JPH0993846A - Permanent magnet type synchronous motor - Google Patents

Permanent magnet type synchronous motor

Info

Publication number
JPH0993846A
JPH0993846A JP7340160A JP34016095A JPH0993846A JP H0993846 A JPH0993846 A JP H0993846A JP 7340160 A JP7340160 A JP 7340160A JP 34016095 A JP34016095 A JP 34016095A JP H0993846 A JPH0993846 A JP H0993846A
Authority
JP
Japan
Prior art keywords
permanent magnet
laminated iron
shaft
spring
iron plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7340160A
Other languages
Japanese (ja)
Inventor
Isao Matsuda
功 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7340160A priority Critical patent/JPH0993846A/en
Publication of JPH0993846A publication Critical patent/JPH0993846A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration in motor characteristics due to iron loss by providing air gaps between a permanent magnet and a nonmagnetic shaft and between the permanent magnet and adjacent laminated iron plate and nonmagnetic shaft and fixing a short circuit piece in the gap through a spring thereby increasing the current capacity in the constant torque region. SOLUTION: A nonmagnetic shaft is provided with a protrusion 1a which is secured, at the forward end thereof, with a laminated iron plate 2 split in the circumferential direction into four. A permanent magnet 3 is secured between the laminated iron plates 2 serving as poles such that the flux passes through adjacent poles. An air gap is provided on the inside (shaft 1 side) of permanent magnet 3 and a short circuit piece 4 is set in the air gap while being supported by a spring 5 movably in the radial direction. When the r.p.m. is low, the spring 5 is left in extended state and thereby the leakage flux ϕ2 is low and the main flux ϕ1 is relatively high. When the r.p.m. increases, a centrifugal force acts while resisting against the spring 5 and the short circuit piece 4 approaches the laminated iron plate 2 to increase the leakage flux ϕ2 thus decreasing the main flux ϕ1 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石式同期電
動機に係り、特に定出力運転特性を向上する回転子構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type synchronous motor, and more particularly to a rotor structure for improving constant output operation characteristics.

【0002】[0002]

【従来の技術とその課題】一般に、永久磁石式同期電動
機は、広範囲な回転数制御のため定トルク運転領域と定
出力運転領域とがあり、図8に示すように理想的な電圧
電流パターンが望ましく、定出力運転では電圧電流共一
定でトルクが回転数に反比例して下がる特性が望まし
い。しかしながら、従来における永久磁石式同期電動機
にあっては、図9に示すように回転数に比例して発電電
圧が増加し、定出力運転であっても電圧一定とはならな
いので、定トルク運転時の電圧を小さくして運転するも
のであるが、その代り定トルクとするための電流が大き
くなり、電源容量の増大につながっている。つまり、永
久磁石式同期電動機にあっては、永久磁石によりモータ
磁束を発生するので、固定子に加える電圧とは無関係に
発電電圧が増加する。電動機としては、加える電圧が発
電電圧より大きくなければ運転できないため、電圧パタ
ーンとしては回転数に比例せざるを得ない。
2. Description of the Related Art Generally, a permanent magnet type synchronous motor has a constant torque operating region and a constant output operating region for controlling a wide range of rotation speeds. As shown in FIG. Desirably, in constant output operation, it is desirable that the voltage and current are constant and the torque decreases in inverse proportion to the rotation speed. However, in the conventional permanent magnet synchronous motor, the generated voltage increases in proportion to the rotation speed as shown in FIG. 9, and the voltage does not become constant even in constant output operation. However, instead of this, the current for increasing the constant torque is increased, leading to an increase in the power supply capacity. That is, in the permanent magnet type synchronous motor, since the motor magnetic flux is generated by the permanent magnet, the power generation voltage increases regardless of the voltage applied to the stator. Since the electric motor cannot be operated unless the applied voltage is larger than the generated voltage, the voltage pattern must be proportional to the rotation speed.

【0003】この結果、定トルク領域での電流が大きく
なり、電源容量の増加に伴うコストアップ、機器のサイ
ズアップを生起し、またモータケーブルの太さの増大に
より作業性低下やコストアップをもたらす。更には、高
速域でのモータの特性悪化が生じ、すなわち鉄損が磁束
の2乗に比例しまた回転数に比例する周波数の1.6乗
に比例することによる鉄損の増加に基づく効率の低下を
もたらす。なお、定出力運転の高速域では磁束量を減ら
して鉄損の増加を抑えているものの特性悪化は無視でき
ない。
As a result, the current in the constant torque region becomes large, which causes an increase in cost and an increase in size of the equipment due to an increase in power supply capacity. Further, an increase in the thickness of the motor cable causes a decrease in workability and an increase in cost. . Furthermore, the characteristics of the motor deteriorate in the high speed range, that is, the iron loss is proportional to the square of the magnetic flux and to the 1.6th power of the frequency proportional to the rotation speed, and the efficiency based on the increase of the iron loss is increased. Bring about a decline. In the high speed region of constant output operation, the magnetic flux amount is reduced to suppress the increase of iron loss, but the deterioration of characteristics cannot be ignored.

【0004】本発明は、定トルク領域での電流容量の増
加を抑えモータケーブルの太さを減少させ、モータの鉄
損による特性悪化を減少させるようにした永久磁石式同
期電動機の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a permanent magnet type synchronous motor which suppresses an increase in current capacity in a constant torque region, reduces the thickness of a motor cable, and reduces characteristic deterioration due to iron loss of the motor. To do.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の構成を特徴とする。 (1)非磁性シャフトの外周に積層鉄板を周方向に複数
分割して配置し、この周方向に沿う積層鉄板間に永久磁
石を備え、この永久磁石と上記非磁性シャフトとの間及
び上記永久磁石と隣り合う積層鉄板と上記非磁性シャフ
トとの間に空隙を設け、この空隙内にばねを介して短絡
片を取付けたことを特徴とする。 (2)シャフトの外周に積層鉄板を周方向に複数分割し
て配置し、この積層鉄板のシャフト側に周方向に沿って
凹部を形成し、この凹部内にばねを介在させ、この凹部
と嵌り合う凸部を有するスライド片を上記積層鉄板のシ
ャフト側に周方向に複数分割して配置し、このスライド
片のシャフト側に永久磁石を配置したことを特徴とす
る。 (3)シャフト外周に永久磁石を備え、更にこの永久磁
石に対応してその外側に周方向に複数分割した積層鉄板
を配置し、この周方向に分割された積層鉄板間にばねを
介して短絡片を放射方向に移動可能に配置したことを特
徴とする。 (4)シャフト外周に永久磁石を備え、更にこの永久磁
石の両側に積層鉄板を配置し、この積層鉄板の周方向に
沿う中央に切欠きを設け、この切欠き内に入り込み得る
変形可能な磁性流体を配置したことを特徴とする。
The present invention which achieves the above object is characterized by the following constitution. (1) A plurality of laminated iron plates are circumferentially divided and arranged on the outer periphery of a non-magnetic shaft, and permanent magnets are provided between the laminated iron plates along the circumferential direction. The permanent magnet is provided between the non-magnetic shaft and the permanent magnet. It is characterized in that a gap is provided between the laminated iron plate adjacent to the magnet and the non-magnetic shaft, and a short-circuit piece is mounted in the gap via a spring. (2) A plurality of laminated iron plates are arranged on the outer circumference of the shaft in the circumferential direction, a recess is formed along the circumferential direction on the shaft side of the laminated iron plate, and a spring is interposed in the recess to fit into the recess. It is characterized in that a slide piece having matching convex portions is divided into a plurality of pieces in the circumferential direction on the shaft side of the laminated iron plate, and a permanent magnet is arranged on the shaft side of the slide piece. (3) A permanent magnet is provided on the outer circumference of the shaft, and a plurality of laminated iron plates divided in the circumferential direction are arranged outside the shaft corresponding to the permanent magnet, and a short circuit is provided between the laminated iron plates divided in the circumferential direction via a spring. It is characterized in that the pieces are arranged so as to be movable in the radial direction. (4) A permanent magnet is provided on the outer circumference of the shaft, laminated iron plates are arranged on both sides of the permanent magnet, and a notch is provided at the center along the circumferential direction of the laminated iron plate, and a deformable magnetic material that can enter the notch. It is characterized in that a fluid is arranged.

【0006】高速回転によって永久磁石による磁束が短
絡片や磁性流体を通ることになり主磁束を大幅に減少さ
せることとなるので発電電圧の増加を調整することがで
きる。
The high-speed rotation causes the magnetic flux of the permanent magnet to pass through the short-circuiting piece or the magnetic fluid, which greatly reduces the main magnetic flux, so that the increase in the generated voltage can be adjusted.

【0007】[0007]

【発明の実施の形態】ここで、図1〜図7及び図10を
参照して本発明の実施の形態を説明する。図1は、一例
を示す構成図であり、図1は電動機の4極の回転子の上
半分を示す図である。図1において、非磁性体のシャフ
ト1には、突起1aが備えられ、この突起1aの先端に
積層鉄板2が周方向に沿って4分割されて固定される。
磁極となる積層鉄板2の間には隣り合う磁極に磁束が通
るように永久磁石3が介在固定されている。永久磁石3
の内側(シャフト側)は、空隙を有しており、この空隙
内には短絡片4が放射方向に移動可能に備えられてい
る。すなわち、短絡片4は、永久磁石3を中心とした隣
り合う積層鉄板2にまたがってばね5にて支持されてお
り、強磁性体の材質を有する。この場合、ばね5は非磁
性材料にて構成されている。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will now be described with reference to FIGS. 1 to 7 and 10. FIG. 1 is a configuration diagram showing an example, and FIG. 1 is a diagram showing an upper half of a four-pole rotor of an electric motor. In FIG. 1, a shaft 1 made of a non-magnetic material is provided with a protrusion 1a, and a laminated iron plate 2 is fixed to the tip of the protrusion 1a by being divided into four along the circumferential direction.
Permanent magnets 3 are fixedly interposed between the laminated iron plates 2 serving as magnetic poles so that magnetic flux passes through adjacent magnetic poles. Permanent magnet 3
Has an air gap inside (the shaft side), and the short-circuit piece 4 is provided in the air gap so as to be movable in the radial direction. That is, the short-circuit piece 4 is supported by the spring 5 over the adjacent laminated iron plates 2 centering around the permanent magnet 3, and has a ferromagnetic material. In this case, the spring 5 is made of a non-magnetic material.

【0008】図1(b)は、図1(a)の拡大図であ
り、永久磁石3から生ずる磁束は主磁束φ1 と漏れ磁束
φ2 とからなるのであるが、回転数が低い状態では、短
絡片4がばね5にて離間しているので、漏れ磁束φ2
少ない。他方、回転数が高くなってばね5が縮まり短絡
片4が遠心力により近づいた場合、主磁束φ1 が減少す
ると共に漏れ磁束φ2 が増大する。そして、短絡片4が
積層鉄板2に接触した場合には、主磁束φ1 が無くな
る。また、回転数が低くなるとばね5の力によって短絡
片4が離間し主磁束φ1 が増大する。こうして、回転数
の変化に応じて主磁束を減少又は復旧させることとな
り、発電電圧を調整することができる。
FIG. 1 (b) is an enlarged view of FIG. 1 (a). The magnetic flux generated from the permanent magnet 3 is composed of the main magnetic flux φ 1 and the leakage magnetic flux φ 2 , but in the state where the rotation speed is low. Since the short-circuit piece 4 is separated by the spring 5, the leakage magnetic flux φ 2 is small. On the other hand, when the rotation speed increases and the spring 5 contracts and the short-circuit piece 4 approaches by the centrifugal force, the main magnetic flux φ 1 decreases and the leakage magnetic flux φ 2 increases. Then, when the short-circuit piece 4 contacts the laminated iron plate 2, the main magnetic flux φ 1 disappears. Further, when the rotation speed is lowered, the short-circuit piece 4 is separated by the force of the spring 5 and the main magnetic flux φ 1 is increased. In this way, the main magnetic flux is reduced or restored according to the change in the rotation speed, and the generated voltage can be adjusted.

【0009】図2は他の例を示す。図2において、図1
と同一部分には同符号を付す。図2(a)は、軸方向に
沿う断面であり、シャフト1に対して軸方向に沿って硅
素鋼板よりなる積層鉄板2とステンレス板6とが交互に
積層されている。この場合、ステンレス板6はシャフト
1に固定されると共に、積層鉄板2は空隙を有する状態
に図2(c)(d)に示すように構成される。そして、
積層鉄板2とステンレス板6とは、ダンパ7により貫通
され、ステンレス板6によって積層鉄板2が支持固定さ
れることになる。また、積層鉄板2は周方向に沿って4
分割されており、この積層鉄板2間には図1と同様永久
磁石3が介在固定されている。更に、永久磁石3の内側
の空隙にあって隣り合う積層鉄板2にまたがるように短
絡片4がばね5にて支持固定されている。この短絡片4
は図2(b)に示すような構成を有しており、ステンレ
ス板6にて挟まれる積層鉄板2と同様の幅を有し、ばね
5の受け溝4aを有し、ステンレス板6のスライド案内
溝6aにはまる突起4bを有している。したがって、短
絡片4がばね5によって支持されかつステンレス板6の
スライド案内溝6aにその突起4bがはめ合わされた状
態では、短絡片4はスライド案内溝6aの溝内にてスラ
イドできるものである。回転数が低い場合、ばね5は伸
びたままで漏れ磁束は少なく主磁束が相対的に多い。他
方、回転数が高くなるとばね5に抗して遠心力が働き、
短絡片4が積層鉄板2に近づき漏れ磁束の増大と共に主
磁束が減少する。こうして、回転数の高低と共に主磁束
を増減することができ、発電電圧を調整することができ
る。
FIG. 2 shows another example. In FIG. 2, FIG.
The same parts as those in FIG. FIG. 2A is a cross section along the axial direction, in which a laminated iron plate 2 made of a silicon steel plate and a stainless steel plate 6 are alternately laminated on the shaft 1 along the axial direction. In this case, the stainless steel plate 6 is fixed to the shaft 1, and the laminated iron plate 2 has a space as shown in FIGS. 2 (c) and 2 (d). And
The laminated iron plate 2 and the stainless steel plate 6 are penetrated by the damper 7, and the laminated iron plate 2 is supported and fixed by the stainless steel plate 6. In addition, the laminated iron plate 2 is 4 along the circumferential direction.
It is divided, and a permanent magnet 3 is fixedly interposed between the laminated iron plates 2 as in FIG. Further, the short-circuit piece 4 is supported and fixed by a spring 5 so as to straddle the laminated iron plates 2 adjacent to each other in the void inside the permanent magnet 3. This short-circuit piece 4
2 has a structure as shown in FIG. 2B, has a width similar to that of the laminated iron plate 2 sandwiched by the stainless plates 6, has a receiving groove 4a for the spring 5, and slides the stainless plate 6. It has a protrusion 4b that fits in the guide groove 6a. Therefore, when the short-circuit piece 4 is supported by the spring 5 and the projection 4b is fitted in the slide guide groove 6a of the stainless plate 6, the short-circuit piece 4 can slide in the groove of the slide guide groove 6a. When the number of rotations is low, the spring 5 remains stretched, the leakage magnetic flux is small, and the main magnetic flux is relatively large. On the other hand, when the rotation speed increases, centrifugal force acts against the spring 5,
The short-circuit piece 4 approaches the laminated iron plate 2 and the main magnetic flux decreases as the leakage magnetic flux increases. In this way, the main magnetic flux can be increased / decreased as well as the rotation speed, and the generated voltage can be adjusted.

【0010】図3は、本発明の第3の例である。この例
では、強磁性体であるシャフト1に対して空隙を有する
積層鉄板2が周方向に4分割されて取付けられており、
この積層鉄板2の軸方向に沿う複数位置にて周方向にわ
たり凹部2aが形成されている。他方、この積層鉄板2
の凹部2aに対応してスライド片8の凸部8aが形成さ
れてはめ合わされている。このスライド片8は、積層鉄
板2に対応して備えられており、その内側(シャフト
側)には永久磁石3が固定されている。スライド片8及
び永久磁石3は凹部2a内に位置されるばね5によって
凸部8aにて支持されている。このような状態で回転子
が静止している場合には、ばね5は伸びスライド片8及
び永久磁石3はシャフト側に寄り、スライド片8と積層
鉄板2の凹部2aと凸部8aとの係合部分が少なくなり
永久磁石3とシャフト1との空隙が小さくなって接触し
磁気抵抗が減少する。回転子が高速回転になる程遠心力
により凸部8aが凹部2a内にばね5に抗して入り込
み、永久磁石3とシャフト1との空隙が大きくなって磁
気抵抗が増大して永久磁石3による主磁束の積層鉄板2
を通る量が少なくなり主磁束が減少する。このようにし
て、主磁束の調整ができることとなり、発電電圧が調整
できる。
FIG. 3 shows a third example of the present invention. In this example, a laminated iron plate 2 having a space is attached to a shaft 1 which is a ferromagnetic body by being divided into four in a circumferential direction.
Recesses 2 a are formed in the circumferential direction at a plurality of positions along the axial direction of the laminated iron plate 2. On the other hand, this laminated iron plate 2
The convex portion 8a of the slide piece 8 is formed and fitted to the concave portion 2a. The slide piece 8 is provided corresponding to the laminated iron plate 2, and the permanent magnet 3 is fixed to the inside (shaft side) thereof. The slide piece 8 and the permanent magnet 3 are supported by the convex portion 8a by the spring 5 located in the concave portion 2a. When the rotor is stationary in such a state, the spring 5 expands and the slide piece 8 and the permanent magnet 3 shift toward the shaft side, so that the slide piece 8 and the concave portion 2a and the convex portion 8a of the laminated iron plate 2 are engaged with each other. The number of joints is reduced, the gap between the permanent magnet 3 and the shaft 1 is reduced, and the permanent magnet 3 and the shaft 1 are brought into contact with each other to reduce magnetic resistance. As the rotor rotates at a higher speed, the convex portion 8a enters into the concave portion 2a against the spring 5 due to the centrifugal force, the gap between the permanent magnet 3 and the shaft 1 increases, and the magnetic resistance increases. Main magnetic flux laminated iron plate 2
The amount passing through is reduced and the main magnetic flux is reduced. In this way, the main magnetic flux can be adjusted, and the generated voltage can be adjusted.

【0011】図4は、本発明の第4の例であり、シャフ
ト1の外周には4分割されてそれぞれ永久磁石3が固定
され、この永久磁石3上に積層鉄板2が配置されてい
る。この場合、隣り合う積層鉄板2間はその外周部に非
磁性ストッパ9が介在固定され、積層鉄板2の永久磁石
3側の端には非磁性スライドピース10が固定されてい
る。非磁性ストッパ9にはばね5の一端が固定されると
共にばね5の他端には短絡片11が固定されている。こ
の短絡片11は非磁性スライドピース10間や積層鉄板
2間をスライドできるもので、シャフト1と非磁性スト
ッパ9との間を移動可能となっている。回転数が低速の
場合、ばね5の伸びによって非磁性スライドピース10
間に短絡片11が位置し永久磁石3による磁束は漏れる
ことなく主磁束が形成される。他方、図4(b)に示す
ように高速回転数の場合、非磁性ストッパ9側に短絡片
11が遠心力に抗して片寄り主磁束の漏れが増大する。
このため主磁束が減少することになり発電電圧が調整で
きる。本例では、短絡片11は積層鉄板2間の隙間を移
動することになり、このためばね5は、図3,図2,図
1にて示す実施例より弱くて済み変位に対して2乗程度
の力で済む。なお、図1〜図3の例では変位に対して4
〜5乗の力が必要である。
FIG. 4 shows a fourth example of the present invention, in which the outer circumference of the shaft 1 is divided into four parts and the permanent magnets 3 are fixed to each other, and the laminated iron plate 2 is arranged on the permanent magnets 3. In this case, a non-magnetic stopper 9 is interposed and fixed on the outer peripheral portion between the adjacent laminated iron plates 2, and a non-magnetic slide piece 10 is fixed to the end of the laminated iron plates 2 on the permanent magnet 3 side. One end of the spring 5 is fixed to the non-magnetic stopper 9, and a short-circuit piece 11 is fixed to the other end of the spring 5. The short-circuit piece 11 can slide between the non-magnetic slide pieces 10 and between the laminated iron plates 2, and can move between the shaft 1 and the non-magnetic stopper 9. When the rotation speed is low, the non-magnetic slide piece 10 is stretched by the expansion of the spring 5.
The short-circuiting piece 11 is located in between, and the main magnetic flux is formed without the magnetic flux from the permanent magnet 3 leaking. On the other hand, as shown in FIG. 4B, at a high rotation speed, the short-circuit piece 11 is biased toward the non-magnetic stopper 9 side against the centrifugal force and the leakage of the main magnetic flux increases.
Therefore, the main magnetic flux is reduced and the generated voltage can be adjusted. In this example, the short-circuit piece 11 moves in the gap between the laminated iron plates 2, and therefore the spring 5 is weaker than the embodiment shown in FIGS. It can be done with a certain amount of power. In addition, in the example of FIGS.
~ 5th power is required.

【0012】磁気回路の等価回路は、図5に示す構成と
なり、図1〜図4の各例について、一定の磁石発生磁束
は抵抗Ro の主磁束と短絡片の動きで決まる抵抗Rx
漏れ磁束とからなり、回転機の停止状態では抵抗Rx
o の10倍程度である。この場合、抵抗Rx の変化を
もたらす短絡片は回転数の2乗に比例した力が働くため
それに見合ったばね力が必要となる。しかも、ばね力は
変位に対して4乗〜5乗に比例したものが必要である。
つまり、回転数の低い間は短絡片の変位が大きく回転数
が高くなるに従い変位量が小さくすることにより図7の
電圧曲線が得られる。図7の特性は、回転とともに発電
電圧が上昇するものであるが、定トルク範囲として予圧
区間を設けてもよく、図6(b)に示すようにある回転
数以上になって短絡片が動き出すようにし、それまでは
短絡片が動かないように図4の例ではシャフト1に短絡
片11を図6(a)のように押し付けるようにしてもよ
い。なお、上述の各実施例は4極構造の回転子を前提に
説明したが、その極数は4極に限らない。
The equivalent circuit of the magnetic circuit has the structure shown in FIG. 5, and in each of the examples shown in FIGS. 1 to 4, the constant magnetic flux generated by the magnet is the main magnetic flux of the resistance R o and the resistance R x determined by the movement of the shorting piece. It consists of leakage magnetic flux, and the resistance R x is about 10 times R o when the rotating machine is stopped. In this case, a force proportional to the square of the number of revolutions acts on the short-circuiting piece that causes a change in the resistance R x , so a spring force corresponding to the force is required. Moreover, the spring force must be proportional to the fourth power to the fifth power with respect to the displacement.
That is, while the rotational speed is low, the displacement of the short-circuit piece is large and the displacement amount is reduced as the rotational speed is increased, whereby the voltage curve of FIG. 7 is obtained. The characteristic of FIG. 7 is that the generated voltage increases with rotation, but a preload section may be provided as a constant torque range, and the short-circuit piece starts moving at a certain number of rotations as shown in FIG. 6B. Thus, in the example of FIG. 4, the short-circuit piece 11 may be pressed against the shaft 1 as shown in FIG. 6A so that the short-circuit piece does not move until then. Although each of the above-described embodiments has been described on the premise of a rotor having a four-pole structure, the number of poles is not limited to four.

【0013】更に、図10は他の例を示すものであり、
シャフト外周に永久磁石3を等配に備え、この永久磁石
3間に積層鉄板2を備える。そして、この積層鉄板2に
はこの積層鉄板2を周方向に分割するように切欠きが設
けられ、この切欠き内に非磁性収納ケース20が配置れ
ている。この非磁性収納ケース20の開口端部には、例
えばゴム等の弾性体からなる変形容器21が連通される
ことになり、ケース20と容器21とで密封容器を形成
する。この密封容器には、その先端(モータ外周側)に
空気や不活性ガスである気体を封入し、セパレータ22
を介してその基端(モータ内周側)である変形容器21
には磁性流体23が封入されているこの場合、セパレー
タ22は気体と磁性流体23とを区分するためのケース
20内をスムーズに移動可能な気密部材である。そし
て、気体を密封した場合の圧力は、図10(a)の位置
から180°反転して姿勢が逆になり、磁性流体23の
重さが気体に加わるようになっても、その重さのみでは
気体が収縮しない程度の量(圧力)としている。
Further, FIG. 10 shows another example,
Permanent magnets 3 are equidistantly arranged on the outer circumference of the shaft, and a laminated iron plate 2 is provided between the permanent magnets 3. Then, the laminated iron plate 2 is provided with a notch so as to divide the laminated iron plate 2 in the circumferential direction, and the non-magnetic storage case 20 is arranged in the notch. A deformable container 21 made of, for example, an elastic material such as rubber is communicated with the opening end of the non-magnetic storage case 20, and the case 20 and the container 21 form a hermetically sealed container. Air or a gas such as an inert gas is sealed at the tip (outer peripheral side of the motor) of the hermetically sealed container, and the separator 22
Deformation container 21 which is the base end (inner peripheral side of the motor)
In this case, the magnetic fluid 23 is enclosed, and in this case, the separator 22 is an airtight member capable of smoothly moving in the case 20 for separating the gas and the magnetic fluid 23. Then, the pressure when the gas is sealed is reversed 180 ° from the position of FIG. 10A and the posture is reversed, and even if the weight of the magnetic fluid 23 is added to the gas, only the weight is Then, the amount (pressure) is such that the gas does not contract.

【0014】かかる構造にあって、回転が高速になると
遠心力が増大し磁性流体23は気体を圧縮する。このた
め、この圧縮された分だけ磁性流体23が積層鉄板2内
に入り、磁石3により磁気回路を短絡することにより、
回転子表面から出る磁束を少なくする。そして、高速に
なる程磁性流体23が気体を圧し、磁石3間の磁気抵抗
が少なくなって漏れ磁束が多くなり、図7に示す特性が
得られることになる。
In this structure, the centrifugal force increases as the rotation speed increases, and the magnetic fluid 23 compresses the gas. Therefore, the magnetic fluid 23 enters the laminated iron plate 2 by the compressed amount, and the magnet 3 short-circuits the magnetic circuit.
Reduces the magnetic flux emitted from the rotor surface. Then, as the speed becomes higher, the magnetic fluid 23 pressurizes the gas, the magnetic resistance between the magnets 3 decreases, the leakage magnetic flux increases, and the characteristics shown in FIG. 7 are obtained.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、発
電電圧を調整することにより理想に近い定出力特性を得
ることができ、電流の減少に伴う電源容量の減少が可能
でまたモータケーブルを細くでき、鉄損の減少によりモ
ータ特性の改善が図られる。また、モータトルクの最大
値は回転子の大きさとその表面磁束密度で決まるが、短
絡片を内蔵しても回転子の大きさは変らず結果としてモ
ータサイズは不変である。更には、ばねの強さや磁極片
の構成により多種類の定出力仕様に対応させることがで
き、例えば、定トルク範囲と定出力範囲との比は1:1
から1:6程度までの仕様ができ、また、定出力特性に
あっては出力トルクが回転数に反比例させず0.8乗に
反比例させる仕様も考えられる。
As described above, according to the present invention, it is possible to obtain a nearly ideal constant output characteristic by adjusting the power generation voltage, and it is possible to reduce the power supply capacity with a decrease in the current and also to use the motor cable. The motor characteristics can be improved by reducing the iron loss. Further, the maximum value of the motor torque is determined by the size of the rotor and its surface magnetic flux density, but the size of the rotor does not change even if the short-circuit piece is built in, and as a result, the motor size does not change. Further, it is possible to support various kinds of constant output specifications depending on the strength of the spring and the configuration of the magnetic pole pieces. For example, the ratio between the constant torque range and the constant output range is 1: 1.
To about 1: 6, and in the constant output characteristic, the output torque may be inversely proportional to the 0.8th power, not inversely proportional to the rotation speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例の構成図。FIG. 1 is a configuration diagram of an example of the present invention.

【図2】本発明の他の例の構成図。FIG. 2 is a configuration diagram of another example of the present invention.

【図3】本発明の第3の例の構成図。FIG. 3 is a configuration diagram of a third example of the present invention.

【図4】本発明の第4の例の構成図。FIG. 4 is a configuration diagram of a fourth example of the present invention.

【図5】磁気回路の等価回路図。FIG. 5 is an equivalent circuit diagram of a magnetic circuit.

【図6】他の特性を示す説明図。FIG. 6 is an explanatory diagram showing other characteristics.

【図7】本発明による特性曲線図。FIG. 7 is a characteristic curve diagram according to the present invention.

【図8】理想的な電圧・電流パターンの特性曲線図。FIG. 8 is a characteristic curve diagram of an ideal voltage / current pattern.

【図9】従来の特性曲線図。FIG. 9 is a conventional characteristic curve diagram.

【図10】本発明の第5の例の構成図。FIG. 10 is a configuration diagram of a fifth example of the present invention.

【符号の説明】[Explanation of symbols]

1 シャフト 1a 突起 2 積層鉄板 2a 凹部 3 永久磁石 4,11 短絡片 4a ばね受け溝 4b 突起 5 ばね 6 ステンレス板 6a スライド案内溝 7 ダンパ 8 スライド片 8a 凸部 9 非磁性ストッパ 10 非磁性スライドピース 20 非磁性収納ケース 21 変形容器 22 セパレータ 23 磁性流体 1 Shaft 1a Protrusion 2 Laminated iron plate 2a Recess 3 Permanent magnet 4,11 Short-circuit piece 4a Spring receiving groove 4b Protrusion 5 Spring 6 Stainless steel plate 6a Slide guide groove 7 Damper 8 Slide piece 8a Convex portion 9 Non-magnetic stopper 10 Non-magnetic slide piece 20 Non-magnetic storage case 21 Deformation container 22 Separator 23 Magnetic fluid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性シャフトの外周に積層鉄板を周方
向に複数分割して配置し、この周方向に沿う積層鉄板間
に永久磁石を備え、この永久磁石と上記非磁性シャフト
との間及び上記永久磁石と隣り合う積層鉄板と上記非磁
性シャフトとの間に空隙を設け、この空隙内にばねを介
して短絡片を取付けた永久磁石式同期電動機。
1. A non-magnetic shaft is provided with a plurality of laminated iron plates divided in the circumferential direction, the permanent magnets are provided between the laminated iron plates along the circumferential direction, and between the permanent magnet and the non-magnetic shaft. A permanent magnet synchronous motor in which a gap is provided between the laminated iron plate adjacent to the permanent magnet and the non-magnetic shaft, and a short-circuit piece is mounted in the gap via a spring.
【請求項2】 シャフトの外周に積層鉄板を周方向に複
数分割して配置し、この積層鉄板のシャフト側に周方向
に沿って凹部を形成し、この凹部内にばねを介在させ、
この凹部と嵌り合う凸部を有するスライド片を上記積層
鉄板のシャフト側に周方向に複数分割して配置し、この
スライド片のシャフト側に永久磁石を配置した永久磁石
式同期電動機。
2. A laminated iron plate is circumferentially divided into a plurality of parts on the outer circumference of a shaft, and a concave portion is formed on the shaft side of the laminated iron plate along the circumferential direction. A spring is interposed in the concave portion.
A permanent magnet synchronous motor in which a slide piece having a convex portion that fits into this concave portion is circumferentially divided into a plurality of pieces on the shaft side of the laminated iron plate, and a permanent magnet is arranged on the shaft side of the slide piece.
【請求項3】 シャフト外周に永久磁石を備え、更にこ
の永久磁石に対応してその外側に周方向に複数分割した
積層鉄板を配置し、この周方向に分割された積層鉄板間
にばねを介して短絡片を放射方向に移動可能に配置した
永久磁石式同期電動機。
3. A permanent magnet is provided on the outer periphery of the shaft, and further, a plurality of laminated iron plates divided in the circumferential direction are arranged outside the shaft corresponding to the permanent magnet, and a spring is interposed between the laminated iron plates divided in the circumferential direction. A permanent magnet type synchronous motor in which the short-circuit piece is arranged so as to be movable in the radial direction.
【請求項4】 シャフト外周に永久磁石を備え、更にこ
の永久磁石の両側に積層鉄板を配置し、この積層鉄板の
周方向に沿う中央に切欠きを設け、この切欠き内に入り
込み得る変形可能な磁性流体を配置した永久磁石式同期
電動機。
4. A deformable magnet which is provided with a permanent magnet on the outer circumference of the shaft, further has laminated iron plates arranged on both sides of the permanent magnet, has a notch at the center along the circumferential direction of the laminated iron plate, and can be inserted into the notch. Permanent magnet synchronous motor with various magnetic fluids.
JP7340160A 1995-07-14 1995-12-27 Permanent magnet type synchronous motor Withdrawn JPH0993846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7340160A JPH0993846A (en) 1995-07-14 1995-12-27 Permanent magnet type synchronous motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-178382 1995-07-14
JP17838295 1995-07-14
JP7340160A JPH0993846A (en) 1995-07-14 1995-12-27 Permanent magnet type synchronous motor

Publications (1)

Publication Number Publication Date
JPH0993846A true JPH0993846A (en) 1997-04-04

Family

ID=26498565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7340160A Withdrawn JPH0993846A (en) 1995-07-14 1995-12-27 Permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JPH0993846A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252184A (en) * 2006-02-14 2007-09-27 Nissan Motor Co Ltd Rotary electric machine
US7589449B2 (en) 2005-05-13 2009-09-15 Mitsubishi Denki Kabushiki Kasiha Electric rotating machine
JP2010154755A (en) * 2005-03-09 2010-07-08 Nissan Motor Co Ltd Motor
CN103138517A (en) * 2011-11-25 2013-06-05 丹佛斯(天津)有限公司 Rotor of asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor using rotor
WO2016000699A1 (en) * 2014-07-03 2016-01-07 Schaeffler Technologies AG & Co. KG Electric machine having mechanical field weakening and having a fail-safe actuator system
WO2016000698A1 (en) * 2014-07-03 2016-01-07 Schaeffler Technologies AG & Co. KG Dynamo-electric machine having displaceable flux-guiding elements
CN105356709A (en) * 2015-11-30 2016-02-24 济宁环宇机电有限责任公司 Permanent magnet DC brushless motor for pure electric vehicle
CN105896860A (en) * 2016-06-23 2016-08-24 孙跃 Permanent magnet synchronous motor rotor
CN105978197A (en) * 2016-06-27 2016-09-28 燕胜 Permanent magnet synchronous motor rotor
CN106026584A (en) * 2016-06-15 2016-10-12 燕胜 Permanent-magnet synchronous motor rotor
CN106100269A (en) * 2016-06-15 2016-11-09 孙跃 A kind of permanent-magnetic synchronous motor rotor
EP3163726A1 (en) * 2015-10-27 2017-05-03 Hamilton Sundstrand Corporation Flux control of permanent magnet electric machine
JP2018166377A (en) * 2017-03-28 2018-10-25 本田技研工業株式会社 Variable field rotary electric machine
WO2021015060A1 (en) * 2019-07-19 2021-01-28 アイシン・エィ・ダブリュ株式会社 Variable-magnetic-flux-type dynamo-electric machine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154755A (en) * 2005-03-09 2010-07-08 Nissan Motor Co Ltd Motor
US7589449B2 (en) 2005-05-13 2009-09-15 Mitsubishi Denki Kabushiki Kasiha Electric rotating machine
JP2007252184A (en) * 2006-02-14 2007-09-27 Nissan Motor Co Ltd Rotary electric machine
CN103138517A (en) * 2011-11-25 2013-06-05 丹佛斯(天津)有限公司 Rotor of asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor using rotor
US10498182B2 (en) 2014-07-03 2019-12-03 Schaeffler Technologies AG & Co. KG Electric machine having mechanical field weakening and including a fail-safe actuator system
WO2016000698A1 (en) * 2014-07-03 2016-01-07 Schaeffler Technologies AG & Co. KG Dynamo-electric machine having displaceable flux-guiding elements
US10601271B2 (en) 2014-07-03 2020-03-24 Schaeffler Technologies AG & Co. KG Dynamoelectric machine including displaceable flux-guiding elements
CN106664001B (en) * 2014-07-03 2020-01-17 舍弗勒技术股份两合公司 Electric machine with mechanical field weakening device and failsafe actuation device
WO2016000699A1 (en) * 2014-07-03 2016-01-07 Schaeffler Technologies AG & Co. KG Electric machine having mechanical field weakening and having a fail-safe actuator system
CN106489230A (en) * 2014-07-03 2017-03-08 舍弗勒技术股份两合公司 Dynamoelectric machine having movable magnetic flux guides
CN106664001A (en) * 2014-07-03 2017-05-10 舍弗勒技术股份两合公司 Electric machine with mechanical field weakening device and failsafe actuation device
CN106489230B (en) * 2014-07-03 2019-11-15 舍弗勒技术股份两合公司 Radial flux dynamoelectric machine with movable flux guides
US10355568B2 (en) 2015-10-27 2019-07-16 Hamilton Sundstrand Corporation Flux control of permanent magnet electric machine
EP3163726A1 (en) * 2015-10-27 2017-05-03 Hamilton Sundstrand Corporation Flux control of permanent magnet electric machine
CN105356709A (en) * 2015-11-30 2016-02-24 济宁环宇机电有限责任公司 Permanent magnet DC brushless motor for pure electric vehicle
CN106100269A (en) * 2016-06-15 2016-11-09 孙跃 A kind of permanent-magnetic synchronous motor rotor
CN106026584A (en) * 2016-06-15 2016-10-12 燕胜 Permanent-magnet synchronous motor rotor
CN105896860A (en) * 2016-06-23 2016-08-24 孙跃 Permanent magnet synchronous motor rotor
CN108768019A (en) * 2016-06-27 2018-11-06 长泰县爱菲社机械科技有限公司 A kind of rotor
CN108768019B (en) * 2016-06-27 2019-10-29 胜利油田顺天节能技术有限公司 A kind of rotor
CN105978197A (en) * 2016-06-27 2016-09-28 燕胜 Permanent magnet synchronous motor rotor
JP2018166377A (en) * 2017-03-28 2018-10-25 本田技研工業株式会社 Variable field rotary electric machine
WO2021015060A1 (en) * 2019-07-19 2021-01-28 アイシン・エィ・ダブリュ株式会社 Variable-magnetic-flux-type dynamo-electric machine

Similar Documents

Publication Publication Date Title
JPH0993846A (en) Permanent magnet type synchronous motor
US6727628B2 (en) Rotor structure for permanent-magnet motor
US9071118B2 (en) Axial motor
US4459501A (en) Toroidal generator and motor with radially extended magnetic poles
EP0356368A1 (en) D.C. motor
CN109842255B (en) Rotating electric machine with flux variable mechanism
JP3452434B2 (en) Permanent magnet rotor
KR20050004286A (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
JP3455002B2 (en) Permanent magnet type rotating electric machine
JP4212982B2 (en) Rotating electric machine
JP4494615B2 (en) Permanent magnet rotating electric machine
JP2007318860A5 (en)
JP2007318860A (en) Rotating electric machine
JP2001025190A (en) Rotor of motor
JPH03107615A (en) Magnetic bearing
JP3210634B2 (en) Permanent magnet type reluctance type rotating electric machine
JPH09303395A (en) Magnetic bearing device
JP4525026B2 (en) Rotating electric machine
JP2008187863A (en) Axial gap rotary electric machine and compressor
US2465275A (en) Motor construction
JPH09308200A (en) Permanent magnet type dynamo-electric machine
JP2008220128A (en) Axial gap type rotary electric machine and compressor
JPH11275789A (en) Rotor
JP2012050292A (en) Permanent magnet embedded rotor
WO2023171488A1 (en) Rotor and rotating electric machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304