JP4028075B2 - Short-circuit transfer type arc welding method - Google Patents

Short-circuit transfer type arc welding method Download PDF

Info

Publication number
JP4028075B2
JP4028075B2 JP10017698A JP10017698A JP4028075B2 JP 4028075 B2 JP4028075 B2 JP 4028075B2 JP 10017698 A JP10017698 A JP 10017698A JP 10017698 A JP10017698 A JP 10017698A JP 4028075 B2 JP4028075 B2 JP 4028075B2
Authority
JP
Japan
Prior art keywords
arc
welding
signal
output
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10017698A
Other languages
Japanese (ja)
Other versions
JPH11277234A (en
Inventor
敏郎 上園
利昭 中俣
孝典 大西
耕作 山口
裕康 水取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP10017698A priority Critical patent/JP4028075B2/en
Publication of JPH11277234A publication Critical patent/JPH11277234A/en
Application granted granted Critical
Publication of JP4028075B2 publication Critical patent/JP4028075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、消耗性電極を使用し、短絡とアークとを繰り返しながら溶接する短絡移行式アーク溶接方法の改良に関するものである。
【0002】
【従来の技術】
消耗電極式アーク溶接で安定した溶接を行うためには、定速送給される消耗性電極を消耗性電極の送給速度に匹敵する一定の速度で溶融するように制御しなければならない。特に短絡移行式アーク溶接法においては、消耗性電極と被溶接物との間が短絡したり、離れてアークが発生する現象を交互に繰り返すので溶融量の制御は難しい。従来、このような溶接での消耗性電極溶融量の制御は溶接時の平均電圧を一定にすることによってなされている。
【0003】
図6に従来の短絡移行式アーク溶接方法を実施する装置の例を示す。同図において、1は交流電源であり商用交流電源が用いられる。2は電力変換回路であり、交流電源1からの電力を出力指令信号Sw1に応じた略定電圧特性の直流出力に変換する。3は直流リアクトルであり、電力変換回路2の出力電流に短絡移行式アーク溶接に適した電流変化の時定数を与える。4は溶接トーチであり電動機5によって駆動される送給ロール6によって被溶接物7に向かって送給される消耗性電極8が内挿され、これに電力変換回路2からの電力を給電する。9は電動機5の回転速度を一定に制御する電動機制御回路である。10は溶接電圧の瞬時値Vd を検出する電圧検出器、11は電圧検出器10の出力を平滑して溶接電圧の平均値Vdaを得る溶接電圧平滑回路、12は溶接電圧設定回路であり、溶接電圧設定値Vs を設定する。13は比較器であり溶接電圧設定回路12の設定値Vs と溶接電圧平滑回路11の出力信号Vdaとを比較し、その差信号ΔV=Vs −Vdaを出力する。14は増幅器であり、比較器13の出力信号ΔVを必要に応じて増幅する。15はアーク期間検出器であり、電圧検出器10の出力信号Vd が所定値よりも高いときにアーク期間と判断してハイレベルのアーク期間信号Sadを出力する。16は短絡期間用出力電圧設定器であり、短絡期間中の電力変換回路2の出力電流が過大にならないようにアーク期間中の出力電圧よりも低い値の出力電圧設定信号Vssを出力する。17は信号切り替え回路であり、アーク期間検出器15のアーク期間信号Sadがハイレベルのときは (a)側に、アーク期間信号Sadがローレベルのときは (b)側に信号を切り替えて電力変換回路2に伝達するアナログスイッチが用いられる。
【0004】
図6において、溶接中の電圧を電圧検出器10で検出し、溶接電圧平滑回路11で平滑し、検出電圧平滑信号Vdaを求める。溶接電圧設定回路12からの出力である溶接電圧設定信号Vs と検出電圧平滑信号Vdaを比較器13で比較してその差信号ΔV=Vs −Vdaを出力する。比較器13の出力ΔVは次に増幅器14に入力されて短絡期間用出力電圧設定器16の出力電圧と対応するレベルに増幅されてアーク期間中の出力電圧指令信号Vudとなる。溶接中は短絡、アークが交互に発生するので電圧検出器10の出力はまた、アーク期間検出器15にも供給されて溶接電圧の瞬時値Vd が所定値よりも高いときはアーク期間信号Sadをハイレベル信号として出力する。信号切り替え回路17はこのアーク期間信号Sadがハイレベルの間、すなわちアーク期間は信号切り替え回路17を (a)側にし、増幅器14の出力信号Vudを選択する。アーク期間信号Sadがローレベルの期間、即ち短絡期間には信号切り替え回路17を (b)側にして短絡期間用出力電圧設定器16の出力信号Vssを選択する。このようにして選択された出力指令信号Sw1は電力変換回路2に送られる。
【0005】
図6の装置の動作のタイミングチャートを図7に示す。図7において、(a)は電圧検出器10の出力信号である溶接電圧の瞬時値Vd を、(b)は溶接電圧の瞬時値Vd を溶接電圧平滑回路11にて平滑した検出電圧平滑信号Vdaを、(c)は比較器13の出力ΔVを、(d)は増幅器14の出力信号Vudを、(e)はアーク期間検出器15の出力信号Sadを、また(f)は信号切り替え回路17によって選択された出力指令信号Sw1をそれぞれ時間の経過とともに示す。
図6および図7において、溶接中は消耗性電極8は被溶接物7に対してアーク発生と短絡とを1秒間に数十回も繰り返す。短絡が発生した場合には溶接電流は急速に増大し、この増大した電流が流れることによって短絡部に作用する電磁ピンチ力によって短絡部を切断してアークの再生を促す。このとき電流が過大になりすぎるとアーク再生時にスパッタの発生をもたらすので短絡期間中は信号切り替え回路17が(b)側に切り替えられて、電力変換回路2の出力電圧が短絡期間用出力電圧設定器16の設定信号Vssで定まる低い値に低減される。通常この短絡時の溶接電流は短絡を解消するために必要な電磁ピンチ力を得るためとアーク再生時の許容スパッタ量とによってその下限と上限が定められる。
【0006】
【発明が解決しようとする課題】
上記従来方法においては、平均電圧を一定にする制御であるので、溶接電圧を十分平滑して溶接電源の出力制御情報として用いなければならない。このために、制御の応答速度は遅くなり、充分な制御ができなかった。
【0007】
図8にてこの点を詳細に説明する。図8は溶接中に段差を乗り越え、溶接トーチ4からの消耗性電極8の突出し長さが急に短くなった時の状態を示す。同図(a)は溶接電圧瞬時値Vd とこれを平滑した検出電圧平滑信号Vdaとを示し、(b)は溶接電流の瞬時値Ia と平均アーク電流Idaとを示し、(c)は消耗性電極8の先端と被溶接物7との平均距離、即ち平均アーク長La と被溶接物7の状態とを各時刻毎に示してある。
【0008】
溶接開始から時刻t1 までの間は平均アーク長がL1 である。被溶接物7の段差を時刻t1 に通過すると平均アーク長がL2 に急減し消耗性電極8の先端と被溶接物7の距離が接近するので短絡を生じ易くなる。すると電圧検出器10の出力信号Vd は直ちに減少するが、(a)に示すように実際に制御に使用される溶接電圧平滑回路11の出力信号Vdaは十分平滑した値なので変化は遅く、このために増幅器14の出力信号Vudはあまり変化しない。また(b)に示すように短絡回数が増えることによって溶接電流Ia は増加するがアーク時間そのものが短かいために十分な消耗性電極8の溶融が得られない。この結果、(c)に示すように段差を乗り越えた後に元のアーク長に戻るためには時刻t2 までかかることになる。
【0009】
図9に図8に示したような段差を通過した時のビードの外観とスパッタ発生量を示す。同図に示すように、時刻t1 を境にして短絡回数が急増するので発生するスパッタも急増し、溶接部の入熱も下がるためビード外観も大きく乱れることになる。
【0010】
【課題を解決するための手段】
本発明の第1の発明は、上記従来方法の課題を解決するために、消耗性電極を使用し、短絡とアーク発生とを繰り返しながら溶接を行う短絡移行式アーク溶接方法において、一回のアーク発生期間の長さを検出し、検出したアーク発生期間の長さに比例して次のアーク発生期間における溶接電源の出力電圧を低減し、一回のアーク発生期間の長さに逆比例して次のアーク発生期間における溶接電流を増加させる短絡移行式アーク溶接方法を提案したものである。
【0011】
さらに本発明の第2の発明は、消耗性電極を使用し、短絡とアーク発生とを繰り返しながら溶接を行う短絡移行式アーク溶接方法において、短絡発生期間における溶接電源の出力電圧をアーク発生期間における溶接電源の出力電圧よりも低い一定電圧に設定するとともに、一回のアーク発生期間の長さを検出し、検出したアーク発生期間の長さに比例して次のアーク発生期間における溶接電源の出力電圧を低減し、一回のアーク発生期間の長さに逆比例して次のアーク発生期間における溶接電流を増加させる短絡移行式アーク溶接方法を提案したものである。
【0012】
【発明の実施の形態】
図1は本発明の短絡移行式アーク溶接方法を実施する装置の例を示す接続図である。同図において、18は出力電圧補正器であり、アーク期間検出器15の出力であるアーク期間信号Sadを入力としてアーク期間の長さに応じた次のアーク期間の出力電圧補正信号Vmsを出力する。19は減算器であり、比較器13の出力ΔVから出力電圧補正器18の出力Vmsを減算し、その結果を短絡期間用出力電圧設定器16の信号のレベルに対応するレベルまで増幅する。同図においてその他は図6に示した従来装置と同機能のものに同符号を付して説明を省略する。
【0013】
同図において、溶接中の電圧を電圧検出器10で検出し、溶接電圧平滑回路11で平滑して平均電圧となる検出電圧平滑信号Vdaを求める。溶接電圧設定回路12からの出力である溶接電圧設定信号Vs と検出電圧平滑信号Vdaを比較器13で比較してその差信号ΔVを出力する。溶接中は短絡、アークが交互に発生するのでアーク期間検出器15により判定し、アーク期間中はハイレベルのアーク期間信号Sadを出力する。アーク期間信号Sadは出力電圧補正器18にて計数されて、このアーク期間信号Sadの継続時間の長さに応じた大きさの出力電圧補正信号Vmsを出力する。比較器13の出力ΔVを増幅した増幅器14の出力と出力電圧補正器18の出力Vmsとは減算器19に入力されて
Vuh=A・ΔV−Vms
となる。(但し、Aは増幅器14の増幅率によって定まる定数)
【0014】
アーク期間中はアーク期間検出器15のアーク期間信号Sadがハイレベルとなり、信号切り替え回路17を (a)側にし、減算器19の出力信号Vuhを選択する。逆に短絡期間にはアーク期間検出器15のアーク期間信号Sadがローレベルになり、信号切り替え回路17を (b)側に切り替えて、短絡期間用出力電圧設定器16の出力電圧設定信号Vssを選択する。こうして選択された出力指令信号Sw1は電力変換回路2に供給される。
【0015】
図2は出力電圧補正器18の具体例を示す。図2において、MM1およびMM2はモノマルチバイブレータであり入力信号の立ち下がり時にトリガーされて短時間幅のパルスを出力する。IG1は積分回路であり、アーク期間検出器15の出力信号Sadを積分して信号Sigとして出力するとともにモノマルチバイブレータMM2の出力信号によってリセットされるものである。SH1はサンプルホールド回路であり、入力信号Sadを積分する積分回路IG1の出力信号Sigを入力としてモノマルチバイブレータMM1の出力信号の立ち上がり時にそのときの入力信号を記憶して、つぎにモノマルチバイブレータMM1の出力信号の立ち上がりまで保持して出力電圧補正信号Vmsとして出力する。
【0016】
図3は図1の装置に図2の出力電圧補正器を用いたときの動作を示すタイミングチャートである。同図において、(a)は電圧検出器10の出力信号、即ち溶接電圧の瞬時値Vd を示し、(b)はこの溶接電圧の瞬時値Vd を平滑した溶接電圧平滑回路11の出力信号Vdaを示す。(c)は検出電圧平滑信号Vdaと溶接電圧設定回路12の出力信号である溶接電圧設定値Vs とを比較した比較器13の出力信号ΔVを増幅した増幅器14の出力を示す。(d)はアーク期間検出器15の出力信号Sadを示し、(e)は出力電圧補正器18のモノマルチバイブレータMM1の出力信号、(f)は出力電圧補正器18のモノマルチバイブレータMM2の出力信号、(g)は出力電圧補正器18の積分回路IG1の出力信号、(h)は出力電圧補正器18のサンプルホールド回路SH1の出力信号、即ち出力電圧補正信号Vmsを示す。(i)は増幅器14の出力信号A・ΔVから出力電圧補正信号Vmsを減算する減算器19の出力信号Vuh、(j)はアーク期間検出器15の出力信号Sadによって短絡期間とアーク期間とにおいて出力電圧設定信号をVuhまたは短絡期間中の出力電圧設定信号Vssに切替える信号切り替え回路17の出力指令信号Sw1を示す。
【0017】
図1ないし図3において、溶接電圧Vd は電圧検出器10によって検出されて溶接電圧平滑回路11にて平均値Vdaが導出されて比較器13にて溶接電圧設定回路12の設定値Vs と比較されて差信号ΔVが算出される。一方、電圧検出器10の出力はまた、アーク期間検出器15にも供給されて信号Vd が一定値よりも高いときはアーク期間と判断されてハイレベルのアーク期間信号Sadが出力される。ハイレベルのアーク期間信号Sadは出力電圧補正器18の積分回路IG1にて積分されて積分信号Sigとなりサンプルホールド回路SH1に出力される。アーク期間検出器15の出力Sadはまた出力電圧補正器18のモノマルチバイブレータMM1にも供給されて、モノマルチバイブレータMM1は入力信号Sadの立ち下がり、即ち、アーク期間の終了直後に短時間のパルス信号を出力する。モノマルチバイブレータMM1のパルス出力はモノマルチバイブレータMM2とサンプルホールド回路SH1とに供給され、サンプルホールド回路SH1はこのモノマルチバイブレータMM1の出力信号の立ち上がりの瞬間の入力信号Sigを記憶して出力電圧補正信号Vmsとして出力する。モノマルチバイブレータMM2はモノマルチバイブレータMM1の出力信号の立ち上がりでトリガーされて短時間のパルス信号を出力し、積分回路IG1はこのモノマルチバイブレータMM2の出力パルスの立ち下がりによりリセットされてその出力信号は零に復帰する。
【0018】
一方、アーク期間検出器15の出力はまた、信号切り替え回路17にも供給されてアーク期間信号Sadがハイレベルのときは信号切り替え回路17を (a)側に、アーク期間信号Sadがローレベルのときは信号切り替え回路17を (b)側に切り替える。この結果、アーク期間信号Sadがハイレベルとなるアーク発生期間のはじめからアーク期間信号Sadが出力電圧補正器18の積分回路IG1にて積分され、アーク期間の終了時にアーク期間信号Sadがローレベルに反転すると、その瞬間の積分回路IG1の出力信号がサンプルホールド回路SH1に記憶され、その後、モノマルチバイブレータMM1の出力パルスの立ち下がりによってモノマルチバイブレータMM2の出力によって積分回路IG1はリセットされ、出力信号Sigは零に戻り、次のアーク期間が始まってアーク期間信号Sadがハイレベルになるまで待機する。この結果、1回のアーク期間の長さが出力電圧補正器18の積分回路IG1によって算出されて、これがそのアーク期間の終了に伴ってサンプルホールド回路SH1に記憶されて、次のアーク期間の終了時まで保持されて減算器19に出力電圧補正信号Vmsとして出力される。減算器19ではサンプルホールド回路SH1の出力信号Vmsを増幅器14の出力信号から減算してVuh=A・ΔV−Vmsを得て、信号切り替え回路17にアーク期間における出力指令信号として出力する。
【0019】
このように、アーク期間が長いときは出力電圧補正信号Vmsは大きくなり、次のアーク期間における減算器19の出力信号Vuhは低くなり、電力変換回路2の出力電圧が低くなる。逆に、アーク期間が短かいときは出力電圧補正信号Vmsは小さくなり、次のアーク期間における減算器19の出力信号Vuhは高くなって電力変換回路2の出力電圧が高くなる。
【0020】
図4は図1の装置を用いて本発明の溶接方法を実施したときに、溶接中に段差を乗り越えてアーク長が急に短くなった時の状態を模式的に示した図である。同図(a)は溶接電圧の瞬時値Vd とその検出電圧平滑信号Vdaを示す。(b)は溶接電流の瞬時値Ia と平均アーク電流Idaを示す。(c)は消耗性電極8と被溶接物7との距離、即ち平均アーク長La の変化および被溶接物7の状態を示す。溶接開始から時刻t1 までの間は平均アーク長がL1 である。被溶接物7の段差を時刻t1 に通過すると平均アーク長がL2 に急減し、消耗性電極8の先端
と被溶接物7との距離が接近するので短絡を生じ易くなる。すると同図(a)に示すように溶接電圧の瞬時値Vd は減少する。これに対して、実際の検出電圧平滑信号Vdaは十分平滑した値なので変化は遅くあまり変化しない。しかし短絡回数が増加し、アーク時間が短くなるので出力電圧補正信号Vmsはマイナス方向に小さく、次のアーク期間の減算器19の出力信号Vuhは大きな値となり、アーク期間中の出力電圧が増加する。これによりアーク電流が急速に増加して十分な消耗性電極の溶融量が得られる。この結果、(c)に示すように消耗性電極8は急速に溶融することになり、段差乗り越え後にもとのアーク長に戻るために要する時間は従来よりも大幅に減少する。
【0021】
図5に被加工物の段差を通過した時の溶接ビードの外観とスパッタ発生量とを示す。同図のように時刻t1 を境にして短絡回数が急増するので発生するスパッタも増加するが、アーク期間の減少に反比例して溶接電流が急増する結果、消耗性電極の溶融速度が急速に増加してアーク長がすぐに回復するので、スパッタ発生期間も、ビード外観が乱れる期間も従来方法によるよりも短くなる。
【0022】
【発明の効果】
本発明の短絡移行式アーク溶接方法は、上記の通りであるので、消耗性電極と被溶接物との間の距離が急変した場合でも消耗性電極の溶融量を即座に変化させ、適正なアーク状態まで早く復帰させることが出来る。
【図面の簡単な説明】
【図1】本発明の短絡移行式アーク溶接方法を実施する装置の例を示す接続図である。
【図2】図1の装置に用いる出力電圧補正器18の実施例を示す接続図である。
【図3】図1の装置に図2の出力電圧補正器を用いたときのの動作を説明するためのタイミングチャートである。
【図4】図1の装置によって本発明の短絡移行式アーク溶接方法を実施したときの溶接電圧、溶接電流、消耗性電極と被溶接物との位置関係を時間の経過と共に示した模式図である。
【図5】本発明の短絡移行式アーク溶接方法を実施したときに被加工物の段差を通過した時の溶接ビードの外観とスパッタ発生量とを示す図である。
【図6】従来の短絡移行式アーク溶接方法を実施する装置の例を示した接続図である。
【図7】図6の従来装置の動作を説明するための線図である。
【図8】図6の装置によって従来の短絡移行式アーク溶接方法を実施したときの溶接電圧、溶接電流、消耗性電極と被溶接物との位置関係を時間の経過と共に示した模式図である。
【図9】図6の装置によって従来の短絡移行式アーク溶接方法を実施したときの被加工物の段差を通過した時の溶接ビードの外観とスパッタ発生量とを示す図である。
【符号の説明】
1 交流電源
2 電力変換回路
3 直流リアクトル
4 溶接トーチ
5 電動機
6 送給ロール
7 被溶接物
8 消耗性電極
9 電動機制御回路
10 溶接電圧の瞬時値Vd を検出する電圧検出器
11 溶接電圧平滑回路
12 溶接電圧設定回路
13 比較器
14 増幅器
15 アーク期間検出器
16 短絡期間用出力電圧設定器
17 信号切り替え回路
18 出力電圧補正器
19 減算器
MM1 モノマルチバイブレータ
MM2 モノマルチバイブレータ
IG1 積分回路
SH1 サンプルホールド回路
Vd 溶接電圧の瞬時値
Vs 溶接電圧設定値
ΔV 溶接電圧設定値Vs と検出電圧平滑信号Vdaとの差信号
Sad アーク期間信号
Vss 短絡期間中の出力電圧設定信号
Vda 検出電圧平滑信号
Vms 出力電圧補正信号
Vud 増幅器14の出力信号
Vuh 減算器19の出力信号
Sw1 出力指令信号
Sig 積分回路IG1の出力信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a short-circuit transfer type arc welding method in which a consumable electrode is used for welding while repeating short-circuiting and arcing.
[0002]
[Prior art]
In order to perform stable welding by consumable electrode type arc welding, it is necessary to control so that the consumable electrode fed at a constant speed is melted at a constant speed comparable to the feeding speed of the consumable electrode. In particular, in the short-circuit transfer type arc welding method, it is difficult to control the amount of melting because the consumable electrode and the work piece are short-circuited or the phenomenon in which arcs are generated alternately is repeated. Conventionally, the control of the consumable electrode melting amount in such welding is performed by keeping the average voltage during welding constant.
[0003]
FIG. 6 shows an example of an apparatus for performing a conventional short-circuit transfer type arc welding method. In the figure, reference numeral 1 denotes an AC power source, and a commercial AC power source is used. Reference numeral 2 denotes a power conversion circuit that converts power from the AC power source 1 into a DC output having a substantially constant voltage characteristic corresponding to the output command signal Sw1. Reference numeral 3 denotes a DC reactor, which gives the output current of the power conversion circuit 2 a current change time constant suitable for short-circuit transfer arc welding. 4 is a welding torch, and a consumable electrode 8 fed toward the workpiece 7 is inserted by a feed roll 6 driven by an electric motor 5, and power from the power conversion circuit 2 is fed to this electrode. Reference numeral 9 denotes an electric motor control circuit that controls the rotation speed of the electric motor 5 to be constant. 10 is a voltage detector that detects the instantaneous value Vd of the welding voltage, 11 is a welding voltage smoothing circuit that smoothes the output of the voltage detector 10 to obtain the average value Vda of the welding voltage, and 12 is a welding voltage setting circuit. Set the voltage setting value Vs. A comparator 13 compares the set value Vs of the welding voltage setting circuit 12 with the output signal Vda of the welding voltage smoothing circuit 11 and outputs a difference signal ΔV = Vs−Vda. An amplifier 14 amplifies the output signal ΔV of the comparator 13 as necessary. Reference numeral 15 denotes an arc period detector. When the output signal Vd of the voltage detector 10 is higher than a predetermined value, it is determined as an arc period and a high level arc period signal Sad is output. Reference numeral 16 denotes an output voltage setting device for a short-circuit period, which outputs an output voltage setting signal Vss having a value lower than the output voltage during the arc period so that the output current of the power conversion circuit 2 during the short-circuit period does not become excessive. A signal switching circuit 17 switches the signal to the (a) side when the arc period signal Sad of the arc period detector 15 is high level, and switches the signal to the (b) side when the arc period signal Sad is low level. An analog switch for transmitting to the conversion circuit 2 is used.
[0004]
In FIG. 6, the voltage during welding is detected by the voltage detector 10, smoothed by the welding voltage smoothing circuit 11, and the detected voltage smoothing signal Vda is obtained. The comparator 13 compares the welding voltage setting signal Vs which is an output from the welding voltage setting circuit 12 and the detected voltage smoothing signal Vda, and outputs a difference signal ΔV = Vs−Vda. The output ΔV of the comparator 13 is then input to the amplifier 14 and amplified to a level corresponding to the output voltage of the short-circuit period output voltage setter 16 to become the output voltage command signal Vud during the arc period. Since a short circuit and an arc occur alternately during welding, the output of the voltage detector 10 is also supplied to the arc period detector 15, and when the instantaneous value Vd of the welding voltage is higher than a predetermined value, the arc period signal Sad is output. Output as a high level signal. The signal switching circuit 17 selects the output signal Vud of the amplifier 14 while the arc period signal Sad is at a high level, that is, during the arc period, the signal switching circuit 17 is set to the (a) side. When the arc period signal Sad is at a low level, that is, during the short circuit period, the signal switching circuit 17 is set to the (b) side and the output signal Vss of the short circuit period output voltage setting device 16 is selected. The output command signal Sw1 selected in this way is sent to the power conversion circuit 2.
[0005]
FIG. 7 shows a timing chart of the operation of the apparatus shown in FIG. 7, (a) shows an instantaneous value Vd of the welding voltage, which is an output signal of the voltage detector 10, and (b) shows a detected voltage smoothing signal Vda obtained by smoothing the instantaneous value Vd of the welding voltage by the welding voltage smoothing circuit 11. (C) is the output ΔV of the comparator 13, (d) is the output signal Vud of the amplifier 14, (e) is the output signal Sad of the arc period detector 15, and (f) is the signal switching circuit 17. The output command signal Sw1 selected by is shown with the passage of time.
6 and 7, during the welding, the consumable electrode 8 repeats the arc generation and the short circuit with respect to the work piece 7 several tens of times per second. When a short circuit occurs, the welding current increases rapidly, and when the increased current flows, the short circuit part is cut by an electromagnetic pinch force acting on the short circuit part to promote the regeneration of the arc. At this time, if the current becomes excessive, spatter is generated during arc regeneration. Therefore, during the short circuit period, the signal switching circuit 17 is switched to the (b) side, and the output voltage of the power conversion circuit 2 is set to the output voltage for the short circuit period. It is reduced to a low value determined by the setting signal Vss of the device 16. Usually, the lower limit and the upper limit of the welding current at the time of this short circuit are determined by obtaining the electromagnetic pinch force necessary for eliminating the short circuit and the allowable spatter amount at the time of arc regeneration.
[0006]
[Problems to be solved by the invention]
In the above conventional method, since the control is to make the average voltage constant, the welding voltage must be sufficiently smoothed and used as output control information of the welding power source. For this reason, the response speed of the control is slow and sufficient control cannot be performed.
[0007]
This point will be described in detail with reference to FIG. FIG. 8 shows a state in which the level difference between the welding torch 4 and the protruding length of the consumable electrode 8 is suddenly shortened by overcoming the step during welding. FIG. 4A shows the welding voltage instantaneous value Vd and a detected voltage smoothing signal Vda obtained by smoothing the welding voltage, FIG. 5B shows the welding current instantaneous value Ia and the average arc current Ida, and FIG. The average distance between the tip of the electrode 8 and the workpiece 7, that is, the average arc length La and the state of the workpiece 7 are shown for each time.
[0008]
Between the start of welding and time t1, the average arc length is L1. When the step of the work piece 7 is passed at the time t1, the average arc length is suddenly reduced to L2, and the distance between the tip of the consumable electrode 8 and the work piece 7 is close, so that a short circuit is likely to occur. Then, although the output signal Vd of the voltage detector 10 immediately decreases, the output signal Vda of the welding voltage smoothing circuit 11 that is actually used for control as shown in FIG. However, the output signal Vud of the amplifier 14 does not change much. Further, as shown in (b), the welding current Ia increases as the number of short-circuits increases. However, since the arc time itself is short, the consumable electrode 8 cannot be sufficiently melted. As a result, it takes time t2 to return to the original arc length after overcoming the step as shown in FIG.
[0009]
FIG. 9 shows the appearance of the bead and the amount of spatter when passing through the step as shown in FIG. As shown in the figure, since the number of short-circuits suddenly increases at the time t1, the generated spatter also increases rapidly, and the heat input of the welded portion decreases, so that the bead appearance is greatly disturbed.
[0010]
[Means for Solving the Problems]
In order to solve the problems of the conventional method, a first invention of the present invention is a short-circuit transfer type arc welding method in which a consumable electrode is used and welding is performed while repeating short-circuiting and arc generation. Detects the length of the generation period, reduces the output voltage of the welding power source in the next arc generation period in proportion to the detected arc generation period, and inversely proportional to the length of one arc generation period A short-circuit transfer type arc welding method for increasing the welding current during the next arc generation period is proposed.
[0011]
Furthermore, the second invention of the present invention is a short-circuit transfer type arc welding method that uses a consumable electrode and performs welding while repeating short-circuiting and arc generation. Set to a constant voltage lower than the output voltage of the welding power source, detect the length of one arc generation period, and output the welding power source in the next arc generation period in proportion to the length of the detected arc generation period The present invention proposes a short-circuit transfer type arc welding method that reduces the voltage and increases the welding current in the next arc generation period in inverse proportion to the length of one arc generation period.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a connection diagram showing an example of an apparatus for carrying out the short-circuit transfer type arc welding method of the present invention. In the figure, 18 is an output voltage corrector, which receives an arc period signal Sad output from the arc period detector 15 and outputs an output voltage correction signal Vms for the next arc period corresponding to the length of the arc period. . Reference numeral 19 denotes a subtracter that subtracts the output Vms of the output voltage corrector 18 from the output ΔV of the comparator 13 and amplifies the result to a level corresponding to the level of the signal of the output voltage setter 16 for the short-circuit period. In the figure, the other parts having the same functions as those of the conventional apparatus shown in FIG.
[0013]
In the figure, a voltage during welding is detected by a voltage detector 10, and a detected voltage smoothing signal Vda which is smoothed by a welding voltage smoothing circuit 11 and becomes an average voltage is obtained. The comparator 13 compares the welding voltage setting signal Vs, which is an output from the welding voltage setting circuit 12, and the detected voltage smoothing signal Vda, and outputs a difference signal ΔV. Since a short circuit and an arc occur alternately during welding, the determination is made by the arc period detector 15 and a high level arc period signal Sad is output during the arc period. The arc period signal Sad is counted by the output voltage corrector 18 and outputs an output voltage correction signal Vms having a magnitude corresponding to the duration of the arc period signal Sad. The output of the amplifier 14 obtained by amplifying the output ΔV of the comparator 13 and the output Vms of the output voltage corrector 18 are input to the subtracter 19 and Vuh = A · ΔV−Vms.
It becomes. (However, A is a constant determined by the amplification factor of the amplifier 14)
[0014]
During the arc period, the arc period signal Sad of the arc period detector 15 becomes high level, the signal switching circuit 17 is set to the (a) side, and the output signal Vuh of the subtractor 19 is selected. On the contrary, during the short circuit period, the arc period signal Sad of the arc period detector 15 becomes low level, the signal switching circuit 17 is switched to the (b) side, and the output voltage setting signal Vss of the short circuit period output voltage setting device 16 is changed. select. The output command signal Sw1 selected in this way is supplied to the power conversion circuit 2.
[0015]
FIG. 2 shows a specific example of the output voltage corrector 18. In FIG. 2, MM1 and MM2 are mono-multivibrators, which are triggered when the input signal falls and output a pulse having a short duration. IG1 is an integration circuit that integrates the output signal Sad of the arc period detector 15 and outputs it as a signal Sig, and is reset by the output signal of the mono multivibrator MM2. Reference numeral SH1 denotes a sample and hold circuit, which receives the output signal Sig of the integration circuit IG1 that integrates the input signal Sad as an input, stores the input signal at the time of rising of the output signal of the monomultivibrator MM1, and then stores the monomultivibrator MM1. Is held until the rising edge of the output signal is output as the output voltage correction signal Vms.
[0016]
FIG. 3 is a timing chart showing the operation when the output voltage corrector of FIG. 2 is used in the apparatus of FIG. In the figure, (a) shows the output signal of the voltage detector 10, that is, the instantaneous value Vd of the welding voltage, and (b) shows the output signal Vda of the welding voltage smoothing circuit 11 obtained by smoothing the instantaneous value Vd of the welding voltage. Show. (C) shows the output of the amplifier 14 that amplifies the output signal ΔV of the comparator 13 that compares the detected voltage smoothing signal Vda with the welding voltage setting value Vs that is the output signal of the welding voltage setting circuit 12. (D) shows the output signal Sad of the arc period detector 15, (e) shows the output signal of the mono multivibrator MM1 of the output voltage corrector 18, and (f) shows the output of the mono multivibrator MM2 of the output voltage corrector 18. (G) is an output signal of the integration circuit IG1 of the output voltage corrector 18, and (h) is an output signal of the sample hold circuit SH1 of the output voltage corrector 18, that is, the output voltage correction signal Vms. (I) is the output signal Vuh of the subtractor 19 that subtracts the output voltage correction signal Vms from the output signal A · ΔV of the amplifier 14, and (j) is the short circuit period and the arc period depending on the output signal Sad of the arc period detector 15. An output command signal Sw1 of the signal switching circuit 17 for switching the output voltage setting signal to Vuh or the output voltage setting signal Vss during the short circuit period is shown.
[0017]
1 to 3, a welding voltage Vd is detected by a voltage detector 10, an average value Vda is derived by a welding voltage smoothing circuit 11, and compared with a set value Vs of a welding voltage setting circuit 12 by a comparator 13. Thus, the difference signal ΔV is calculated. On the other hand, the output of the voltage detector 10 is also supplied to the arc period detector 15, and when the signal Vd is higher than a certain value, it is determined as an arc period and a high level arc period signal Sad is output. The high level arc period signal Sad is integrated by the integration circuit IG1 of the output voltage corrector 18 to become an integration signal Sig, which is output to the sample hold circuit SH1. The output Sad of the arc period detector 15 is also supplied to the mono multivibrator MM1 of the output voltage corrector 18, and the mono multivibrator MM1 has a short pulse immediately after the falling edge of the input signal Sad, that is, immediately after the end of the arc period. Output a signal. The pulse output of the mono multivibrator MM1 is supplied to the mono multivibrator MM2 and the sample hold circuit SH1, and the sample hold circuit SH1 stores the input signal Sig at the rising edge of the output signal of the mono multivibrator MM1 and corrects the output voltage. Output as signal Vms. The mono multivibrator MM2 is triggered by the rise of the output signal of the mono multivibrator MM1, and outputs a short-time pulse signal. The integration circuit IG1 is reset by the fall of the output pulse of the mono multivibrator MM2, and the output signal is Return to zero.
[0018]
On the other hand, the output of the arc period detector 15 is also supplied to the signal switching circuit 17 so that when the arc period signal Sad is at a high level, the signal switching circuit 17 is set to the (a) side, and the arc period signal Sad is at a low level. At this time, the signal switching circuit 17 is switched to the (b) side. As a result, the arc period signal Sad is integrated by the integrating circuit IG1 of the output voltage corrector 18 from the beginning of the arc generation period when the arc period signal Sad becomes high level, and the arc period signal Sad becomes low level at the end of the arc period. When inverted, the output signal of the integration circuit IG1 at that moment is stored in the sample-and-hold circuit SH1, and then the integration circuit IG1 is reset by the output of the mono multivibrator MM2 at the fall of the output pulse of the mono multivibrator MM1, and the output signal Sig returns to zero and waits until the next arc period begins and the arc period signal Sad goes high. As a result, the length of one arc period is calculated by the integration circuit IG1 of the output voltage corrector 18, and this is stored in the sample hold circuit SH1 with the end of the arc period, and the end of the next arc period is completed. The output voltage correction signal Vms is output to the subtracter 19 after being held until the time. The subtracter 19 subtracts the output signal Vms of the sample hold circuit SH1 from the output signal of the amplifier 14 to obtain Vuh = A · ΔV−Vms, and outputs it to the signal switching circuit 17 as an output command signal in the arc period.
[0019]
Thus, when the arc period is long, the output voltage correction signal Vms becomes large, the output signal Vuh of the subtractor 19 in the next arc period becomes low, and the output voltage of the power conversion circuit 2 becomes low. On the contrary, when the arc period is short, the output voltage correction signal Vms is small, the output signal Vuh of the subtracter 19 in the next arc period is high, and the output voltage of the power conversion circuit 2 is high.
[0020]
FIG. 4 is a view schematically showing a state when the arc length is suddenly shortened by overcoming a step during welding when the welding method of the present invention is carried out using the apparatus of FIG. FIG. 5A shows the instantaneous value Vd of the welding voltage and the detected voltage smoothing signal Vda. (B) shows the instantaneous value Ia and average arc current Ida of the welding current. (C) shows the distance between the consumable electrode 8 and the workpiece 7, that is, the change in the average arc length La and the state of the workpiece 7. Between the start of welding and time t1, the average arc length is L1. When the level difference of the work piece 7 is passed at time t1, the average arc length is suddenly reduced to L2, and the distance between the tip of the consumable electrode 8 and the work piece 7 is close, so that a short circuit is likely to occur. Then, the instantaneous value Vd of the welding voltage decreases as shown in FIG. On the other hand, since the actual detection voltage smoothing signal Vda is a sufficiently smooth value, the change is slow and does not change much. However, since the number of short circuits increases and the arc time is shortened, the output voltage correction signal Vms is small in the negative direction, the output signal Vuh of the subtractor 19 in the next arc period becomes a large value, and the output voltage during the arc period increases. . As a result, the arc current increases rapidly, and a sufficient melting amount of the consumable electrode is obtained. As a result, the consumable electrode 8 is rapidly melted as shown in (c), and the time required to return to the original arc length after overcoming the step is significantly reduced as compared with the prior art.
[0021]
FIG. 5 shows the appearance of the weld bead and the amount of spatter generated when it passes through the step of the workpiece. As shown in the figure, the number of short-circuits suddenly increases at time t1, resulting in an increase in spatter. However, the welding current rapidly increases in inverse proportion to the decrease in the arc period, resulting in a rapid increase in the melting rate of the consumable electrode. Since the arc length immediately recovers, the spatter generation period and the period during which the bead appearance is disturbed are shorter than in the conventional method.
[0022]
【The invention's effect】
Since the short-circuit transfer type arc welding method of the present invention is as described above, even when the distance between the consumable electrode and the workpiece is suddenly changed, the melting amount of the consumable electrode is changed immediately, and an appropriate arc is obtained. It is possible to return quickly to the state.
[Brief description of the drawings]
FIG. 1 is a connection diagram showing an example of an apparatus for performing a short-circuit transfer type arc welding method of the present invention.
FIG. 2 is a connection diagram showing an embodiment of an output voltage corrector 18 used in the apparatus of FIG.
3 is a timing chart for explaining the operation when the output voltage corrector of FIG. 2 is used in the apparatus of FIG.
4 is a schematic diagram showing the welding voltage, welding current, and the positional relationship between the consumable electrode and the work piece when the short-circuit transfer type arc welding method of the present invention is carried out with the apparatus of FIG. 1 over time. is there.
FIG. 5 is a diagram showing the appearance of a weld bead and the amount of spatter when passing through a step of a workpiece when the short-circuit transfer type arc welding method of the present invention is performed.
FIG. 6 is a connection diagram showing an example of an apparatus for performing a conventional short-circuit transfer type arc welding method.
FIG. 7 is a diagram for explaining the operation of the conventional apparatus of FIG. 6;
FIG. 8 is a schematic view showing the welding voltage, welding current, and the positional relationship between the consumable electrode and the work piece when the conventional short-circuit transfer type arc welding method is performed by the apparatus of FIG. 6 with the passage of time. .
9 is a diagram showing the appearance of the weld bead and the amount of spatter when passing through the step of the workpiece when the conventional short-circuit transfer type arc welding method is performed by the apparatus of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Power conversion circuit 3 DC reactor 4 Welding torch 5 Electric motor 6 Feeding roll 7 Work piece 8 Consumable electrode 9 Motor control circuit 10 Voltage detector 11 which detects instantaneous value Vd of welding voltage 11 Welding voltage smoothing circuit 12 Welding voltage setting circuit 13 Comparator 14 Amplifier 15 Arc period detector 16 Short-circuit period output voltage setting unit 17 Signal switching circuit 18 Output voltage corrector 19 Subtractor MM1 Mono multivibrator MM2 Mono multivibrator IG1 Integration circuit SH1 Sample hold circuit Vd Instantaneous value of welding voltage Vs Welding voltage setting value ΔV Difference signal between welding voltage setting value Vs and detection voltage smoothing signal Vda Sad Arc period signal Vss Output voltage setting signal Vda during short circuit period Detection voltage smoothing signal Vms Output voltage correction signal Vud Output signal Vuh of amplifier 14 Output signal Sw1 of subtractor 19 Output command signal Si g Output signal of integration circuit IG1

Claims (2)

消耗性電極を使用し、短絡とアーク発生とを繰り返しながら溶接を行う短絡移行式アーク溶接方法において、一回のアーク発生期間の長さを検出し、検出したアーク発生期間の長さに比例して次のアーク発生期間における溶接電源の出力電圧を低減し、一回のアーク発生期間の長さに逆比例して次のアーク発生期間における溶接電流を増加させる短絡移行式アーク溶接方法。In a short-circuit transfer type arc welding method that uses a consumable electrode and performs welding while repeating short-circuiting and arcing, the length of a single arcing period is detected and proportional to the length of the detected arcing period. A short-circuit transfer arc welding method that reduces the output voltage of the welding power source during the next arc generation period and increases the welding current during the next arc generation period in inverse proportion to the length of one arc generation period. 消耗性電極を使用し、短絡とアーク発生とを繰り返しながら溶接を行う短絡移行式アーク溶接方法において、短絡発生期間における溶接電源の出力電圧をアーク発生期間における溶接電源の出力電圧よりも低い一定値に設定するとともに、一回のアーク発生期間の長さを検出し、検出したアーク発生期間の長さに比例して次のアーク発生期間における溶接電源の出力電圧を低減し、一回のアーク発生期間の長さに逆比例して次のアーク発生期間における溶接電流を増加させる短絡移行式アーク溶接方法。In a short-circuit transfer type arc welding method that uses a consumable electrode and performs welding while repeating short-circuiting and arc generation, the output voltage of the welding power source during the short-circuit occurrence period is a constant value lower than the output voltage of the welding power source during the arc-generation period In addition, the length of one arc generation period is detected, and the output voltage of the welding power source in the next arc generation period is reduced in proportion to the length of the detected arc generation period. A short-circuit transfer arc welding method in which the welding current is increased in the next arc generation period in inverse proportion to the length of the period.
JP10017698A 1998-03-27 1998-03-27 Short-circuit transfer type arc welding method Expired - Fee Related JP4028075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017698A JP4028075B2 (en) 1998-03-27 1998-03-27 Short-circuit transfer type arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017698A JP4028075B2 (en) 1998-03-27 1998-03-27 Short-circuit transfer type arc welding method

Publications (2)

Publication Number Publication Date
JPH11277234A JPH11277234A (en) 1999-10-12
JP4028075B2 true JP4028075B2 (en) 2007-12-26

Family

ID=14267012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017698A Expired - Fee Related JP4028075B2 (en) 1998-03-27 1998-03-27 Short-circuit transfer type arc welding method

Country Status (1)

Country Link
JP (1) JP4028075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233431B2 (en) 2010-10-04 2016-01-12 Kabushiki Kaisha Yaskawa Denki Arc welding device and arc welding system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233431B2 (en) 2010-10-04 2016-01-12 Kabushiki Kaisha Yaskawa Denki Arc welding device and arc welding system

Also Published As

Publication number Publication date
JPH11277234A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US4409465A (en) Pulse arc welding method and device in which pulse current and background current have a constant current characteristic
JP2004160496A (en) Welding current control method of pulse arc welding
JP4028075B2 (en) Short-circuit transfer type arc welding method
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP4331284B2 (en) Short-circuit transfer arc welding method
JP4490011B2 (en) Arc start control method
JP3990182B2 (en) Arc start control method
JPS6250221B2 (en)
JP2733624B2 (en) Pulse arc welding method and pulse arc welding apparatus using this method
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JP2534374B2 (en) Arc welding machine
EP0063619B1 (en) Pulse arc welding method and device
JPH11277235A (en) Short circuiting transfer type arc welding method
JPH09150267A (en) Carbon dioxide shield arc welding
JP3147046B2 (en) Output control device of consumable electrode type pulse arc welding machine
JP7335677B2 (en) Arc welding control method
JP3221108B2 (en) Short-circuit transfer type arc welding power supply
JP2587343B2 (en) Power supply for pulse arc welding
JP2022143142A (en) Arc-welding device
JP2000015441A (en) Short circuit transfer type arc welding method
JP3215622B2 (en) Arc welding power supply
JP2705208B2 (en) Pulse arc welding machine
JP2022185997A (en) Pulse arc welding power source
JP2023122461A (en) Arc-welding control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees