JP2007318860A - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP2007318860A
JP2007318860A JP2006143807A JP2006143807A JP2007318860A JP 2007318860 A JP2007318860 A JP 2007318860A JP 2006143807 A JP2006143807 A JP 2006143807A JP 2006143807 A JP2006143807 A JP 2006143807A JP 2007318860 A JP2007318860 A JP 2007318860A
Authority
JP
Japan
Prior art keywords
rotor core
fixed
rotating
rotor
side rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143807A
Other languages
Japanese (ja)
Other versions
JP2007318860A5 (en
Inventor
Takeshi Nonaka
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2006143807A priority Critical patent/JP2007318860A/en
Publication of JP2007318860A publication Critical patent/JP2007318860A/en
Publication of JP2007318860A5 publication Critical patent/JP2007318860A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electric machine which can change field magnetic flux according to the magnitude of a load irrespective of the rotational speed of a rotor, without causing unnecessary loss, with a rotor simple in structure. <P>SOLUTION: In the motor provided with the rotor R having field magnets at rotor cores, the rotor R comprises the fixed-side rotor core 1 fixed to a rotating shaft 5, and the turnable-side rotor core 2 attached to the fixed-side rotor core 1 so as to be turnable relatively to the core. The fixed-side rotor core 1 has recesses 1b formed at a face side opposing the turnable-side rotor core 2, and a plurality of pins 6 which are press-fixed to the recesses 1b along the circumferential direction. The turnable-side rotor core 2 has: a step 2a which is formed so as to be engaged with the recesses 1b of the fixed-side rotor core 1; protrusions 2b which are formed so as to be protrusive in a plurality of pieces at the inside-diameter side of the step; a coil spring 8 which is inserted into a guide groove 2c between the plurality of protrusions 2b; and a spring sheet 7 which is inserted into the guide groove 2c between the coil spring 8 and the protrusions 2b, has holes 7a for locking the pins 6, and is energized by the coil spring 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転子鉄心に界磁用磁石が設置された回転子を有する回転電機に関する。   The present invention relates to a rotating electrical machine having a rotor in which a field magnet is installed on a rotor core.

従来の、埋め込み磁石構造の回転子を有する回転電機は、一般的に界磁用磁石が回転子に固定されている。このような回転電機の誘起電圧は、界磁磁束と回転子の回転速度に比例するため、回転速度に対する誘起電圧の関係は図8の直線abで示したような特性となる。そのため、仮に電源の電圧が電圧cで制限される電動機を例とすれば、この電動機の最高回転速度は回転速度dで制限される狭い運転域となる。
そこで、界磁磁束を回転子の回転速度に応じて変化させる埋め込み磁石構造の回転子を有する回転電機が提案されている(例えば、特許文献1参照)。
図13は第1従来技術を示す埋め込み磁石構造の回転子を有する回転電機の分解斜視図であって、(A)は低回転、(B) は高回転の場合である。
図13における回転電機は、図示しない複数の固定子磁極に回転磁界を発生するための巻線を有する固定子と、複数の固定子磁極に対して回転すると共に、回転軸100に固定された界磁用磁石103、104を有する複数の回転子101、102と、該複数の回転子の合成した磁極の位相を第1回転子101の磁極に対して第2回転子102の回転に伴い変化させる機構を備え、該機構は第2回転子102に設けた長溝105と、ガバナ固定板106に設けた長穴108と、先端がガバナ107と弾性部材110で接続され、その弾性力で引き合うように長穴108および長溝105に沿って動く可動側軸109より構成されている。具体的には、第1回転子101に設置された第1界磁用磁石103と、第2回転子102に設置された第2界磁用磁石104は、回転速度の低い時には図13(A)に示されているように同じ極性の磁極が軸方向に揃い、回転速度の高い時には図13(B)に示されているように、該機構を用いて異なる極性の磁極が軸方向に揃う構造となっている。この技術によれば、回転子の回転速度が高い時に界磁用磁石の磁束が相殺することで誘起電圧を下げ、その分高速運転領域を広げることが可能となる。
一方、上述した埋め込み磁石構造の回転子に対して、表面磁石構造の回転子を有し、界磁磁束を回転子の回転速度に応じて変化させる回転電機も提案されている(例えば、特許文献2参照)。
図14は第2従来技術を示す表面磁石構造の回転子を有する回転電機の正面図である。
図14において、回転軸120に取り付けた可動回転子121の回転子鉄心122の表面には界磁用磁石123が固定され、また、
1148446411610_0
に示すように一対の螺旋状の回動用案内溝124が設けられている。溝124は180度対称に配置され、
1148446411610_1
では径方向外側に向かうにつれて反時計方向に曲がっている。溝124にはそれぞれ、ウエイト125が軸方向に挿入されており、ウエイト125が溝の中を自在に滑動乃至回動することができる。このような構成で、ウェイト120とつるまきバネ126を用いて、界磁磁束を回転子の回転速度に応じて変化させる。
特開平10−155262号公報(第9頁、図3) 特開2004−242461号公報(第9頁、図3)
In a conventional rotating electric machine having a rotor having an embedded magnet structure, a field magnet is generally fixed to the rotor. Since the induced voltage of such a rotating electrical machine is proportional to the field magnetic flux and the rotational speed of the rotor, the relationship between the induced voltage and the rotational speed has a characteristic as shown by the straight line ab in FIG. Therefore, if an electric motor whose power source voltage is limited by the voltage c is taken as an example, the maximum rotational speed of the electric motor is a narrow operating range limited by the rotational speed d.
Therefore, a rotating electrical machine having a rotor with an embedded magnet structure that changes the field magnetic flux in accordance with the rotational speed of the rotor has been proposed (see, for example, Patent Document 1).
FIG. 13 is an exploded perspective view of a rotating electrical machine having a rotor with an embedded magnet structure showing the first prior art, where (A) shows a low rotation and (B) shows a high rotation.
The rotating electrical machine in FIG. 13 has a stator having a winding for generating a rotating magnetic field in a plurality of stator magnetic poles (not shown), and a field that rotates with respect to the plurality of stator magnetic poles and is fixed to the rotating shaft 100. The phases of the plurality of rotors 101 and 102 having the magnets 103 and 104 and the combined magnetic poles of the plurality of rotors are changed with the rotation of the second rotor 102 with respect to the magnetic poles of the first rotor 101. The mechanism includes a long groove 105 provided in the second rotor 102, a long hole 108 provided in the governor fixing plate 106, and a tip connected by a governor 107 and an elastic member 110 so that they are attracted by their elastic force. The movable side shaft 109 moves along the long hole 108 and the long groove 105. Specifically, the first field magnet 103 installed on the first rotor 101 and the second field magnet 104 installed on the second rotor 102 are shown in FIG. As shown in FIG. 13B, magnetic poles of the same polarity are aligned in the axial direction. When the rotational speed is high, magnetic poles of different polarities are aligned in the axial direction using the mechanism as shown in FIG. It has a structure. According to this technique, when the rotational speed of the rotor is high, the magnetic flux of the field magnet cancels out, so that the induced voltage can be lowered and the high-speed operation region can be expanded accordingly.
On the other hand, a rotating electrical machine that has a rotor with a surface magnet structure and changes the field magnetic flux in accordance with the rotation speed of the rotor is proposed in addition to the rotor with the embedded magnet structure described above (for example, Patent Documents). 2).
FIG. 14 is a front view of a rotating electric machine having a rotor having a surface magnet structure showing the second prior art.
In FIG. 14, a field magnet 123 is fixed to the surface of the rotor core 122 of the movable rotor 121 attached to the rotating shaft 120,
1148446411610_0
As shown, a pair of spiral guide grooves 124 for rotation are provided. The grooves 124 are arranged 180 degrees symmetrically,
1148446411610_1
Then, it turns counterclockwise as it goes outward in the radial direction. A weight 125 is inserted into each groove 124 in the axial direction, and the weight 125 can freely slide or rotate in the groove. With such a configuration, the field magnetic flux is changed according to the rotational speed of the rotor using the weight 120 and the helical spring 126.
JP-A-10-155262 (page 9, FIG. 3) Japanese Patent Laying-Open No. 2004-242461 (page 9, FIG. 3)

ところが、従来技術は以下の問題があった。
第1従来技術の埋め込み磁石構造の回転子を有する回転電機では、図13の分解斜視図では分かりにくいが、界磁磁束を回転子の回転速度に応じて変化させる機構を回転子鉄心の内側に挿入して組み立てた場合、該機構は完全には回転子鉄心の軸方向の長さには収まらず、回転子鉄心から突出して設けられる構成になるため、回転子全体の軸方向長さが増大し、回転電機の小型化に不利であった。また、界磁磁束を回転子の回転速度に応じて変化させる機構を構成する部品数が多いため、回転電機構造を複雑化するだけであった。
第2従来技術の表面磁石構造の回転子を有する回転電機では、回転子の回転速度が高い時に界磁用磁石による磁束が回転子鉄心内で短絡しないため、固定子の巻線に鎖交する磁束を相殺し高速運転領域を広げることは可能になるが、固定子に発生する鉄損の低減が不十分である。そのため回転子の回転速度が高くなるほど鉄損の増加で効率は低下し、また回転電機が高温となり定格出力は低下するという問題があった。
また、第1および第2従来技術では、低回転時において、負荷の大きさに関係なく、大きな界磁磁束となる。そのため、無負荷に近い状態でも損失トルクを伴い、回転子の起動トルクが増大したり、位置決め精度が悪化したりするという問題があった。また、ガバナ機構の耐久性確保、異常振動の抑制、コスト低減に労力を要するという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、回転子の回転速度に関係なく、負荷の大きさに応じて界磁磁束を変化させることができると共に、不要な損失を伴うことのない、小型で簡単な構造の回転子を有する回転電機を提供することを目的とする。
However, the prior art has the following problems.
In the rotary electric machine having the rotor of the embedded magnet structure of the first prior art, it is difficult to understand in the exploded perspective view of FIG. 13, but a mechanism for changing the field magnetic flux according to the rotation speed of the rotor is provided inside the rotor core. When assembled by insertion, the mechanism does not completely fit in the axial length of the rotor core, and is configured to protrude from the rotor core, increasing the axial length of the entire rotor. However, it was disadvantageous for downsizing of the rotating electrical machine. Further, since the number of parts constituting the mechanism for changing the field magnetic flux in accordance with the rotational speed of the rotor is large, the structure of the rotating electrical machine has only been complicated.
In the rotating electric machine having the rotor of the surface magnet structure of the second prior art, the magnetic flux by the field magnet is not short-circuited in the rotor core when the rotational speed of the rotor is high. Although it becomes possible to cancel the magnetic flux and widen the high-speed operation range, the reduction of iron loss generated in the stator is insufficient. For this reason, there is a problem that as the rotational speed of the rotor increases, the efficiency decreases due to an increase in iron loss, and the rotating electrical machine becomes hot and the rated output decreases.
In the first and second prior arts, a large field magnetic flux is obtained regardless of the magnitude of the load at the time of low rotation. For this reason, there is a problem in that the starting torque of the rotor increases or the positioning accuracy deteriorates with loss torque even in a state close to no load. In addition, there is a problem that labor is required for ensuring the durability of the governor mechanism, suppressing abnormal vibration, and reducing costs.
The present invention has been made in view of such problems, and can change the field magnetic flux in accordance with the magnitude of the load regardless of the rotational speed of the rotor and is accompanied by unnecessary loss. It is an object of the present invention to provide a rotating electrical machine having a small and simple rotor with no structure.

上記問題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、固定子鉄心に固定子巻線を巻回してなる固定子と、回転子鉄心に界磁用磁石を有する回転子を有する回転電機において、前記回転子は、回転軸に固定された固定側回転子鉄心と、該固定側回転子鉄心に軸方向に隣接して前記固定側回転子鉄心に対して相対回動可能に装着された回動側回転子鉄心と、よりなる2組の回転子鉄心を備え、前記回転子に作用する電磁トルクに応じて前記回動側回転子鉄心が前記固定側回転子鉄心に対し相対回動することを特徴としている。
請求項2に記載の発明は、請求項1記載の回転電機において、前記固定側回転子鉄心は、前記回動側回転子鉄心との対向面側に形成してなる凹部と、前記凹部に円周方向に沿って圧入固定された複数のピンと、を設けてあり、前記回動側回転子鉄心は、前記固定側回転子鉄心の凹部と嵌合するように設けた段差部と、前記段差部の内径側を複数の凸状に形成してなる凸部と、前記複数の凸部間のガイド溝に挿入されるコイルスプリングと、前記コイルスプリングと前記凸部の間におけるガイド溝に挿入されると共に前記ピンを係止するための孔部を有し、かつ、前記コイルスプリングにより付勢されるスプリングシートと。を備えたことを特徴としている。
また、請求項3に記載の発明は、請求項1または2に記載の回転電機において、前記2組の回転子鉄心に設けた界磁用磁石は、回転方向に極性が順次異なった磁極を有することを特徴としている。
また、請求項4に記載の発明は、請求項1または2に記載の回転電機において、前記回動側回転子鉄心は、前記トルクが小さい時には界磁磁束は小さく、前記トルクが大きい時には界磁磁束は大きくなるように、前記固定側回転子鉄心に対し相対回動するものであることを特徴としている。
また、請求項5に記載の発明は、請求項1または2に記載の回転電機において、前記回転子は、前記トルクが小さい時には、前記2組の回転子鉄心の間に働くトルクまたは前記コイルスプリングの付勢力により、前記2組の回転子鉄心の異なる磁極が軸方向に揃うように相対回動し、界磁磁束を減ずるものであることを特徴としている。
また、請求項6に記載の発明は、請求項2に記載の回転電機において、前記コイルスプリングが挿入される前記ガイド溝内にグリースを充填してあり、前記回動側回転子鉄心の段差部の前記固定側回転子鉄心との対向面側に前記グリースの漏れを防止するためのシール部材を設けたことを特徴としている。
また、請求項7に記載の発明は、請求項1または2に記載の回転電機において、前記固定側回転子鉄心の軸方向端部に、前記回転軸の負荷側を軸支持する負荷側軸受の軸方向の位置を固定するつば部を設けたことを特徴としている。
また、請求項8に記載の発明は、請求項1に記載の回転電機において、前記固定子によって作られる回転磁界の磁極は、前記回動側回転子鉄心の磁極の位置に対して、最大のトルクが発生する位置に設けられることを特徴としている。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a rotating electrical machine having a stator formed by winding a stator winding around a stator core, and a rotor having a field magnet in the rotor core. A fixed-side rotor core fixed to the shaft, and a rotating-side rotor core mounted adjacent to the fixed-side rotor core in the axial direction so as to be rotatable relative to the fixed-side rotor core; The rotating rotor core rotates relative to the fixed rotor core in accordance with electromagnetic torque acting on the rotor.
According to a second aspect of the present invention, in the rotating electrical machine according to the first aspect, the fixed-side rotor core is formed with a recess formed on a surface facing the rotating-side rotor core, and a circle is formed in the recess. A plurality of pins that are press-fitted and fixed along a circumferential direction, and the rotating-side rotor core is provided with a stepped portion that fits into a recessed portion of the fixed-side rotor core; and the stepped portion A convex portion formed on the inner diameter side of the plurality of convex shapes, a coil spring inserted into a guide groove between the plurality of convex portions, and a guide groove between the coil spring and the convex portion. And a spring seat having a hole for locking the pin and biased by the coil spring. It is characterized by having.
According to a third aspect of the present invention, in the rotating electric machine according to the first or second aspect, the field magnets provided on the two sets of rotor cores have magnetic poles having different polarities sequentially in the rotation direction. It is characterized by that.
According to a fourth aspect of the present invention, in the rotating electrical machine according to the first or second aspect, the rotating-side rotor core has a small field magnetic flux when the torque is small, and a field magnet when the torque is large. The magnetic flux rotates relative to the fixed-side rotor core so as to increase the magnetic flux.
According to a fifth aspect of the present invention, in the rotating electrical machine according to the first or second aspect, when the torque is small, the rotor acts between the two sets of rotor cores or the coil spring. Due to the urging force, the two magnetic poles of the two sets of rotor cores rotate relative to each other so as to be aligned in the axial direction, and the field magnetic flux is reduced.
According to a sixth aspect of the present invention, in the rotating electrical machine according to the second aspect of the present invention, the guide groove into which the coil spring is inserted is filled with grease, and the step portion of the rotating side rotor core is provided. A seal member for preventing leakage of the grease is provided on the surface facing the fixed-side rotor core.
Further, the invention according to claim 7 is the rotating electrical machine according to claim 1 or 2, wherein the load-side bearing that axially supports the load side of the rotating shaft at the axial end of the fixed-side rotor core. It is characterized in that a collar portion for fixing the position in the axial direction is provided.
According to an eighth aspect of the present invention, in the rotating electric machine according to the first aspect, the magnetic pole of the rotating magnetic field generated by the stator is the largest relative to the position of the magnetic pole of the rotating side rotor core. It is provided at a position where torque is generated.

請求項1、2に記載の発明によると、回転子は、固定側と回動側の2組の回転子鉄心を有し、回転子に作用する電磁トルクに応じて回動側回転子鉄心が固定側回転子鉄心に対し相対回動するため、負荷の大きさに応じて界磁磁束を変化させ、不要な損失を伴わない回転電機を提供することができる。
また、請求項3に記載の発明によると、回転子鉄心は、各々が回転方向に順次異なった磁極を有するように界磁用磁石を設置するため、小さな相対回動で、固定子の巻線に鎖交する界磁磁束を大きく変化させることができる。
また、請求項4に記載の発明によると、回動側回転子鉄心は、前記トルクが小さい時には界磁磁束は小さく、前記トルクが大きい時には界磁磁束は大きくなるように、固定側回転子鉄心に対し相対回動するため、負荷に応じた適切な界磁磁束を得ることができる。
また、請求項5に記載の発明によると、前記回転子は、前記トルクが小さい時には、2組の回転子鉄心の間に働くトルクまたは設置されたスプリングの付勢力により、2組の回転子鉄心の異なる磁極が軸方向に揃うように相対回動し、界磁磁束が減ずるため、不要な損失を伴わない、簡単な構造の回転子を有する回転電機を提供できる。
また、請求項6に記載の発明によると、コイルスプリングの取付け部であるガイド溝内にグリースを充填し、さらに回動側回転子鉄心の段差部の前記固定側回転子鉄心との対向面側に前記グリースの漏れを防止するためのシール部材を設けるため、グリースが回動側回転子鉄心内部に確保され、ガイド溝内のコイルスプリングとスプリングシート部の耐久性を得られるとともに、グリースのダンパ効果と段差部に設けられたシール部材の摩擦抵抗により、異常振動を抑制できる。
また、請求項7に記載の発明によると、固定側回転子鉄心の内周側に設けたつば部が負荷側軸受の内輪と当接して軸受の押さえとして作用するため、負荷側軸受の軸方向の位置を確実に固定することができる。
また、請求項8に記載の発明によると、回転電機の固定子によって作られる回転磁界の磁極は、回動側回転子鉄心の磁極の位置に対して、最大のトルクが発生する位置に設けられるため、回動側回転子鉄心の回動位置に関係なく、適切な界磁磁束を得ることができる。
According to the first and second aspects of the invention, the rotor has two sets of rotor cores, that is, a fixed side and a rotating side, and the rotating side rotor core is in accordance with electromagnetic torque acting on the rotor. Since the relative rotation with respect to the fixed-side rotor core is performed, the field magnetic flux is changed according to the magnitude of the load, and a rotating electric machine without unnecessary loss can be provided.
According to the third aspect of the present invention, since the rotor core is provided with the field magnets so that each of the rotor cores has sequentially different magnetic poles in the rotation direction, the stator winding can be wound with a small relative rotation. It is possible to greatly change the field magnetic flux linked to the magnetic field.
According to a fourth aspect of the present invention, the rotating-side rotor core has a fixed-side rotor core so that the field magnetic flux is small when the torque is small and the field magnetic flux is large when the torque is large. Therefore, an appropriate field magnetic flux according to the load can be obtained.
According to a fifth aspect of the present invention, when the torque is small, the rotor has two sets of rotor cores by a torque acting between the two sets of rotor cores or an urging force of an installed spring. Therefore, a rotating electrical machine having a rotor with a simple structure and no unnecessary loss can be provided.
According to the sixth aspect of the present invention, grease is filled in the guide groove which is a mounting portion of the coil spring, and the stepped portion of the rotating-side rotor core faces the fixed-side rotor core. The seal member for preventing the leakage of grease is provided on the rotating side rotor core, so that the grease is secured inside the rotor core of the rotating side, the durability of the coil spring and the spring seat in the guide groove is obtained, and the grease damper Abnormal vibration can be suppressed by the effect and the frictional resistance of the seal member provided at the stepped portion.
According to the invention of claim 7, since the flange portion provided on the inner peripheral side of the fixed-side rotor core contacts the inner ring of the load-side bearing and acts as a bearing press, the axial direction of the load-side bearing Can be securely fixed.
According to the invention described in claim 8, the magnetic pole of the rotating magnetic field produced by the stator of the rotating electrical machine is provided at a position where the maximum torque is generated with respect to the position of the magnetic pole of the rotating rotor core. Therefore, an appropriate field magnetic flux can be obtained regardless of the rotation position of the rotation-side rotor core.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す電動機の軸方向側断面図、図2は図1に示す電動機の正断面図であって、回転子は回動側回転子鉄心を段差部端面側から見た図に相当するものである。また、図3は図1の回転子を構成する固定側回転子鉄心および回動側回転子鉄心を分解した分解斜視図である。
なお、本実施例は、スピンドルモータ等高頻度の起動、停止を繰返す用途に供する電動機を想定している。また、本電動機は、回転方向が回転軸を負荷側より見て、右回転側のみ駆動するに適した構造となっている。
図1乃至図3において、Rは回転子、Sは固定子、1は固定側回転子鉄心、1aはつば部、1bは凹部、2は回動側回転子鉄心、2aは段差部、2bは凸部、2cはガイド溝、3および4は界磁用磁石、5は回転軸、6はピン、7はスプリングシート、7aは孔部、8はコイルスプリング、9および10はOリング、11は固定子鉄心、12は固定子巻線、20は負荷側軸受、21は反負荷側軸受、22は回路基板、23は回転位置検出部である。
FIG. 1 is an axial sectional view of an electric motor according to a first embodiment of the present invention. FIG. 2 is a front sectional view of the electric motor shown in FIG. It corresponds to the figure seen from the side. FIG. 3 is an exploded perspective view in which the fixed-side rotor core and the rotating-side rotor core constituting the rotor of FIG. 1 are disassembled.
In addition, a present Example assumes the electric motor with which it uses for the use which repeats starting and a stop with high frequency, such as a spindle motor. The electric motor has a structure suitable for driving only the right rotation side when the rotation direction is viewed from the load side of the rotation shaft.
1 to 3, R is a rotor, S is a stator, 1 is a fixed rotor core, 1a is a flange, 1b is a recess, 2 is a rotating rotor core, 2a is a step, and 2b is a step. Convex part, 2c is a guide groove, 3 and 4 are field magnets, 5 is a rotating shaft, 6 is a pin, 7 is a spring seat, 7a is a hole, 8 is a coil spring, 9 and 10 are O-rings, 11 is A stator core, 12 is a stator winding, 20 is a load side bearing, 21 is an anti-load side bearing, 22 is a circuit board, and 23 is a rotational position detector.

本発明の特徴は以下のとおりである。
すなわち、固定子鉄心11に固定子巻線12を巻回してなる固定子Sと、固定子Sと磁気的空隙を介して設けられると共に、回転子鉄心に界磁用磁石3、4を有する回転子Rと、を有する電動機において、回転子Rは、図1に示すとおり、回転軸5に固定された固定側回転子鉄心1と、該固定側回転子鉄心1に軸方向に隣接して固定側回転子鉄心1に対して相対回動可能に装着された回動側回転子鉄心2と、よりなる2組の回転子鉄心を備えている。また、図1および図3に示すとおり、固定側回転子鉄心1は、回転方向に順次異なった8つの磁極を有するように界磁用磁石3を設置すると共に、同様に、回動側回転子鉄心2も、回転方向に極性が順次異なった8つの磁極を有するように界磁用磁石4を設置している。
それから、一方の固定側回転子鉄心1は、図1乃至図3に示すように、回動側回転子鉄心2との対向面側に形成してなる凹部1bと、凹部1bに円周方向に沿って圧入固定された複数のピン6と、を設けている。また、他方の回動側回転子鉄心2は、図1乃至図3に示すように、固定側回転子鉄心1の凹部1bと嵌合するように設けた段差部2aと、前記段差部の内径側を複数の凸状に形成してなる凸部2bと、複数の凸部2b間のガイド溝2cに挿入されるコイルスプリング8と、コイルスプリング8と凸部2bの間におけるガイド溝2cに挿入されると共にピン6を係止するための孔部7aを有し、かつ、コイルスプリング8により付勢されるスプリングシート7と。を備えており、回転子Rに作用する電磁トルクに応じて回動側回転子鉄心2が固定側回転子鉄心1に対し相対回動し、負荷の大きさに応じて界磁磁束が変化する構造となっている。
つまり、回動側回転子鉄心2は、トルクが小さい時には界磁磁束は小さく、トルクが大きい時には界磁磁束は大きくなるように、固定側回転子鉄心1に対し相対回動するものである。
さらに、コイルスプリング8が挿入されるガイド溝2c内にはグリースを充填してあり、回動側回転子鉄心2の段差部2aの固定側回転子鉄心1との対向面側にグリースを保持し、グリースの漏れを防止するためのシール部材となるOリング9、10を設けている。
また、固定側回転子鉄心1の軸方向端部に、回転軸5の負荷側を軸支持する負荷側軸受20の軸方向の位置を固定するつば部1aを設けている。
The features of the present invention are as follows.
That is, a stator S formed by winding a stator winding 12 around a stator core 11, and a stator S and a magnetic gap, and a rotor having field magnets 3 and 4 on the rotor core. In the electric motor having the rotor R, the rotor R is fixed adjacent to the fixed-side rotor core 1 in the axial direction, as shown in FIG. 1, and the fixed-side rotor core 1 fixed to the rotary shaft 5. There are provided two sets of rotor cores including a rotation side rotor core 2 mounted so as to be rotatable relative to the side rotor core 1. Further, as shown in FIGS. 1 and 3, the fixed-side rotor core 1 is provided with the field magnets 3 so as to have eight magnetic poles that are sequentially different in the rotation direction, and similarly, the rotating-side rotor. The iron core 2 is also provided with field magnets 4 so as to have eight magnetic poles having different polarities in the rotation direction.
Then, as shown in FIGS. 1 to 3, one fixed-side rotor core 1 includes a recess 1 b formed on the surface facing the rotating-side rotor core 2, and the recess 1 b in the circumferential direction. And a plurality of pins 6 that are press-fitted and fixed along. Further, as shown in FIGS. 1 to 3, the other rotating-side rotor core 2 includes a stepped portion 2 a provided so as to be fitted to the recessed portion 1 b of the fixed-side rotor core 1, and an inner diameter of the stepped portion. A convex portion 2b formed on a plurality of convex sides, a coil spring 8 inserted into a guide groove 2c between the plurality of convex portions 2b, and a guide groove 2c between the coil spring 8 and the convex portion 2b. And a spring seat 7 having a hole 7 a for locking the pin 6 and biased by the coil spring 8. The rotating side rotor core 2 rotates relative to the fixed side rotor core 1 according to the electromagnetic torque acting on the rotor R, and the field magnetic flux changes according to the magnitude of the load. It has a structure.
That is, the rotation-side rotor core 2 rotates relative to the fixed-side rotor core 1 so that the field magnetic flux is small when the torque is small and the field magnetic flux is large when the torque is large.
Further, the guide groove 2c into which the coil spring 8 is inserted is filled with grease, and the grease is held on the side of the stepped portion 2a of the rotating side rotor core 2 facing the fixed side rotor core 1. O-rings 9 and 10 are provided as seal members for preventing leakage of grease.
In addition, a flange portion 1 a that fixes the axial position of the load-side bearing 20 that axially supports the load side of the rotary shaft 5 is provided at the axial end portion of the fixed-side rotor core 1.

図4は第1実施例の回転子の界磁磁束が変化する原理を示した説明図であって、(a)は低トトルク時、(b)はトルク増大時、(c)は高トルク時の場合である。
図4に示すように、界磁用磁石3を有する固定側回転子鉄心2と、界磁用磁石4を有する回動側回転子鉄心4とを備えた回転子において、低トルク時、回転子は2組の回転子鉄心の間に働くトルクまたはコイルスプリングの付勢力により、2組の回転子鉄心の異なる磁極が軸方向におおよそ揃うように相対回動するため、界磁磁束は小さい。トルク増大時には、前記スプリングの付勢力に反する方向及び回転子の回転方向に回動し、界磁磁束を強める。また、高トルク時には、2組の回転子鉄心の同じ磁極が軸方向に揃い界磁磁束は大きい状態となる。
FIG. 4 is an explanatory view showing the principle of changing the field magnetic flux of the rotor of the first embodiment, where (a) is at low torque, (b) is at torque increase, and (c) is at high torque. This is the case.
As shown in FIG. 4, in a rotor having a fixed-side rotor core 2 having a field magnet 3 and a rotating-side rotor core 4 having a field magnet 4, the rotor is at low torque. Is relatively rotated so that the different magnetic poles of the two sets of rotor cores are approximately aligned in the axial direction due to the torque acting between the two sets of rotor cores or the biasing force of the coil spring. When the torque increases, it rotates in the direction opposite to the biasing force of the spring and in the rotational direction of the rotor, thereby strengthening the field magnetic flux. Further, at the time of high torque, the same magnetic poles of the two sets of rotor cores are aligned in the axial direction, and the field magnetic flux becomes large.

図5は第1実施例による回転磁界の磁極位置の説明図である。
図5において、θeは、図4の低トルク時において示した、固定側の界磁用磁石3と回動側の界磁用磁石4の相対回動角度である。θeを適正に設けることで、本電動機の無負荷最大回転数を調整するとともに、起動を容易にする。固定子によって作られる回転磁界の磁極は、回動側回転子鉄心2の磁極の位置に対して、適切な位置に設けられるように電動機への負荷電流を流す。
図5に示すφは、回動側回転子鉄心2の磁極中心に対する、回動側回転子鉄心2を駆動するに最適な回転磁界の磁極中心の相対角度を示す。
回転磁界の磁極を、回動側回転子鉄心2の磁極の位置に対して、適切な位置に設ける方法として、図1に示した回転位置検出部23に示すように、回転軸上にエンコーダ等を設ける場合、例えば、回転磁界の磁極位置は、事前に調査した電動機の負荷電流に応じた回動側の磁極位置に対して、最大トルクが発生する位置に調整する。または、回路基板22上の22aに示す位置に回転位置検出部を設け、直接回動側の磁極位置を検出し、その位置に対し、回転磁界の磁極位置を適切に調整しても良い。
FIG. 5 is an explanatory diagram of the magnetic pole position of the rotating magnetic field according to the first embodiment.
In FIG. 5, θe is a relative rotation angle between the fixed-side field magnet 3 and the rotating-side field magnet 4 shown at the time of low torque in FIG. 4. Proper provision of θe adjusts the no-load maximum rotation speed of the motor and facilitates startup. The magnetic pole of the rotating magnetic field created by the stator flows a load current to the electric motor so as to be provided at an appropriate position with respect to the position of the magnetic pole of the rotating rotor core 2.
5 indicates the relative angle of the magnetic pole center of the rotating magnetic field that is optimal for driving the rotating rotor core 2 with respect to the magnetic pole center of the rotating rotor core 2.
As a method of providing the magnetic field of the rotating magnetic field at an appropriate position with respect to the position of the magnetic pole of the rotating-side rotor core 2, as shown in the rotating position detector 23 shown in FIG. For example, the magnetic pole position of the rotating magnetic field is adjusted to a position where the maximum torque is generated with respect to the magnetic pole position on the rotating side corresponding to the load current of the electric motor investigated in advance. Alternatively, a rotational position detection unit may be provided at a position indicated by 22a on the circuit board 22, and the magnetic pole position on the rotation side may be directly detected, and the magnetic pole position of the rotating magnetic field may be appropriately adjusted with respect to that position.

図6は第1実施例による電動機の加速特性の説明図である。
図6に示すように、本発明の電動機の加速特性Fは、充分な加速と高回転を両立できる。従来の界磁磁束を変化しない電動機の加速特性Gは、加速は良いが電圧飽和により高回転まで駆動できない。
高回転に調整した同電動機の加速特性Hは、所望の高回転は得られても、加速が悪くなる。
FIG. 6 is an explanatory diagram of acceleration characteristics of the electric motor according to the first embodiment.
As shown in FIG. 6, the acceleration characteristic F of the electric motor of the present invention can achieve both sufficient acceleration and high rotation. The acceleration characteristic G of a conventional motor that does not change the field magnetic flux is good for acceleration, but cannot be driven to high rotation due to voltage saturation.
The acceleration characteristic H of the electric motor adjusted to a high rotation speed is deteriorated even if a desired high rotation speed is obtained.

図7は本第1実施例による電動機のトルク定数の相対回動角度特性である。
図7は、トルク定数の最大値に対する比を相対回動角度θeの電気角に対し示したものであるが、図に示すように、相対回動角度の増大に伴いトルク定数は増大する。
FIG. 7 shows the relative rotation angle characteristic of the torque constant of the electric motor according to the first embodiment.
FIG. 7 shows the ratio of the torque constant to the maximum value with respect to the electrical angle of the relative rotation angle θe. As shown in the figure, the torque constant increases as the relative rotation angle increases.

したがって、本発明の第1実施例は、回転子が固定側と回動側の2組の回転子鉄心を有し、回転子に作用する電磁トルクに応じて回動側回転子鉄心が固定側回転子鉄心に対し相対回動するため、負荷の大きさに応じて界磁磁束を変化させ、不要な損失を伴わない回転電機を提供することができる。
また、回転子鉄心は、各々が回転方向に順次異なった磁極を有するように界磁用磁石を設置するため、小さな相対回動で、固定子の巻線に鎖交する界磁磁束を大きく変化させることができる。
また、コイルスプリングの取付け部であるガイド溝内にグリースを充填し、さらに回動側回転子鉄心の段差部の固定側回転子鉄心との対向面側にグリースの漏れを防止するためのシール部材を設けるため、グリースが回動側回転子鉄心内部に確保され、ガイド溝内のコイルスプリングとスプリングシートの耐久性を得られるとともに、グリースのダンパ効果と段差部に設けられたシール部材の摩擦抵抗により、異常振動を抑制できる。
また、固定側回転子鉄心の内周側に設けたつば部が負荷側軸受の内輪と当接して軸受の押さえとして作用するため、負荷側軸受の軸方向の位置を確実に固定することができる。
Therefore, in the first embodiment of the present invention, the rotor has two sets of rotor cores, the fixed side and the rotating side, and the rotating side rotor core is fixed on the fixed side according to the electromagnetic torque acting on the rotor. Since it rotates relative to the rotor core, the field magnetic flux is changed according to the magnitude of the load, and a rotating electric machine without unnecessary loss can be provided.
In addition, since the rotor cores are provided with field magnets so that each of them has different magnetic poles in the direction of rotation, the field magnetic flux linked to the stator windings changes greatly with a small relative rotation. Can be made.
Further, a seal member for filling the guide groove, which is a mounting portion of the coil spring, with grease, and preventing leakage of grease on the surface of the stepped portion of the rotating side rotor core facing the fixed side rotor core. Therefore, the grease is secured inside the rotor core of the rotating side, the durability of the coil spring and spring seat in the guide groove can be obtained, the damper effect of grease and the frictional resistance of the seal member provided in the stepped portion Thus, abnormal vibration can be suppressed.
Further, since the flange portion provided on the inner peripheral side of the fixed-side rotor core contacts the inner ring of the load-side bearing and acts as a bearing press, the axial position of the load-side bearing can be reliably fixed. .

図9は、本発明の第2実施例を示す電動機の回転子の正断面図である。
本発明の第2実施例が第1実施例と異なる点は、固定側回転子鉄心に固定された2つのピン16と回動側回転子鉄心のガイド溝に挿入されたスプリングシート17に対し、回動側回転子鉄心13を双方向駆動とした点であり、無負荷時、2組の回転子鉄心の異なる磁極が軸方向に完全に揃う構造とする。
第1実施例と同様に、回動側の界磁用磁石14に対し、回転磁界の磁極を適切に調整するため、磁極は図に示すように、右回転側に駆動する場合は正駆動時回転磁界の磁極25の位置とし、左回転側に駆動する場合は逆回転時回転磁界の磁極の位置26とする。
FIG. 9 is a front sectional view of a rotor of an electric motor showing a second embodiment of the present invention.
The second embodiment of the present invention differs from the first embodiment in that the two pins 16 fixed to the stationary rotor core and the spring seat 17 inserted in the guide groove of the rotating rotor core are The rotating side rotor core 13 is bidirectionally driven, and the different magnetic poles of the two sets of rotor cores are completely aligned in the axial direction when there is no load.
As in the first embodiment, in order to appropriately adjust the magnetic field of the rotating magnetic field with respect to the field magnet 14 on the rotating side, the magnetic pole is driven positively when driven rightward as shown in the figure. The position of the magnetic field 25 of the rotating magnetic field is used, and when driving to the left rotation side, the position 26 of the magnetic field of the rotating magnetic field during reverse rotation is used.

図10は、本発明の第3の実施例を示す電動機の回転子であって、(a)は正断面図、(b)は側断面図である。
本発明の第3実施例が第1実施例と異なる点は、表面磁石構造の電動機に替えて、埋め込み磁石構造の電動機とした点であり、特に高回転時の鉄損低減に留意した実施例である。
具体的には、回転子は、界磁用磁石34を内部に挿入する回転子鉄心31、32と、回転子鉄心31、32を支持する保持部材35、36とに分けて構成したものであり、界磁用磁石34は2組の回転子鉄心31、32にV字に挿入され、回転子鉄心表面に磁極を作り出している。
本実施例は、永久磁石電動機でありながら高起動トルクと高回転を両立できるものであり、一般に、掃除機やエアタオル等の家電用電動機、またはインパクトドライバやグラインダー等の工具用電動機などの、高起動トルクと高回転を両立する用途に有用である。
FIG. 10 shows a rotor of an electric motor according to a third embodiment of the present invention, in which (a) is a front sectional view and (b) is a side sectional view.
The third embodiment of the present invention is different from the first embodiment in that a motor with an embedded magnet structure is used instead of a motor with a surface magnet structure, and in particular, an embodiment that pays attention to reduction of iron loss at high rotation. It is.
Specifically, the rotor is configured by dividing the rotor cores 31 and 32 into which the field magnet 34 is inserted and the holding members 35 and 36 that support the rotor cores 31 and 32. The field magnet 34 is inserted into the two sets of rotor cores 31 and 32 in a V shape to create magnetic poles on the surface of the rotor core.
Although this embodiment is a permanent magnet motor, it can achieve both a high starting torque and a high rotation. Generally, a high motor such as a motor for home appliances such as a vacuum cleaner and an air towel, or a motor for tools such as an impact driver and a grinder is used. It is useful for applications that achieve both starting torque and high rotation.

図11は、第3実施例の回転子の界磁磁束が変化する原理説明図である。
図に示すように、界磁磁束を変化する仕組みは実施例1と同じであり、図11の(a)に示すように駆動トルクの増大に伴い、回動側回転子鉄心42が固定側回転子鉄心41と同じ磁極が揃うように回動する。図11の(b)の2組の回転子鉄心の異なる磁極が軸方向に揃う状態では、界磁用磁石の磁束が回転子鉄心内で短絡し、回転子外部への界磁磁束を極端に減ずる。そのため、鉄損を著しく低減することができる。
FIG. 11 is an explanatory diagram of the principle that the field magnetic flux of the rotor of the third embodiment changes.
As shown in the figure, the mechanism for changing the field magnetic flux is the same as that of the first embodiment. As shown in FIG. 11A, the rotation-side rotor core 42 rotates on the fixed side as the drive torque increases. It rotates so that the same magnetic pole as the core iron core 41 is aligned. When the different magnetic poles of the two sets of rotor cores in FIG. 11B are aligned in the axial direction, the magnetic flux of the field magnet is short-circuited in the rotor core, and the field magnetic flux to the outside of the rotor is extremely reduced. Decrease. Therefore, iron loss can be significantly reduced.

図12は第3実施例の電動機の加速特性の説明図である。
図に示すように、本発明の電動機の加速特性Fは、充分な加速と高回転を両立できる。従来の界磁磁束を変化しない電動機の加速特性Gは、加速は良いが誘起電圧飽和により高回転まで駆動できない。同サイズの従来の整流子付き電動機の加速特性Hは、所望の高回転は得られても、起動トルクで劣るため加速が悪くなる。
FIG. 12 is an explanatory diagram of acceleration characteristics of the electric motor according to the third embodiment.
As shown in the figure, the acceleration characteristic F of the electric motor of the present invention can achieve both sufficient acceleration and high rotation. The acceleration characteristic G of a conventional motor that does not change the field magnetic flux is good in acceleration but cannot be driven to a high speed due to induced voltage saturation. The acceleration characteristic H of a conventional electric motor with a commutator of the same size is inferior in starting torque even if a desired high rotation is obtained, and therefore acceleration is worse.

本発明を産業用回転電機に利用することによって、回転子の回転速度に関係なく、負荷の大きさに応じて界磁磁束を変化させ、不要な損失を伴わない、簡単な構造の回転子を有する回転電機を提供することができるようになり、作業性が向上する。   By using the present invention for an industrial rotating electrical machine, a magnetic flux can be changed according to the magnitude of the load regardless of the rotational speed of the rotor, and a rotor having a simple structure without unnecessary loss. It becomes possible to provide a rotating electric machine having the above, and workability is improved.

本発明の第1実施例を示す電動機の軸方向側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an axial sectional side view of an electric motor showing a first embodiment of the present invention. 図1に示す電動機の正断面図であって、回転子は回動側回転子鉄心を段差部端面側から見た図に相当するものである。It is a front sectional view of the electric motor shown in FIG. 図1の回転子を構成する固定側回転子鉄心および回動側回転子鉄心を分解した分解斜視図である。It is the disassembled perspective view which decomposed | disassembled the fixed side rotor core and the rotation side rotor core which comprise the rotor of FIG. 第1実施例の回転子の界磁磁束が変化する原理を示した説明図であって、(a)は低トトルク時、(b)はトルク増大時、(c)は高トルク時の場合である。It is explanatory drawing which showed the principle which the magnetic field magnetic flux of the rotor of 1st Example changes, Comprising: (a) at the time of low torque, (b) at the time of torque increase, (c) at the time of high torque. is there. 第1実施例による回転磁界の磁極位置の説明図である。It is explanatory drawing of the magnetic pole position of the rotating magnetic field by 1st Example. 第1実施例による電動機の加速特性の説明図である。It is explanatory drawing of the acceleration characteristic of the electric motor by 1st Example. 第1実施例による電動機のトルク定数の相対回動角度特性である。It is the relative rotation angle characteristic of the torque constant of the electric motor by 1st Example. 一般の回転速度に対する誘起電圧の関係を示した図である。It is the figure which showed the relationship of the induced voltage with respect to the general rotational speed. 本発明の第2実施例を示す電動機の回転子の正断面図である。It is a front sectional view of a rotor of an electric motor showing a second embodiment of the present invention. 本発明の第3実施例を示す電動機の回転子であって、(a)は正断面図、(b)は側断面図である。FIG. 6 is a rotor of an electric motor showing a third embodiment of the present invention, where (a) is a front sectional view and (b) is a side sectional view. 第3実施例の回転子の界磁磁束が変化する原理説明図である。It is principle explanatory drawing in which the field magnetic flux of the rotor of 3rd Example changes. 第3実施例の電動機の加速特性の説明図である。It is explanatory drawing of the acceleration characteristic of the electric motor of 3rd Example. 第1従来技術を示す埋め込み磁石構造の回転子を有する回転電機の分解斜視図でであって、(A)は低回転、(B) は高回転の場合である。It is a disassembled perspective view of the rotary electric machine which has a rotor of the embedded magnet structure which shows a 1st prior art, Comprising: (A) is a low rotation, (B) is a case of high rotation. 第2従来技術を示す表面磁石構造の回転子を有する回転電機の正面図である。It is a front view of the rotary electric machine which has a rotor of the surface magnet structure which shows a 2nd prior art.

符号の説明Explanation of symbols

R 回転子、
S 固定子、
1 固定側回転子鉄心、
1a つば部、
1b 凹部、
2 回動側回転子鉄心、
2a 段差部、
2b 凸部、
2c ガイド溝、
3、4 界磁用磁石、
5 回転軸、
6 ピン、
7 スプリングシート、
7a 孔部、
8 コイルスプリング、
9、10 Oリング、
11 固定子鉄心、
12 固定子巻線、
20 負荷側軸受
21 反負荷側軸受
22 回路基板
23 回転位置検出部
24 回転磁界の磁極
25 正駆動時回転磁界の磁極
26 逆駆動時回転磁界の磁極
31 固定側回転子鉄心
32 回動側回転子鉄心
34 回動側界磁用磁石
35 固定側保持部材
36 回動側保持部材
41 固定側回転子鉄心
42 回動側回転子鉄心
R rotor,
S stator,
1 Fixed rotor core,
1a collar part,
1b recess,
2 Rotating side rotor core,
2a steps,
2b convex part,
2c guide groove,
3, 4 field magnets,
5 rotation axis,
6 pins,
7 Spring seat,
7a hole,
8 Coil spring
9, 10 O-ring,
11 Stator core,
12 Stator winding,
20 Load-side bearing 21 Anti-load-side bearing 22 Circuit board 23 Rotation position detection unit 24 Magnetic field of rotating magnetic field 25 Magnetic pole of rotating magnetic field during normal driving 26 Magnetic pole of rotating magnetic field during reverse driving 31 Fixed rotor core 32 Rotating rotor Iron core 34 Rotating side field magnet 35 Fixed side holding member 36 Rotating side holding member 41 Fixed side rotor core 42 Rotating side rotor core

Claims (8)

固定子鉄心に固定子巻線を巻回してなる固定子と、回転子鉄心に界磁用磁石を設けてなる回転子と、を有する回転電機において、
前記回転子は、回転軸に固定された固定側回転子鉄心と、該固定側回転子鉄心に軸方向に隣接して前記固定側回転子鉄心に対して相対回動可能に装着された回動側回転子鉄心と、よりなる2組の回転子鉄心を備え、
前記回転子に作用する電磁トルクに応じて前記回動側回転子鉄心が前記固定側回転子鉄心に対し相対回動することを特徴とする回転電機。
In a rotating electrical machine having a stator formed by winding a stator winding around a stator core, and a rotor provided with a field magnet on the rotor core,
The rotor includes a fixed-side rotor core fixed to a rotation shaft, and a rotation mounted adjacent to the fixed-side rotor core in the axial direction so as to be rotatable relative to the fixed-side rotor core. A side rotor core and two pairs of rotor cores are provided.
A rotating electrical machine characterized in that the rotating-side rotor core rotates relative to the fixed-side rotor core in accordance with electromagnetic torque acting on the rotor.
前記固定側回転子鉄心は、前記回動側回転子鉄心との対向面側に形成してなる凹部と、前記凹部に円周方向に沿って圧入固定された複数のピンと、を設けてあり、
前記回動側回転子鉄心は、前記固定側回転子鉄心の凹部と嵌合するように設けた段差部と、前記段差部の内径側を複数の凸状に形成してなる凸部と、前記複数の凸部間のガイド溝に挿入されるコイルスプリングと、前記コイルスプリングと前記凸部の間におけるガイド溝に挿入されると共に前記ピンを係止するための孔部を有し、かつ、前記コイルスプリングにより付勢されるスプリングシートと。を備えたことを特徴とする請求項1記際の回転電機。
The fixed-side rotor core is provided with a recess formed on the surface facing the rotating-side rotor core, and a plurality of pins press-fitted and fixed along the circumferential direction in the recess.
The rotating-side rotor core includes a stepped portion provided so as to be fitted to a recessed portion of the fixed-side rotor core, a convex portion formed by forming the inner diameter side of the stepped portion into a plurality of convex shapes, A coil spring inserted into a guide groove between a plurality of convex portions, a hole inserted into the guide groove between the coil spring and the convex portion and for locking the pin, and A spring seat biased by a coil spring; The rotating electrical machine according to claim 1, comprising:
前記2組の回転子鉄心に設けた界磁用磁石は、回転方向に極性が順次異なった磁極を有することを特徴とする請求項1または2に記載の回転電機。   3. The rotating electrical machine according to claim 1, wherein the field magnets provided on the two sets of rotor cores have magnetic poles having different polarities sequentially in a rotation direction. 前記回動側回転子鉄心は、前記トルクが小さい時には界磁磁束は小さく、前記トルクが大きい時には界磁磁束は大きくなるように、前記固定側回転子鉄心に対し相対回動するものであることを特徴とする請求項1または2に記載の回転電機。   The rotating-side rotor core rotates relative to the fixed-side rotor core so that the field magnetic flux is small when the torque is small and the field magnetic flux is large when the torque is large. The rotating electrical machine according to claim 1, wherein: 前記回転子は、前記トルクが小さい時には、前記2組の回転子鉄心の間に働くトルクまたは前記コイルスプリングの付勢力により、前記2組の回転子鉄心の異なる磁極が軸方向に揃うように相対回動し、界磁磁束を減ずるものであることを特徴とする請求項1または2に記載の回転電機。   When the torque is small, the rotor is relatively positioned so that different magnetic poles of the two sets of rotor cores are aligned in the axial direction by the torque acting between the two sets of rotor cores or the biasing force of the coil spring. The rotating electrical machine according to claim 1 or 2, wherein the rotating electrical machine rotates to reduce field magnetic flux. 前記コイルスプリングが挿入される前記ガイド溝内にグリースを充填してあり、
前記回動側回転子鉄心の段差部の前記固定側回転子鉄心との対向面側に前記グリースの漏れを防止するためのシール部材を設けたことを特徴とする請求項2に記載の回転電機。
Grease is filled in the guide groove into which the coil spring is inserted,
3. The rotating electrical machine according to claim 2, wherein a sealing member for preventing leakage of the grease is provided on a surface of the stepped portion of the rotating side rotor core facing the fixed side rotor core. .
前記固定側回転子鉄心の軸方向端部に、前記回転軸の負荷側を軸支持する負荷側軸受の軸方向の位置を固定するつば部を設けたことを特徴とする請求項1または2に記載の回転電機。   The collar part which fixes the position of the axial direction of the load side bearing which axially supports the load side of the said rotating shaft was provided in the axial direction edge part of the said fixed side rotor core, The Claim 1 or 2 characterized by the above-mentioned. The rotating electrical machine described. 前記固定子によって作られる回転磁界の磁極は、回動側回転子鉄心の磁極の位置に対して、最大のトルクが発生する位置に設けられることを特徴とする請求項1記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein the magnetic pole of the rotating magnetic field generated by the stator is provided at a position where the maximum torque is generated with respect to the position of the magnetic pole of the rotating rotor core.
JP2006143807A 2006-05-24 2006-05-24 Rotating electric machine Pending JP2007318860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143807A JP2007318860A (en) 2006-05-24 2006-05-24 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143807A JP2007318860A (en) 2006-05-24 2006-05-24 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2007318860A true JP2007318860A (en) 2007-12-06
JP2007318860A5 JP2007318860A5 (en) 2009-03-05

Family

ID=38852209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143807A Pending JP2007318860A (en) 2006-05-24 2006-05-24 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP2007318860A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296758A (en) * 2008-06-04 2009-12-17 Daikin Ind Ltd Field element
WO2015019625A1 (en) * 2013-08-09 2015-02-12 株式会社エナシステム Magnetic rotating device, electric motor, and electric motor generator
JP2015126609A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Rotary electric machine
CN105048742A (en) * 2014-04-22 2015-11-11 株式会社万都 Motor
JP2021040410A (en) * 2019-09-03 2021-03-11 株式会社デンソー Rotor
CN117526659A (en) * 2023-11-27 2024-02-06 皖西学院 Low-loss switch reluctance motor and control system thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269442A (en) * 1989-04-07 1990-11-02 Tomotoshi Tokuno Automatic device for adjusting voltage of generator
JP2002262534A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Rotating electric machine and vehicle for loading the same
JP2002537749A (en) * 1999-02-12 2002-11-05 シラー,ヘルムート Electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269442A (en) * 1989-04-07 1990-11-02 Tomotoshi Tokuno Automatic device for adjusting voltage of generator
JP2002537749A (en) * 1999-02-12 2002-11-05 シラー,ヘルムート Electric machine
JP2002262534A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Rotating electric machine and vehicle for loading the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296758A (en) * 2008-06-04 2009-12-17 Daikin Ind Ltd Field element
WO2015019625A1 (en) * 2013-08-09 2015-02-12 株式会社エナシステム Magnetic rotating device, electric motor, and electric motor generator
JP5906360B2 (en) * 2013-08-09 2016-04-20 株式会社 成田 Magnetic rotating device, electric motor, and motor generator
KR101781085B1 (en) * 2013-08-09 2017-09-22 가부시키가이샤 나리타 Magnetic rotating device, electric motor, and electric motor generator
US10148159B2 (en) 2013-08-09 2018-12-04 Narita Co., Ltd. Magnetic rotating apparatus, electric motor, and motor generator
JP2015126609A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Rotary electric machine
CN105048742A (en) * 2014-04-22 2015-11-11 株式会社万都 Motor
JP2021040410A (en) * 2019-09-03 2021-03-11 株式会社デンソー Rotor
CN117526659A (en) * 2023-11-27 2024-02-06 皖西学院 Low-loss switch reluctance motor and control system thereof

Similar Documents

Publication Publication Date Title
US9071118B2 (en) Axial motor
US7595575B2 (en) Motor/generator to reduce cogging torque
US8796896B2 (en) Electric motor
JP2007252184A (en) Rotary electric machine
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP2007318860A (en) Rotating electric machine
JP2007318860A5 (en)
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
JP4807119B2 (en) Rotating electric machine
JP2016524448A (en) Reduction of bearing force in electric machines
KR200462692Y1 (en) Spoke type motor
JP2007259531A5 (en)
JP2005130689A (en) Rotating electric machine
JP2006006026A (en) Rotor and rotating electric machine equipped therewith
JP6164506B2 (en) Rotating electric machine
JP2005198381A (en) Vernier motor
JP2012080616A (en) Variable flux motor
CN112104121A (en) Rotor and rotating electrical machine
JP2017158333A (en) Motor
JP5324025B2 (en) Rotating electric machine
JP2014107951A (en) Motor
KR100698158B1 (en) A Motor
JP2012060709A (en) Permanent magnet motor
KR102093309B1 (en) Motor of notch structure for reducing torque ripple
KR102390035B1 (en) Flux Concentrate Type Motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113