JP4151777B2 - Hot wire welding method and apparatus - Google Patents

Hot wire welding method and apparatus Download PDF

Info

Publication number
JP4151777B2
JP4151777B2 JP2002131843A JP2002131843A JP4151777B2 JP 4151777 B2 JP4151777 B2 JP 4151777B2 JP 2002131843 A JP2002131843 A JP 2002131843A JP 2002131843 A JP2002131843 A JP 2002131843A JP 4151777 B2 JP4151777 B2 JP 4151777B2
Authority
JP
Japan
Prior art keywords
wire
resistance value
heating power
value
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131843A
Other languages
Japanese (ja)
Other versions
JP2003320454A (en
Inventor
浩 渡辺
利治 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002131843A priority Critical patent/JP4151777B2/en
Publication of JP2003320454A publication Critical patent/JP2003320454A/en
Application granted granted Critical
Publication of JP4151777B2 publication Critical patent/JP4151777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明はホットワイヤ溶接に係わり、特にホットワイヤの加熱溶融状態を最適にし、高能率溶接を行うのに好適なホットワイヤ溶接方法および装置に関する。
【0002】
【従来の技術】
図4に、ホットワイヤTIG(Tungsten Inert Gas Arc)溶接法として、従来から一般的に用いられている溶接装置の構成を示す。TIG溶接トーチ1に取り付けられたタングステン電極2と母材3に直流溶接用のアーク電源4を接続し、アルゴン・シールドガス中でタングステン電極2を負極としてアーク5を形成する。溶接用の添加ワイヤ6はワイヤ送給装置7からコンジット8、およびそれと連結されたワイヤトーチ15を通ってアーク形成部に導かれて母材3と接触させる。TIG溶接トーチ1とワイヤトーチ15は、図には示していないが、連結部材によって機械的に結合されていて一体になって動く。
【0003】
ワイヤトーチ15にはコンタクトチップ9とセラミックガイド11が配置されていて、コンタクトチップ9と母材3間にワイヤ加熱電源10を接続し、直流または交流電流をワイヤ6に流してジュール発熱させ、それによりワイヤ6の溶融速度を高めている。なお、ワイヤ6に通電加熱しないコールドワイヤTIG溶接の場合には、図4でワイヤ加熱電源10を除外した構成になる。
【0004】
ところで、ホットワイヤTIG溶接では、ワイヤ6の通電電流を大きくすると、アーク電流との間に電磁力を生じ、いわゆる磁気吹きによるアーク5の乱れを起こして溶接が困難になることが知られている。そこで図5に示すようなパルス波形の電流をワイヤ6に通電する方法(特許第2610819号)が提案されている。図5(A)はアーク電流を一定とし、ワイヤ電流のみをパルス波形の電流にした方法、図5(B)はアーク電流とワイヤ電流を共にパルス波形の電流にし、ワイヤ電流を流すときにアーク電流を極力小さくする方法である。このようにワイヤ加熱電流をパルス電流として、アーク5が連続して磁気的に吹かれる期間を極力短くすると、アーク5は瞬間的に吹かれるがすぐにタングステン電極2の直下に戻るので、実質的にアーク5の硬直性は維持され、磁気吹きによる作業性の低下は見られなくなる。これにより、ホットワイヤTIG溶接の作業性が著しく改善され、実用化が進展するようになった。
【0005】
添加ワイヤ6は、コンタクトチップ9と母材3間のエクステンションe部で通電加熱されるが、そこへ印加される電力とワイヤ溶融量とをバランス良くするように制御する必要がある。ホットワイヤTIG溶接における添加ワイヤ6の最適な溶融状態は、添加ワイヤ6の先端を溶融池12に接触させるが、その接触界面のごく近くでワイヤ6はすでに完全に溶融していることである。さらに、最も望ましいのは、添加ワイヤ6が溶融池12に入る直前に完全に溶融していて、溶融した金属が切れることなく連続的に溶け落ちる状態を保つことができることである。但し、ワイヤ6に投入される熱量は、ワイヤ通電による発熱とアーク5からの熱量になるため、添加ワイヤ6のアーク5への挿入位置により、アーク5からの熱量が変化し、添加ワイヤ6の溶融状態が変化することになる。
【0006】
このように、ホットワイヤTIG溶接では、添加するワイヤ送給速度とワイヤ6のアーク5への挿入位置に応じて加熱電力を調整することが必要で、加熱電力が不足気味の時には、ワイヤ6が溶融池12から押し出てきたり、母材3に突き当たって、ワイヤトーチ15およびそれと連結されたTIG溶接トーチ1を持ち上げ、その結果、アーク長を非常に長くしてしまうので、溶接が続行できなくなる。また、ワイヤ加熱電力が過少気味のときは、添加ワイヤ6は溶融池12の中に深く入りこんでから溶融池12内からの熱伝達を受けてようやく溶融する状態で溶接が進行することになり、これはあまり好ましい状態ではない。このような状態で添加ワイヤ6の加熱不足が激しいときは、図6に示す溶接ビードの断面図に見られるように、未溶融のワイヤ24がそのまま溶接金属25の中に残留して溶接欠陥を形成してしまう。逆に加熱電力が過大の時には、ワイヤ6が頻繁に加熱溶断し、スパッタを発生してタングステン電極2に付着したり、ワイヤ6の先端とタングステン電極2間にアーク5を形成したりして溶接状態を不安定にし、溶接作業を著しく損なうことになる。
【0007】
そこで通常は、ワイヤ6が適正溶融状態、即ちワイヤ6の先端が溶融ないし溶融直前の状態になっていて、かつ常に母材3と接触している状態になるよう作業者が溶接部を監視しながら加熱電流を手動で調整することによって、結果的に加熱電力を調整している。
【0008】
加熱電力調整については、特公平5−75512号公報に記載されているように、ワイヤ電圧から溶断の発生を検知し、溶断発生時には多少ワイヤ加熱電力を下げ、そこから徐々に加熱電力を増加して再び溶断を発生させることを繰り返すことにより、適正溶融状態に近い状態に自動的にワイヤ加熱電力を保つ制御方法が提案されている。溶断の発生は、なるべく少ないことが好ましいが、この方法では2〜3秒に1回程度の頻度ではあるが、溶断を発生させる必要があり、多少のスパッタ発生は避けられなかった。
【0009】
【発明が解決しようとする課題】
従来技術においては、ワイヤ6の加熱が不足している場合においてのワイヤ6の突っ張りによるトーチ15の持ち上げや、ワイヤ6の加熱不足により未溶融ワイヤ24がそのまま溶接金属25の中に残留する溶接欠陥の発生や、加熱溶断によるスパッタの発生を防止するために、常時、溶接作業者がワイヤ6の溶融状況を監視しながらワイヤ送給速度や加熱電力を調節しなければならないという難点を有している。また、前述した溶断現象を利用した従来の自動制御方法では、スパッタの発生頻度が高く、タングステン電極2にスパッタが蓄積し、長時間連続運転することが難しいという問題がある。
【0010】
本発明はこのような背景に基づいてなされたものであり、その課題は、ホットワイヤ溶接においてスパッタの発生頻度をより少なくして適正なワイヤ溶融状態に保つように、ワイヤ加熱電流の自動調整を行うことができるホットワイヤ溶接方法および装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明の第一の発明は、母材と添加ワイヤとの間にそれぞれ電源から電圧を供給し、ワイヤを加熱制御しながら溶接を行うホットワイヤ溶接方法において、ワイヤの抵抗測定値によりワイヤの加熱電力を制御することを特徴とするホットワイヤ溶接方法により達成される。
【0012】
ワイヤ抵抗値の目標値の設定方法としては、予め目標とするワイヤの抵抗値を登録しておき設定方法、または、溶接スタート時に加熱電力を上げて溶断現象を発生させ、溶断現象をタッチ検出手段にて検出し、ワイヤ抵抗測定手段により測定した溶断直前のワイヤの抵抗値を目標値として設定する方法がある。
【0013】
ワイヤ抵抗値の目標値を変更する方法としては、次のような方法がある。
(1)溶接中に溶接条件を変更した場合に、加熱電力を上げて溶断現象を発生させ、溶断現象を例えばタッチ検出手段にて検出し、ワイヤ抵抗測定手段により測定した溶断直前のワイヤの抵抗値を新たな目標値として登録して変更する方法。
【0014】
(2)定期的に加熱電力を上げて溶断現象を発生させ、溶断現象を例えばタッチ検出手段にて検出し、ワイヤ抵抗測定手段により測定した溶断直前のワイヤの抵抗値を新たな目標値として登録して変更する方法。
【0015】
(3)溶接中に溶断現象が発生した場合に、溶断現象を例えばタッチ検出手段にて検出し、ワイヤ抵抗測定手段により測定した溶断直前のワイヤの抵抗値と以前の目標抵抗値を比較し、抵抗値の低い値を新たな目標値として登録して変更する。
【0016】
本発明の第二の発明は、母材と添加ワイヤとの間にワイヤ加熱電圧を供給するワイヤ加熱電源と、ワイヤが母材に接触しているか否かを検出するワイヤタッチ検出手段と、ワイヤの抵抗値を測定するワイヤ抵抗測定手段と、ワイヤ抵抗値の実測値が設定目標値に偏差があると、該実測値を前記設定目標値になるように、ワイヤの加熱電力を制御するワイヤ加熱電源の加熱電力を調整するワイヤ加熱制御手段とを備えたホットワイヤ溶接装置である。
【0017】
前記ワイヤ加熱制御手段は前記設定目標値として、溶接スタート時に加熱電力を上げて溶断現象を発生させ、溶断現象をタッチ検出手段にて検出し、ワイヤ抵抗測定手段により測定した溶断直前のワイヤの抵抗値を目標値として設定する構成にすることができる。また、前記ワイヤ加熱制御手段は前記第一の発明であるホットワイヤ溶接方法で述べたワイヤ抵抗値の目標値を変更する方法の(1)〜(3)の方法を実行できる手段でも良い。
【0018】
なお、本発明は母材とトーチ間にアークを発生させるアーク溶接法に限らず、レーザ溶接法にも適用できる。
【0019】
【作用】
図3(A)に添加ワイヤの加熱が最適状態を示す模式図とその時のワイヤの温度と電気抵抗率のグラフを、図3(B)に添加ワイヤの加熱が過多状態を示す模式図とその時のワイヤの温度と電気抵抗率のグラフを、図3(C)に添加ワイヤの加熱が不足状態を示す模式図とその時のワイヤの温度と電気抵抗率のグラフを示す。添加ワイヤ6を溶融するために投入される熱量QTは、ワイヤ加熱電源10(図1)よりコンタクトチップ9と母材3間の添加ワイヤ6に印加されるホットワイヤ電流による通電加熱量QWとアーク5より加えられる熱量QAである。
【0020】
QT = QW + QA (1)
QTは添加ワイヤ6の材質と送給量により決まる値で、例えば軟鋼の場合は1.27J/gになる。QAは添加ワイヤ6のアーク5と溶融池12への挿入位置により変わる値で、図3(B)に示すように添加ワイヤ6がタングステン電極2に近い位置でアーク5と溶融池12に挿入された場合はアーク5の端に挿入される場合に比較して増加する。つまり、QWはQAの変化に合わせて変更する必要がある。また、QWは添加ワイヤ6に通電される電流Iとエクステンションe部の抵抗値Rにより表される。
【0021】
QW = I2 × R (2)
そして、エクステンションe部の抵抗値Rはエクステンションe部の長さLと添加ワイヤ6の断面積Sと電気抵抗率ρで表される。
【0022】
R = ρ × L ÷ S (3)
ここで添加ワイヤ6の断面積Sは一定で、エクステンションe部の長さLは自動溶接機の場合、TIG溶接トーチ1とワイヤトーチ15が一体に固定されているため、溶接中には多少の変動があるもののほぼ一定である。電気抵抗率ρは温度に依存して変化し、特に鉄の変化率は非常に大きく、例えば温度20℃では9.7μΩ・cm、温度800℃では105.5μΩ・cmに変化する。
【0023】
また、添加ワイヤ6の材質を軟鋼とすると温度は、図3(A)に示すようにコンタクトチップ9側では外気温で、溶融池12側では融点近くの1500℃まで通電加熱されているのが理想的である。そして添加ワイヤ6の温度分布に合わせて電気抵抗率ρも同様な分布を示す。電気抵抗率ρをコンタクトチップ9から溶融池12まで積分した値が抵抗値Rになるので、抵抗値Rは添加ワイヤ6の温度つまり加熱状態を示すと考えてよい。図3(C)に示すように、添加ワイヤの加熱が不足状態の場合は、添加ワイヤ6の温度は溶融池12側で融点まで上がらず低い値になる。同様に電気抵抗率ρの分布も図3(A)に比べると下降した状態になり、抵抗値Rも低い値になる。逆に図3(B)に示すように、添加ワイヤ6の加熱が過多状態の場合は、アーク5からの入熱量が多くなる場合で通電加熱量を下げる必要があり、加熱が過多すぎると添加ワイヤ6の先端で溶断現象を起こすことになる。図3(B)では添加ワイヤ6の先端が溶けながら溶融池12に流れ込んでいる状態を示していて、この状態においては正常な溶接を続行することができる。このときの添加ワイヤ6の温度分布は、溶融池12側で高温範囲が少し多くなり、同様に電気抵抗率ρも変化する。但し、添加ワイヤ6が溶断せず溶融池12につながっている状態ならば、コンタクトチップ9とアーク5間の添加ワイヤ6の温度分布は図3(A)の状態に比べて下がっているので、電気抵抗率ρも図3(A)の状態に比べて低くなり、抵抗値Rとしては図3(A)の状態の値に近い値になる。
【0024】
以上より、添加ワイヤ6の抵抗値Rにより該ワイヤ6の加熱状態を判定することができ、特に溶断直前の添加ワイヤ6の抵抗値Rは、該ワイヤ6が溶融池12に溶融しながら流れ込んでいる状態の値であり、ワイヤ6の温度分布が最適になっている状態の値である。この溶断直前の抵抗値Rを目標値にして、測定した抵抗値Rが目標値より低い場合は加熱が不足していて、ワイヤ6の温度分布が最適な状態に比べて低いと判定できるので、添加ワイヤ6の加熱電力を上げる必要があり、逆に測定した抵抗値Rが目標値より高い場合は加熱過多気味になっていると判定できるので、添加ワイヤ6の加熱電力を下げる必要がある。このように添加ワイヤ6の通電抵抗値を測定することにより、添加ワイヤ6の加熱状態を最適な状態に自動制御することが可能になる。
【0025】
添加ワイヤ6の抵抗値Rの目標値は、作業者が溶接状況を判断して最適な加熱状態の時の抵抗値Rを測定して決める方法がある。また、添加ワイヤ6の抵抗値Rの目標値を自動的に決める方法としては、添加ワイヤ6の加熱電力を徐々に上げていき溶断現象を発生させ、前記特公平5−75512号公報に記載したタッチ検出手段にて溶断現象を検出し、溶断直前の添加ワイヤ6の抵抗値Rを目標値にする方法がある。
【0026】
【発明の実施の形態】
以下に、本発明の実施の形態を図面と共に説明する。
図1は本発明の実施の形態に係るホットワイヤ溶接装置の制御回路の回路構成図である。図2は図1に係る添加ワイヤの抵抗測定手段の回路構成図である。
【0027】
図1において、TIG溶接トーチ1がタングステン電極2を保持し、該タングステン電極2は被溶接物の母材3との間でアーク5を発生する。添加ワイヤ6にはワイヤ加熱電源10からの電流がコンタクトチップ9により接触通電され、コンタクトチップ9には加熱された添加ワイヤ6の溶融池12への挿入位置を正確に一定にするためのセラミックガイド11が取り付けられている。アーク熱により母材3が溶けて形成した溶融池12が凝固すると溶接ビード13が形成される。
【0028】
また、ワイヤ電流値は電流センサ16で測定され、ワイヤ電圧より添加ワイヤ6が母材3と接触しているか分離しているかを判定するタッチ検出手段17と、ワイヤ電流とワイヤ電圧からワイヤ抵抗値Rを計算するためのワイヤ抵抗測定手段18、タッチ検出手段17とワイヤ抵抗測定手段18からの信号により添加ワイヤ6の加熱状態を判定し、判定結果によりワイヤ加熱電源10の加熱電力を調整するためのワイヤ加熱制御手段19、タッチ検出手段17とワイヤ抵抗測定手段18とワイヤ加熱制御手段19などから制御装置20が構成される。
【0029】
また、ワイヤ加熱制御手段19の出力(出力値Ww)により、ワイヤ加熱電源10が制御される。
【0030】
割り算回路(ワイヤ抵抗測定手段18)には、図2に示すように、電流センサ16からの信号によりワイヤ電流値を測定するためのワイヤ電流測定回路21とワイヤ電圧値を測定するためのワイヤ電圧測定回路22が設けられているが、ワイヤ電圧にはタッチ検出手段17よりタッチ検出を正確に行うためにプルアップ電圧が掛かっているため、このプルアップ電圧を差し引いた実質的なワイヤ電圧がワイヤ電圧測定回路22では測定可能な回路構成になっている。また、ワイヤ電圧測定回路22で測定したワイヤ電圧Vwをワイヤ電流測定回路21で測定したワイヤ電流Iwで割り算して抵抗値Rwを計算するための割り算回路(ワイヤ抵抗測定手段)18が設けられている。
【0031】
TIGアーク溶接とホットワイヤ溶接方法、溶接手順は従来の方法と同様であるので説明は省略し、本実施の形態の特徴点であるホットワイヤ溶接制御方法および装置について図1と図2により説明する。
【0032】
コンタクトチップ9と母材3間の添加ワイヤ6の通電抵抗値によりワイヤ6の加熱状態を判定することが可能であり、まずこの通電抵抗値の測定方法を説明する。通電抵抗Rwはコンタクトチップ9と母材3間の添加ワイヤ6に印加される電圧Vwと電流Iwで表される。
Rw = Vw ÷ Iw (4)
【0033】
ワイヤ抵抗測定手段18で抵抗値を測定するが、電圧Vwにはタッチ検出手段17よりタッチ検出を正確に行うためにプルアップ電圧が掛かっているため、ワイヤ電圧測定回路22は、このプルアップ電圧を差し引いたワイヤ加熱電源10より印加される実質的なワイヤ電圧が測定可能な回路構成になっている。また、電流Iwはホールセンサなどの電流センサ16からの信号によりワイヤ電流測定回路21で測定され、電圧Vwと電流Iwの信号を割り算回路(ワイヤ抵抗測定手段)18に入力し、抵抗値Rwを求めることができる。
【0034】
添加ワイヤ6の抵抗値Rwの目標値は、作業者が溶接状況を判断して最適な加熱状態のときの抵抗値Rwをワイヤ抵抗測定手段18で測定し、その値をワイヤ加熱制御手段19に登録する方法がある。
【0035】
次に、添加ワイヤ6が母材3に接触していているか否かを検出するタッチ検出機能(前記特公平5−75512号公報に記載)について説明する。添加ワイヤ6が非通電のときのワイヤ電圧Vwは、添加ワイヤ6が母材3に接触している状態では0Vに近い値になり、そして添加ワイヤ6の先端が母材3から離れ、アーク・プラズマに接触しているときにはプラズマ柱の電圧を検出して−1Vより負の電圧になる。この性質を利用して、添加ワイヤ6の先端が母材3と接触しているかどうかを検出するタッチ検出手段17を構成した。タッチ検出手段17からの出力信号Tuは、添加ワイヤ6が母材3と接触しているときにはハイレベルの信号H、離れているときにはローレベルの信号Lの電圧出力信号とする。
【0036】
添加ワイヤ6の抵抗値の目標値を自動的に決める方法としては、添加ワイヤ6の加熱電力を徐々に上げていき溶断現象を発生させ、タッチ検出手段17にて溶断現象を検出し、溶断直前の添加ワイヤ6の抵抗値をワイヤ抵抗測定手段18で測定し、その値をワイヤ加熱制御手段19に登録する方法がある。この添加ワイヤ抵抗目標値の設定は、溶接スタート時に1回行う必要があり、溶接電流やワイヤ6の送給などの溶接条件を変更した場合は再度登録し直す必要がある。また、溶接が進行していくとアーク長が変動したり、母材3の温度が上昇したりするのでアーク5と溶融池12の溶接状況が変化し、添加ワイヤ6の加熱状況も多少変化してくる。そこで、例えば数分に1回の割合で定期的に抵抗目標値の自動再登録を行うと、より正確な加熱制御を行うことが可能になる。
【0037】
ワイヤ加熱制御手段19では、以上の方法で設定した抵抗目標値に対して、溶接中にワイヤ抵抗測定手段18で測定した抵抗値が目標値より低い場合は、加熱が足りなくワイヤ6の温度分布が最適な状態に比べて低いと判定できるので、添加ワイヤ6の加熱電力を上げる必要があり、ワイヤ加熱電源10に対して加熱電力を上げる指令を出す。逆に測定した抵抗値が目標値より高い場合は、加熱過多気味になっていると判定できるので、添加ワイヤ6の加熱電力を下げる必要があり、ワイヤ加熱電源10に対して加熱電力を下げる指令を出す。このように添加ワイヤ6の通電抵抗値を測定することにより、添加ワイヤ6の加熱状態を最適な状態に自動制御することが可能になる。
【0038】
また、溶接中に上記制御を行っていて、タッチ検出手段17にて溶断現象を検出した場合は、ワイヤ加熱が過多であると判断できるので、ワイヤ抵抗測定手段18により測定した溶断直前のワイヤ6の抵抗値と以前の目標抵抗値を比較し、抵抗値の低い値を新たな目標値として登録し直す必要がある。
【0039】
なお、ワイヤ加熱電流が図5に示すようなパルス電流を使用する場合は、当然ながら上記の制御はパルス電流に同期させて、ワイヤ電流の通電期間のみ作動し、ワイヤ電流の非通電期間は非作動にする必要がある。
【0040】
【発明の効果】
本発明によれば、ホットワイヤ溶接においてワイヤの加熱不足下においてのワイヤの突っ張りによるトーチの持ち上げや、ワイヤの加熱不足により未溶融ワイヤがそのまま溶接金属の中に残留する溶接欠陥の発生を防ぎ、加熱溶断によるスパッタの発生頻度をより少なくして、適正なワイヤ溶融状態に保つことができ、ワイヤ加熱電流の自動調整を行うことが可能になることにより、ホットワイヤ溶接による高能率化を促進し、溶接欠陥の発生頻度を低下させ、省人化に貢献することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るホットワイヤ溶接装置の制御回路の回路構成図である。
【図2】 図1の溶接装置の添加ワイヤの抵抗測定手段の回路構成図である。
【図3】 図3(A)はワイヤの加熱が最適状態を示す模式図とその時の添加ワイヤの温度と電気抵抗率のグラフであり、図3(B)はワイヤの加熱が過多状態を示す模式図とその時のワイヤの温度と電気抵抗率のグラフであり、図3(C)はワイヤの加熱が不足状態を示す模式図とその時のワイヤの温度と電気抵抗率のグラフである。
【図4】 従来技術のホットワイヤTIG溶接装置の機器構成を示す図である。
【図5】 従来技術のワイヤ加熱電源のワイヤ電流波形を示し、図5(A)はアーク電流を一定とし、ワイヤ電流のみをパルス波形の電流にした方法、図5(B)はアーク電流とワイヤ電流を共にパルス波形の電流にし、ワイヤ電流を流すときにアーク電流を極力小さくする方法を示す図である。
【図6】 溶接ビードの断面を示す図である。
【符号の名称】
1 TIG溶接トーチ 2 タングステン電極
3 母材 4 アーク電源
5 アーク 6 添加ワイヤ
7 ワイヤ送給装置 8 コンジット
9 コンタクトチップ 10 ワイヤ加熱電源
11 セラミックガイド 12 溶融池
13 溶接ビード 14 ワイヤリール
15 ワイヤトーチ 16 電流センサ
17 タッチ検出手段 18 ワイヤ抵抗測定手段(割り算回路)
19 ワイヤ加熱制御手段 20 制御装置
21 ワイヤ電流測定回路 22 ワイヤ電圧測定回路
24 未溶融ワイヤ 25 溶融金属
e エクステンション部 I(Iw) 電流
L 長さ Tu 出力信号
R 抵抗値 Rw 通電抵抗
Vw 電圧 Ww ワイヤ加熱電源への出力値
[0001]
[Industrial application fields]
The present invention relates to hot wire welding, and more particularly to a hot wire welding method and apparatus suitable for performing high-efficiency welding by optimizing the hot-melt state of the hot wire.
[0002]
[Prior art]
FIG. 4 shows a configuration of a welding apparatus generally used conventionally as a hot wire TIG (Tungsten Inert Gas Arc) welding method. An arc power source 4 for direct current welding is connected to the tungsten electrode 2 and the base material 3 attached to the TIG welding torch 1, and an arc 5 is formed using the tungsten electrode 2 as a negative electrode in an argon shielding gas. The additive wire 6 for welding is led from the wire feeding device 7 through the conduit 8 and the wire torch 15 connected thereto to the arc forming portion and brought into contact with the base material 3. Although not shown in the drawing, the TIG welding torch 1 and the wire torch 15 are mechanically coupled by a connecting member and move together.
[0003]
A contact tip 9 and a ceramic guide 11 are arranged on the wire torch 15. A wire heating power source 10 is connected between the contact tip 9 and the base material 3, and direct current or alternating current is passed through the wire 6 to generate Joule heat. The melting speed of the wire 6 is increased. In the case of cold wire TIG welding in which the wire 6 is not energized and heated, the wire heating power source 10 is excluded from FIG.
[0004]
By the way, in hot wire TIG welding, it is known that if the energizing current of the wire 6 is increased, an electromagnetic force is generated between the wire and the arc current, and the arc 5 is disturbed by so-called magnetic blowing, making welding difficult. . Therefore, a method (Patent No. 2610819) in which a current having a pulse waveform as shown in FIG. FIG. 5A shows a method in which the arc current is constant and only the wire current is made into a pulse waveform current, and FIG. 5B is a case where both the arc current and the wire current are made into a pulse waveform current and the wire current is flowed. This is a method of reducing the current as much as possible. When the wire heating current is used as the pulse current and the period in which the arc 5 is continuously blown magnetically is shortened as much as possible, the arc 5 is blown instantaneously but immediately returns to the position immediately below the tungsten electrode 2. In addition, the rigidity of the arc 5 is maintained, and a decrease in workability due to magnetic blowing is not observed. As a result, workability of hot wire TIG welding has been remarkably improved, and practical application has progressed.
[0005]
The added wire 6 is energized and heated at the extension e portion between the contact tip 9 and the base material 3, and it is necessary to control the power applied to the added wire 6 and the amount of melted wire in a good balance. The optimum melting state of the additive wire 6 in hot wire TIG welding is that the tip of the additive wire 6 is brought into contact with the molten pool 12, but the wire 6 is already completely melted in the immediate vicinity of the contact interface. Furthermore, it is most desirable that the additive wire 6 is completely melted immediately before entering the molten pool 12, and the molten metal can be continuously melted down without being cut. However, the amount of heat input to the wire 6 is the heat generated by energizing the wire and the amount of heat from the arc 5, so the amount of heat from the arc 5 varies depending on the insertion position of the additional wire 6 into the arc 5, and The molten state will change.
[0006]
Thus, in hot wire TIG welding, it is necessary to adjust the heating power according to the wire feed speed to be added and the insertion position of the wire 6 into the arc 5, and when the heating power is insufficient, the wire 6 The wire torch 15 and the TIG welding torch 1 connected to the wire torch 15 are pushed up from the molten pool 12 or hit against the base material 3. As a result, the arc length becomes very long, so that welding cannot be continued. In addition, when the wire heating power is low, welding proceeds in a state where the additive wire 6 penetrates deeply into the molten pool 12 and is finally melted by receiving heat transfer from the molten pool 12. This is a less favorable situation. When the heating of the additive wire 6 is severe in such a state, the unmelted wire 24 remains in the weld metal 25 as it is, as shown in the sectional view of the weld bead shown in FIG. Will form. Conversely, when the heating power is excessive, the wire 6 is frequently melted by heating and spatters to adhere to the tungsten electrode 2 or form an arc 5 between the tip of the wire 6 and the tungsten electrode 2 for welding. The state becomes unstable and the welding operation is significantly impaired.
[0007]
Therefore, usually, the operator monitors the welded portion so that the wire 6 is in an appropriately melted state, that is, the tip of the wire 6 is in a melted state or just before melting, and is always in contact with the base material 3. However, the heating power is adjusted as a result by manually adjusting the heating current.
[0008]
Regarding the heating power adjustment, as described in Japanese Patent Publication No. 5-75512, the occurrence of fusing is detected from the wire voltage, and when the fusing occurs, the wire heating power is reduced slightly and the heating power is gradually increased from there. A control method has been proposed in which the wire heating power is automatically maintained in a state close to a proper melting state by repeatedly generating fusing again. The occurrence of fusing is preferably as small as possible. However, in this method, although the frequency is about once every 2 to 3 seconds, it is necessary to generate fusing, and some spatter is unavoidable.
[0009]
[Problems to be solved by the invention]
In the prior art, when the heating of the wire 6 is insufficient, the welding defect in which the unmelted wire 24 remains in the weld metal 25 as it is due to the lifting of the torch 15 due to the wire 6 being stretched or the heating of the wire 6 is insufficient. In order to prevent the occurrence of spatter and the occurrence of spatter due to heat fusing, the welding operator must constantly adjust the wire feeding speed and heating power while monitoring the melting state of the wire 6. Yes. Further, in the conventional automatic control method using the above-described fusing phenomenon, there is a problem that spatter is frequently generated, spatter accumulates on the tungsten electrode 2, and it is difficult to continuously operate for a long time.
[0010]
The present invention has been made on the basis of such a background, and the problem is that automatic adjustment of the wire heating current is performed so that the occurrence frequency of spatter in hot wire welding is reduced and an appropriate wire melting state is maintained. It is to provide a hot wire welding method and apparatus that can be performed.
[0011]
[Means for Solving the Problems]
A first aspect of the present invention is a hot wire welding method in which a voltage is supplied from a power source between a base material and an added wire, and welding is performed while controlling the heating of the wire. This is achieved by a hot wire welding method characterized by controlling electric power.
[0012]
As a method for setting the target value of the wire resistance value, a target wire resistance value is registered in advance, or the setting method is used, or the fusing phenomenon is generated by increasing the heating power at the start of welding, and the fusing phenomenon is detected by touch detection means. And the resistance value of the wire immediately before fusing measured by the wire resistance measuring means is set as a target value.
[0013]
There are the following methods for changing the target value of the wire resistance value.
(1) When the welding conditions are changed during welding, the heating power is increased to cause a fusing phenomenon, the fusing phenomenon is detected by, for example, touch detection means, and the resistance of the wire immediately before fusing measured by the wire resistance measuring means A method of registering and changing a value as a new target value.
[0014]
(2) The heating power is periodically increased to cause a fusing phenomenon, the fusing phenomenon is detected by, for example, touch detection means, and the resistance value of the wire immediately before fusing measured by the wire resistance measuring means is registered as a new target value. And how to change.
[0015]
(3) When a fusing phenomenon occurs during welding, the fusing phenomenon is detected by, for example, touch detection means, and the resistance value of the wire immediately before fusing measured by the wire resistance measuring means is compared with the previous target resistance value, A low resistance value is registered and changed as a new target value.
[0016]
According to a second aspect of the present invention, there is provided a wire heating power source for supplying a wire heating voltage between the base material and the added wire, a wire touch detection means for detecting whether or not the wire is in contact with the base material, and a wire Wire resistance measuring means for measuring the resistance value of the wire, and when the measured value of the wire resistance value has a deviation in the set target value, the wire heating for controlling the heating power of the wire so that the measured value becomes the set target value A hot wire welding apparatus including wire heating control means for adjusting heating power of a power source.
[0017]
The wire heating control means increases the heating power at the start of welding to generate a fusing phenomenon as the set target value, detects the fusing phenomenon by the touch detection means, and measures the resistance of the wire immediately before fusing measured by the wire resistance measuring means. A configuration in which a value is set as a target value can be adopted. The wire heating control means may be means capable of executing the methods (1) to (3) of the method of changing the target value of the wire resistance value described in the hot wire welding method according to the first invention.
[0018]
The present invention is not limited to the arc welding method in which an arc is generated between the base material and the torch, but can also be applied to a laser welding method.
[0019]
[Action]
FIG. 3A is a schematic diagram showing an optimum state of heating of the added wire and a graph of the temperature and electrical resistivity of the wire at that time, and FIG. 3B is a schematic diagram showing an excessive state of heating of the added wire and at that time. FIG. 3C is a schematic diagram showing a state in which heating of the added wire is insufficient, and a graph of the wire temperature and electrical resistivity at that time. The amount of heat QT input to melt the added wire 6 is determined by the electric heating amount QW and the arc by the hot wire current applied to the added wire 6 between the contact tip 9 and the base material 3 from the wire heating power source 10 (FIG. 1). The amount of heat QA applied from 5.
[0020]
QT = QW + QA (1)
QT is a value determined by the material of the additive wire 6 and the feed amount. For example, QT is 1.27 J / g in the case of mild steel. QA is a value that changes depending on the insertion position of the additive wire 6 into the arc 5 and the molten pool 12, and the additive wire 6 is inserted into the arc 5 and the molten pool 12 at a position close to the tungsten electrode 2 as shown in FIG. In this case, it increases as compared with the case where it is inserted at the end of the arc 5. That is, the QW needs to be changed according to the change of the QA. QW is expressed by the current I passed through the additive wire 6 and the resistance value R of the extension e part.
[0021]
QW = I 2 × R (2)
The resistance value R of the extension e part is expressed by the length L of the extension e part, the cross-sectional area S of the added wire 6 and the electrical resistivity ρ.
[0022]
R = ρ × L ÷ S (3)
Here, since the cross-sectional area S of the additive wire 6 is constant and the length L of the extension e portion is an automatic welding machine, since the TIG welding torch 1 and the wire torch 15 are fixed integrally, there is a slight fluctuation during welding. There is almost constant. The electrical resistivity ρ varies depending on the temperature. Particularly, the rate of change of iron is very large. For example, it changes to 9.7 μΩ · cm at a temperature of 20 ° C. and 105.5 μΩ · cm at a temperature of 800 ° C.
[0023]
In addition, when the additive wire 6 is made of mild steel, the temperature of the additive wire 6 is heated to 1500 ° C. near the melting point near the melting point on the contact chip 9 side as shown in FIG. Ideal. And according to the temperature distribution of the added wire 6, the electrical resistivity ρ shows a similar distribution. Since the value obtained by integrating the electrical resistivity ρ from the contact tip 9 to the molten pool 12 becomes the resistance value R, the resistance value R may be considered to indicate the temperature of the additive wire 6, that is, the heating state. As shown in FIG. 3C, when the heating of the additive wire is insufficient, the temperature of the additive wire 6 does not rise to the melting point on the molten pool 12 side and becomes a low value. Similarly, the distribution of the electrical resistivity ρ is also lower than that in FIG. 3A, and the resistance value R is also low. On the contrary, as shown in FIG. 3B, when the heating of the additive wire 6 is excessive, it is necessary to reduce the energized heating amount when the heat input from the arc 5 increases. A fusing phenomenon occurs at the tip of the wire 6. FIG. 3B shows a state in which the tip of the additive wire 6 flows into the molten pool 12 while melting, and normal welding can be continued in this state. At this time, the temperature distribution of the additive wire 6 is slightly increased in the high temperature range on the molten pool 12 side, and the electric resistivity ρ also changes. However, if the additive wire 6 is not melted and connected to the molten pool 12, the temperature distribution of the additive wire 6 between the contact tip 9 and the arc 5 is lower than the state of FIG. The electrical resistivity ρ is also lower than that in the state of FIG. 3A, and the resistance value R is close to the value in the state of FIG.
[0024]
From the above, the heating state of the wire 6 can be determined based on the resistance value R of the added wire 6, and in particular, the resistance value R of the added wire 6 immediately before fusing flows into the molten pool 12 while melting the wire 6. It is a value in a state where the temperature distribution of the wire 6 is optimal. When the resistance value R immediately before fusing is set as a target value and the measured resistance value R is lower than the target value, heating is insufficient, and it can be determined that the temperature distribution of the wire 6 is lower than the optimum state. It is necessary to increase the heating power of the additive wire 6. Conversely, when the measured resistance value R is higher than the target value, it can be determined that the heating power is excessive. Therefore, the heating power of the additive wire 6 needs to be decreased. By measuring the energization resistance value of the additive wire 6 in this way, it becomes possible to automatically control the heating state of the additive wire 6 to an optimum state.
[0025]
There is a method in which the target value of the resistance value R of the additive wire 6 is determined by the operator measuring the resistance value R in the optimum heating state by judging the welding condition. Further, as a method for automatically determining the target value of the resistance value R of the additive wire 6, the heating power of the additive wire 6 is gradually increased to cause a fusing phenomenon, which is described in the above Japanese Patent Publication No. 5-75512. There is a method in which a fusing phenomenon is detected by touch detection means, and the resistance value R of the added wire 6 immediately before fusing is set to a target value.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a control circuit of a hot wire welding apparatus according to an embodiment of the present invention. FIG. 2 is a circuit configuration diagram of the resistance measuring means of the added wire according to FIG.
[0027]
In FIG. 1, a TIG welding torch 1 holds a tungsten electrode 2, and the tungsten electrode 2 generates an arc 5 with a base material 3 of an object to be welded. A current from the wire heating power source 10 is contacted and supplied to the additive wire 6 by the contact tip 9, and the contact tip 9 has a ceramic guide for accurately and uniformly inserting the heated additive wire 6 into the molten pool 12. 11 is attached. When the molten pool 12 formed by melting the base material 3 by the arc heat solidifies, a weld bead 13 is formed.
[0028]
Further, the wire current value is measured by the current sensor 16, the touch detection means 17 for determining whether the added wire 6 is in contact with or separated from the base material 3 based on the wire voltage, and the wire resistance value from the wire current and the wire voltage. In order to determine the heating state of the added wire 6 based on signals from the wire resistance measuring means 18, the touch detecting means 17 and the wire resistance measuring means 18 for calculating R, and to adjust the heating power of the wire heating power supply 10 based on the determination result. The wire heating control means 19, the touch detection means 17, the wire resistance measurement means 18, the wire heating control means 19, and the like constitute a control device 20.
[0029]
Further, the wire heating power source 10 is controlled by the output (output value Ww) of the wire heating control means 19.
[0030]
As shown in FIG. 2, the dividing circuit (wire resistance measuring means 18) includes a wire current measuring circuit 21 for measuring the wire current value based on a signal from the current sensor 16, and a wire voltage for measuring the wire voltage value. Although a measurement circuit 22 is provided, a pull-up voltage is applied to the wire voltage in order to accurately perform touch detection by the touch detection means 17, and therefore, a substantial wire voltage obtained by subtracting the pull-up voltage is the wire voltage. The voltage measurement circuit 22 has a circuit configuration that can be measured. Further, a dividing circuit (wire resistance measuring means) 18 is provided for dividing the wire voltage Vw measured by the wire voltage measuring circuit 22 by the wire current Iw measured by the wire current measuring circuit 21 to calculate the resistance value Rw. Yes.
[0031]
Since the TIG arc welding, hot wire welding method, and welding procedure are the same as those of the conventional method, the description thereof will be omitted, and the hot wire welding control method and apparatus, which are the features of the present embodiment, will be described with reference to FIGS. .
[0032]
It is possible to determine the heating state of the wire 6 from the energization resistance value of the added wire 6 between the contact chip 9 and the base material 3. First, a method for measuring the energization resistance value will be described. The energization resistance Rw is represented by a voltage Vw and a current Iw applied to the additive wire 6 between the contact chip 9 and the base material 3.
Rw = Vw ÷ Iw (4)
[0033]
The resistance value is measured by the wire resistance measuring unit 18. Since the pull-up voltage is applied to the voltage Vw in order to accurately detect the touch by the touch detecting unit 17, the wire voltage measuring circuit 22 is connected to the pull-up voltage. The circuit configuration is such that a substantial wire voltage applied from the wire heating power supply 10 minus the above can be measured. The current Iw is measured by a wire current measuring circuit 21 based on a signal from a current sensor 16 such as a hall sensor, and the signals of the voltage Vw and the current Iw are input to a dividing circuit (wire resistance measuring means) 18 and a resistance value Rw is obtained. Can be sought.
[0034]
The target value of the resistance value Rw of the added wire 6 is determined by the operator determining the welding condition, measuring the resistance value Rw in the optimum heating state with the wire resistance measuring means 18, and supplying the value to the wire heating control means 19. There is a way to register.
[0035]
Next, a touch detection function (described in Japanese Patent Publication No. 5-75512) for detecting whether or not the added wire 6 is in contact with the base material 3 will be described. The wire voltage Vw when the additive wire 6 is not energized is close to 0 V when the additive wire 6 is in contact with the base material 3, and the tip of the additive wire 6 is separated from the base material 3, and When in contact with the plasma, the voltage of the plasma column is detected and becomes a negative voltage from -1V. Using this property, the touch detection means 17 for detecting whether the tip of the additive wire 6 is in contact with the base material 3 is configured. The output signal Tu from the touch detection means 17 is a voltage output signal of a high level signal H when the added wire 6 is in contact with the base material 3 and a low level signal L when the added wire 6 is away from the base material 3.
[0036]
As a method of automatically determining the target value of the resistance value of the added wire 6, the heating power of the added wire 6 is gradually increased to generate a fusing phenomenon, the fusing phenomenon is detected by the touch detection means 17, and immediately before fusing. There is a method in which the resistance value of the added wire 6 is measured by the wire resistance measuring means 18 and the value is registered in the wire heating control means 19. This additional wire resistance target value needs to be set once at the start of welding. When the welding conditions such as the welding current and the feeding of the wire 6 are changed, it is necessary to register again. Further, as welding progresses, the arc length fluctuates or the temperature of the base material 3 increases, so that the welding condition of the arc 5 and the molten pool 12 changes, and the heating condition of the additive wire 6 also changes somewhat. Come. Therefore, for example, if automatic re-registration of the resistance target value is performed periodically at a rate of once every several minutes, more accurate heating control can be performed.
[0037]
In the wire heating control means 19, when the resistance value measured by the wire resistance measuring means 18 during welding is lower than the target value with respect to the resistance target value set by the above method, the temperature distribution of the wire 6 is insufficient due to insufficient heating. Therefore, it is necessary to increase the heating power of the added wire 6, and a command to increase the heating power is issued to the wire heating power supply 10. On the contrary, when the measured resistance value is higher than the target value, it can be determined that the heating is excessive, so it is necessary to reduce the heating power of the added wire 6 and the wire heating power supply 10 is instructed to reduce the heating power. Put out. By measuring the energization resistance value of the additive wire 6 in this way, it becomes possible to automatically control the heating state of the additive wire 6 to an optimum state.
[0038]
Further, when the above control is performed during welding and the fusing phenomenon is detected by the touch detection means 17, it can be determined that the wire heating is excessive, so the wire 6 immediately before fusing measured by the wire resistance measuring means 18 is determined. It is necessary to compare the previous resistance value and the previous target resistance value, and re-register a low resistance value as a new target value.
[0039]
When the wire heating current uses a pulse current as shown in FIG. 5, the above control is naturally synchronized with the pulse current and operates only during the energization period of the wire current, and the non-energization period of the wire current. It needs to be activated.
[0040]
【The invention's effect】
According to the present invention, in hot wire welding, the torch is lifted by stretching the wire under insufficient heating of the wire, and the occurrence of welding defects in which the unmelted wire remains in the weld metal due to insufficient heating of the wire is prevented. By reducing the frequency of spattering due to heat fusing and maintaining an appropriate wire melting state, it is possible to perform automatic adjustment of the wire heating current, thereby promoting high efficiency by hot wire welding. It is possible to reduce the occurrence frequency of welding defects and contribute to labor saving.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a control circuit of a hot wire welding apparatus according to an embodiment of the present invention.
2 is a circuit configuration diagram of resistance measuring means for an added wire of the welding apparatus of FIG. 1;
FIG. 3 (A) is a schematic diagram showing the optimum heating state of the wire, and a graph of the temperature and electrical resistivity of the added wire at that time, and FIG. 3 (B) shows an excessive heating state of the wire. FIG. 3C is a schematic diagram illustrating a wire temperature and electrical resistivity at that time, and FIG. 3C is a schematic diagram illustrating a state in which the wire is insufficiently heated, and a wire temperature and electrical resistivity graph at that time.
FIG. 4 is a diagram showing a device configuration of a conventional hot wire TIG welding apparatus.
FIG. 5 shows a wire current waveform of a conventional wire heating power source. FIG. 5 (A) shows a method in which the arc current is constant and only the wire current is a pulse waveform current, and FIG. It is a figure which shows the method of making arc current as small as possible when making both wire current into the electric current of a pulse waveform, and flowing wire current.
FIG. 6 is a view showing a cross section of a weld bead.
[Name of code]
DESCRIPTION OF SYMBOLS 1 TIG welding torch 2 Tungsten electrode 3 Base material 4 Arc power supply 5 Arc 6 Addition wire 7 Wire feeding device 8 Conduit 9 Contact tip 10 Wire heating power supply 11 Ceramic guide 12 Weld pool 13 Weld bead 14 Wire reel 15 Wire torch 16 Current sensor 17 Touch detection means 18 Wire resistance measurement means (division circuit)
DESCRIPTION OF SYMBOLS 19 Wire heating control means 20 Control apparatus 21 Wire current measurement circuit 22 Wire voltage measurement circuit 24 Unmelted wire 25 Molten metal e Extension part I (Iw) Current L Length Tu Output signal R Resistance value Rw Current supply resistance Vw Voltage Ww Wire heating Output value to power supply

Claims (7)

母材と添加ワイヤとの間にそれぞれ電源から電圧を供給し、ワイヤを加熱制御しながら溶接を行うホットワイヤ溶接方法において、
ワイヤの抵抗測定値によりワイヤの加熱電力を制御することを特徴とするホットワイヤ溶接方法。
In a hot wire welding method in which a voltage is supplied from a power source between a base material and an additive wire and welding is performed while heating the wire,
A hot wire welding method, wherein the heating power of a wire is controlled by a resistance measurement value of the wire.
予め目標とするワイヤの抵抗値を登録しておき、ワイヤの測定した抵抗値が前記登録した目標抵抗値になるように、ワイヤの加熱電力を制御することを特徴とする請求項1記載のホットワイヤ溶接方法。2. A hot wire according to claim 1, wherein a target wire resistance value is registered in advance, and the heating power of the wire is controlled so that the measured resistance value of the wire becomes the registered target resistance value. Wire welding method. 溶接スタート時に加熱電力を上げて溶断現象を発生させ、溶断現象を検出すると、溶断直前のワイヤの抵抗値を目標値として登録しておき、該目標値によりワイヤの加熱電力を制御することを特徴とする請求項1記載のホットワイヤ溶接方法。When the heating power is increased at the start of welding to generate a fusing phenomenon, and the fusing phenomenon is detected, the resistance value of the wire immediately before fusing is registered as a target value, and the heating power of the wire is controlled by the target value The hot wire welding method according to claim 1. 溶接中に溶接条件を変更した場合に、加熱電力を上げて溶断現象を発生させ、溶断現象を検出すると溶断直前のワイヤの抵抗値を目標値として再登録し、前記登録した目標抵抗値になるように、ワイヤの加熱電力を制御することを特徴とする請求項2記載のホットワイヤ溶接方法。When the welding conditions are changed during welding, the heating power is raised to cause a fusing phenomenon, and when the fusing phenomenon is detected, the resistance value of the wire immediately before fusing is re-registered as a target value, and becomes the registered target resistance value. The hot wire welding method according to claim 2, wherein the heating power of the wire is controlled. 定期的に加熱電力を上げて溶断現象を発生させ、溶断現象を検出すると、ワイヤの抵抗値を測定し、溶断直前のワイヤの抵抗値を目標値として再登録して、前記登録した目標抵抗値になるように、ワイヤの加熱電力を制御することを特徴とする請求項2記載のホットワイヤ溶接方法。When the heating power is periodically raised to cause a fusing phenomenon, and the fusing phenomenon is detected, the resistance value of the wire is measured, the resistance value of the wire immediately before fusing is re-registered as a target value, and the registered target resistance value The hot wire welding method according to claim 2, wherein the heating power of the wire is controlled so that 溶接中に溶断現象が発生した場合に、溶断現象を検出し、ワイヤ抵抗値の測定した溶断直前のワイヤの抵抗値と以前の目標抵抗値を比較し、抵抗値の低い値を新たな目標値として再登録し、ワイヤの加熱電力を制御することを特徴とする請求項2記載のホットワイヤ溶接方法。When a fusing phenomenon occurs during welding, the fusing phenomenon is detected, the resistance value of the wire just before fusing, which is measured for the wire resistance value, is compared with the previous target resistance value, and a lower resistance value is set as the new target value. The hot wire welding method according to claim 2, wherein the heating power of the wire is controlled by re-registering as. 母材と添加ワイヤとの間にワイヤ加熱電圧を供給するワイヤ加熱電源と、
ワイヤが母材に接触しているか否かを検出するワイヤタッチ検出手段と、
ワイヤの抵抗値を測定するワイヤ抵抗測定手段と、
該ワイヤ抵抗測定手段によるワイヤ抵抗値の実測値が設定目標値に偏差があると、該実測値を前記設定目標値になるように、ワイヤの加熱電力を制御するワイヤ加熱電源の加熱電力を調整するワイヤ加熱制御手段と
を備えたことを特徴とするホットワイヤ溶接装置。
A wire heating power source for supplying a wire heating voltage between the base material and the additive wire;
Wire touch detection means for detecting whether or not the wire is in contact with the base material;
Wire resistance measuring means for measuring the resistance value of the wire;
When the measured value of the wire resistance measured by the wire resistance measuring means has a deviation in the set target value, the heating power of the wire heating power source that controls the heating power of the wire is adjusted so that the measured value becomes the set target value. A hot wire welding apparatus comprising: a wire heating control means for performing
JP2002131843A 2002-05-07 2002-05-07 Hot wire welding method and apparatus Expired - Fee Related JP4151777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131843A JP4151777B2 (en) 2002-05-07 2002-05-07 Hot wire welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131843A JP4151777B2 (en) 2002-05-07 2002-05-07 Hot wire welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2003320454A JP2003320454A (en) 2003-11-11
JP4151777B2 true JP4151777B2 (en) 2008-09-17

Family

ID=29544294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131843A Expired - Fee Related JP4151777B2 (en) 2002-05-07 2002-05-07 Hot wire welding method and apparatus

Country Status (1)

Country Link
JP (1) JP4151777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532466A2 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053959B2 (en) * 2008-09-03 2012-10-24 本田技研工業株式会社 Electrode tip contact area ratio evaluation method, workpiece internal resistance evaluation method, ultrasonic attenuation rate evaluation method, and electrode tip tilt state determination method
JP5581008B2 (en) * 2009-04-28 2014-08-27 バブ日立工業株式会社 TIG welding equipment
JP5400696B2 (en) * 2010-04-26 2014-01-29 株式会社神戸製鋼所 Consumable electrode type gas shielded arc welding method and consumable electrode type gas shielded arc welding system
JP5743081B2 (en) * 2011-05-16 2015-07-01 三菱日立パワーシステムズ株式会社 Heat control method and apparatus for hot wire welding
US9950383B2 (en) * 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
WO2014140739A1 (en) * 2013-03-15 2014-09-18 Lincoln Global, Inc. Tandem hot-wire systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532466A2 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
US8809740B2 (en) 2011-06-09 2014-08-19 Kobe Steel, Ltd. Two-electrode welding method

Also Published As

Publication number Publication date
JP2003320454A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP3933193B2 (en) Consumable electrode arc welding machine
US9409250B2 (en) Method and system of controlling heating current for hot wire processes
EP3676040B1 (en) Systems and method for adaptive control of wire preheating
KR20150037988A (en) Method of and system for induction heating a consumable during laser arc hybrid process
EP0247628B1 (en) Method of control and apparatus for hot-wire welding
US8035059B2 (en) Method for controlling and/or adjusting a welding process
JP3379965B2 (en) Plasma arc welding apparatus and method
JP7048816B2 (en) Arc welding method including consumable welding wire
JP4151777B2 (en) Hot wire welding method and apparatus
JPH09216060A (en) Method and device for welding in groove by welding arc
JP5743081B2 (en) Heat control method and apparatus for hot wire welding
JPH05200548A (en) Nonconsumable arc welding method and equipment
KR102301317B1 (en) Welding apparatus and welding method with self-regulating welding wire feed rate
JP2002028784A (en) Method and equipment for consumable electrode type arc welding
KR100899759B1 (en) Apparatus for providing filler wire of welding device
KR101253843B1 (en) Non-Electrode Wire Supply Method for Tandem Electro Gas Arc Welding and Tandem Electro Gas Arc Welding Device
JP2004276055A (en) Welding apparatus and welding method
JPS61276775A (en) Wire feeding device for tig arc welding
JPS61186171A (en) Control method of tig arc welding device
JPH0575512B2 (en)
JPH0631447A (en) Method for controlling filler wire feed position of non-consumable electrode type arc welding
JPH0211274A (en) Hot wire welding equipment
JP2004314164A (en) Welding equipment and welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees