JPH11277235A (en) | Short circuiting transfer type arc welding method | |
JP2024117134A (en) | How to estimate nugget diameter | |
JP2010069507A (en) | Resistance welding control method | |
KR100928533B1 (en) | Power control method for resistance welding | |
JPH09108835A (en) | Touch-start method of electric welding | |
JPH0788659A (en) | Method and device for controlling welding current of dc resistance welding machine | |
JPS6356367A (en) | Method and device for adaptive control for resistance welding | |
JP2021159953A (en) | Method of monitoring energization state of welded part and control device of resistance welder | |
JP4028075B2 (en) | Short-circuit transfer type arc welding method | |
KR100241027B1 (en) | Sensing method and a sensor of resistant welding | |
KR0146870B1 (en) | Apparatus and method for detecting seam welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040809 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |