WO2023171488A1 - Rotor and rotating electric machine - Google Patents

Rotor and rotating electric machine Download PDF

Info

Publication number
WO2023171488A1
WO2023171488A1 PCT/JP2023/007545 JP2023007545W WO2023171488A1 WO 2023171488 A1 WO2023171488 A1 WO 2023171488A1 JP 2023007545 W JP2023007545 W JP 2023007545W WO 2023171488 A1 WO2023171488 A1 WO 2023171488A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnets
rotor
circumferential direction
magnetic pole
Prior art date
Application number
PCT/JP2023/007545
Other languages
French (fr)
Japanese (ja)
Inventor
智数 福▲崎▼
瑞娟 郭
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023171488A1 publication Critical patent/WO2023171488A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor and a rotating electric machine.
  • Automotive traction motors are required to operate in a wide range from low-speed, high-torque to high-speed rotation and high output, so it is difficult to increase efficiency in all operating ranges.
  • "variable field technology” that can vary the effective magnetic flux of a motor depending on the operating point during operation has been attracting attention.
  • Patent Document 1 discloses a magnetic flux short circuit that is arranged in a plurality of flux barriers formed between adjacent magnet insertion holes and has a magnetic flux path from one first pole of the adjacent permanent magnet to the other second pole.
  • a rotor core comprising a magnetic flux shorting member, at least a portion of which is made of a giant magnetostrictive material.
  • the magnetic permeability of the giant magnetostrictive material is improved compared to when the rotor rotates at low speed, thereby increasing the short-circuit magnetic flux.
  • the rotor core described in Patent Document 1 the rotor Magnetic permeability increases when rotating at high speed. Therefore, the effect on improving the average efficiency of the motor and the system efficiency is small. Further, the rotor core described in Patent Document 1 is provided with a weight and a compression spring in order to change the magnetic permeability, which results in an increase in size and cost.
  • the present invention has been made in consideration of the above points, and one of the objects of the present invention is to provide a rotor and a rotating electrical machine that can improve efficiency with a simple configuration.
  • One aspect of the rotor of the present invention includes: a rotor core provided with a plurality of magnet holes and a plurality of accommodating parts extending in the axial direction around a central axis; a plurality of magnetic pole parts having magnets arranged in the magnet holes; a magnetostrictive part that is arranged in the housing part with a gap between the magnetic pole parts and whose relative magnetic permeability changes with elastic deformation, the magnetostrictive part being arranged on the radially outer side of the magnet, It is arranged on the d-axis in the section and extends in the circumferential direction.
  • One aspect of the rotating electric machine of the present invention includes the above rotor and a stator facing the rotor.
  • efficiency can be increased in a rotor and a rotating electric machine with a simple configuration.
  • FIG. 1 is a sectional view showing a rotating electric machine having a rotor according to the present embodiment.
  • FIG. 2 is a sectional view showing a part of the rotating electric machine having the rotor of the first embodiment, and is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the first embodiment.
  • FIG. 4 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the second embodiment.
  • FIG. 5 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the third embodiment.
  • the Z-axis direction appropriately shown in each figure is an up-down direction in which the positive side is the "upper side” and the negative side is the “lower side.”
  • a central axis J shown as appropriate in each figure is a virtual line that is parallel to the Z-axis direction and extends in the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction is simply referred to as the "axial direction”
  • the radial direction centered on the central axis J is simply referred to as the "radial direction.”
  • the circumferential direction centered on is simply called the "circumferential direction.”
  • Arrows ⁇ appropriately shown in each figure indicate the circumferential direction.
  • the arrow ⁇ is oriented clockwise around the central axis J when viewed from above.
  • the side in the circumferential direction where the arrow ⁇ is directed with a certain object as a reference that is, the side that proceeds clockwise when viewed from above
  • the side in the circumferential direction with a certain object as a reference The side opposite to the side toward which the arrow ⁇ is directed, that is, the side that proceeds counterclockwise when viewed from above, is called the "other side in the circumferential direction.”
  • the rotating electrical machine 1 is an inner rotor type rotating electrical machine.
  • the rotating electrical machine 1 is a three-phase AC rotating electrical machine.
  • the rotating electric machine 1 is, for example, a three-phase motor that is driven by being supplied with three-phase AC power.
  • the rotating electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
  • the housing 2 accommodates the rotor 10, stator 60, bearing holder 4, and bearings 5a and 5b inside.
  • the bottom of the housing 2 holds a bearing 5b.
  • the bearing holder 4 holds a bearing 5a.
  • the bearings 5a and 5b are, for example, ball bearings.
  • the stator 60 is located on the outside of the rotor 10 in the radial direction.
  • Stator 60 includes a stator core 61, an insulator 64, and a plurality of coils 65.
  • Stator core 61 has a core back 62 and a plurality of teeth 63.
  • the core back 62 is located on the radially outer side of the rotor core 20, which will be described later. Note that in FIGS. 2 to 3 below, illustration of the coil 65 is omitted. In FIGS. 2 and 3, illustration of the insulator 64 is omitted.
  • the core back 62 has an annular shape surrounding the rotor core 20.
  • the core back 62 has, for example, an annular shape centered on the central axis J.
  • the plurality of teeth 63 extend radially inward from the core back 62.
  • the plurality of teeth 63 are arranged side by side at intervals in the circumferential direction.
  • the plurality of teeth 63 are arranged at equal intervals all around the circumferential direction.
  • 48 teeth 63 are provided. That is, the number of slots 67 in the rotating electric machine 1 is, for example, 48.
  • each of the plurality of teeth 63 has a base portion 63a and an umbrella portion 63b.
  • the base 63a extends radially inward from the core back 62.
  • the circumferential dimension of the base portion 63a is, for example, the same throughout the radial direction. Note that the circumferential dimension of the base portion 63a may become smaller toward the inside in the radial direction, for example.
  • the umbrella portion 63b is provided at the radially inner end of the base portion 63a.
  • the umbrella portion 63b protrudes from the base portion 63a on both sides in the circumferential direction.
  • the circumferential dimension of the umbrella portion 63b is larger than the circumferential dimension at the radially inner end of the base portion 63a.
  • the radially inner surface of the umbrella portion 63b is a curved surface along the circumferential direction.
  • the radially inner surface of the umbrella portion 63b extends in an arc shape centered on the central axis J when viewed in the axial direction.
  • a radially inner surface of the umbrella portion 63b faces an outer circumferential surface of a rotor core 20, which will be described later, with a gap in the radial direction.
  • the umbrella portions 63b are arranged side by side with a gap in the circumferential direction.
  • the plurality of coils 65 are attached to the stator core 61. As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via an insulator 64, for example. In this embodiment, the coil 65 is wound in a distributed manner. In other words, each coil 65 is wound across a plurality of teeth 63. In this embodiment, the coil 65 is fully wound. That is, the circumferential pitch between the slots of the stator 60 into which the coils 65 are inserted is equal to the circumferential pitch of the magnetic poles that occurs when the stator 60 is supplied with three-phase AC power.
  • the number of poles of the rotating electric machine 1 is, for example, eight. That is, the rotating electrical machine 1 is, for example, a rotating electrical machine with 8 poles and 48 slots. Thus, in the rotating electric machine 1 of this embodiment, when the number of poles is N, the number of slots is N ⁇ 6.
  • the rotor 10 is rotatable around a central axis J.
  • the rotor 10 includes a shaft 11, a rotor core 20, a plurality of magnets 40, and a plurality of magnetostrictive sections 50.
  • the shaft 11 has a cylindrical shape that extends in the axial direction centering on the central axis J.
  • the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
  • the rotor core 20 is a magnetic material.
  • the rotor core 20 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor core 20 has a through hole 21 that passes through the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction.
  • the shaft 11 is passed through the through hole 21 .
  • the shaft 11 is fixed within the through hole 21 by, for example, press fitting.
  • the rotor core 20 is configured by, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
  • the rotor core 20 has a plurality of magnet holes 30 and a plurality of accommodating portions 33.
  • the plurality of magnet holes 30 penetrate the rotor core 20 in the axial direction.
  • a plurality of magnets 40 are accommodated inside the plurality of magnet holes 30, respectively.
  • the method of fixing the magnet 40 within the magnet hole 30 is not particularly limited.
  • the plurality of magnet holes 30 include a pair of first magnet holes 31 a and 31 b and a second magnet hole 32 .
  • the types of the plurality of magnets 40 are not particularly limited.
  • the magnet 40 may be, for example, a neodymium magnet or a ferrite magnet.
  • the plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 42.
  • the pair of first magnets 41a and 41b and the second magnet 42 constitute poles.
  • a plurality of the pair of first magnet holes 31a, 31b, the pair of first magnets 41a, 41b, the second magnet hole 32, and the second magnet 42 are provided at intervals in the circumferential direction.
  • the pair of first magnet holes 31a, 31b, the pair of first magnets 41a, 41b, the second magnet hole 32, and the second magnet 42 are provided, for example, eight each.
  • the rotor 10 has a plurality of magnetic pole parts 70 each including a pair of first magnet holes 31a, 31b, a pair of first magnets 41a, 41b, a second magnet hole 32, and a second magnet 42.
  • eight magnetic pole parts 70 are provided.
  • the plurality of magnetic pole parts 70 are arranged at equal intervals all around the circumferential direction.
  • the plurality of magnetic pole parts 70 include a plurality of magnetic pole parts 70N whose magnetic poles on the outer circumferential surface of the rotor core 20 are north poles, and a plurality of magnetic pole parts 70S whose magnetic poles on the outer circumferential surface of the rotor core 20 are south poles.
  • four magnetic pole parts 70N and four magnetic pole parts 70S are provided.
  • the four magnetic pole parts 70N and the four magnetic pole parts 70S are arranged alternately along the circumferential direction.
  • the configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
  • the pair of first magnet holes 31a, 31b are arranged at intervals from each other in the circumferential direction.
  • the first magnet hole 31a is located, for example, on one circumferential side (+ ⁇ side) of the first magnet hole 31b.
  • the first magnet holes 31a and 31b extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction.
  • the pair of first magnet holes 31a, 31b extend in a direction that separates from each other in the circumferential direction from the radially inner side toward the radially outer side when viewed in the axial direction.
  • the first magnet hole 31a is located, for example, on one side in the circumferential direction from the inside in the radial direction to the outside in the radial direction.
  • the first magnet hole 31b is located, for example, on the other circumferential side ( ⁇ side) from the radially inner side toward the radially outer side.
  • the radially outer ends of the first magnet holes 31 a and 31 b are located at the radially outer peripheral edge of the rotor core 20 .
  • the first magnet hole 31a and the first magnet hole 31b are, for example, arranged to sandwich the magnetic pole center line IL1 shown in FIG. 3, which constitutes the d-axis, in the circumferential direction when viewed in the axial direction.
  • the magnetic pole center line IL1 is an imaginary line that passes through the circumferential center of the magnetic pole portion 70 and the central axis J and extends in the radial direction.
  • the first magnet hole 31a and the first magnet hole 31b are, for example, arranged symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction.
  • a description of the first magnet hole 31b may be omitted as the structure is similar to the first magnet hole 31a except that it is axisymmetric with respect to the magnetic pole center line IL1.
  • the first magnet hole 31a has a first straight portion 31c, an inner end 31d, and an outer end 31e.
  • the first straight portion 31c extends linearly in the direction in which the first magnet hole 31a extends when viewed in the axial direction.
  • the first straight portion 31c has, for example, a rectangular shape when viewed in the axial direction.
  • the inner end portion 31d is connected to the radially inner end portion of the first straight portion 31c.
  • the inner end 31d is a radially inner end of the first magnet hole 31a.
  • the outer end portion 31e is connected to the radially outer end of the first straight portion 31c.
  • the outer end 31e is a radially outer end of the first magnet hole 31a.
  • the outer end portion 31e extends radially outward from the radially outer end of the first straight portion 31c along the magnetic pole center line IL1 (details will be described later).
  • the first magnet hole 31b has a first straight portion 31f, an inner end 31g, and an outer end 31h.
  • the second magnet hole 32 is located between the radially outer ends of the pair of first magnet holes 31a and 31b in the circumferential direction. That is, in this embodiment, the second magnet hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction.
  • the second magnet hole 32 extends substantially linearly in a direction orthogonal to the radial direction when viewed in the axial direction.
  • the second magnet hole 32 extends, for example, in a direction perpendicular to the magnetic pole center line IL1 when viewed in the axial direction.
  • the pair of first magnet holes 31a, 31b and the second magnet hole 32 are arranged, for example, along a ⁇ shape when viewed in the axial direction.
  • a certain object extends in a direction perpendicular to a certain direction
  • a certain object extends in a direction strictly orthogonal to a certain direction; This also includes cases in which it extends in a direction substantially orthogonal to a certain direction.
  • a direction substantially perpendicular to a certain direction includes, for example, a direction that is tilted within a range of several degrees [°] with respect to a direction strictly perpendicular to a certain direction, due to manufacturing tolerances or the like.
  • the magnetic pole center line IL1 passes through the circumferential center of the second magnet hole 32. That is, the circumferential position of the circumferential center of the second magnet hole 32 coincides with the circumferential position of the circumferential center of the magnetic pole portion 70, for example.
  • the shape of the second magnet hole 32 when viewed in the axial direction is, for example, a line-symmetrical shape centered on the magnetic pole center line IL1.
  • the second magnet hole 32 is located at the radially outer peripheral edge of the rotor core 20 .
  • the second magnet hole 32 has a second straight portion 32a, one end 32b, and the other end 32c.
  • the second straight portion 32a extends linearly in the direction in which the second magnet hole 32 extends when viewed in the axial direction.
  • the second straight portion 32a has, for example, a rectangular shape when viewed in the axial direction.
  • the one end portion 32b is connected to the end portion of the second straight portion 32a on one circumferential side (+ ⁇ side).
  • One end portion 32b is an end portion of the second magnet hole 32 on one side in the circumferential direction.
  • the one end portion 32b is disposed at a distance from the outer end portion 31e of the first magnet hole 31a on the other circumferential side ( ⁇ side).
  • the other end portion 32c is connected to the end portion of the second straight portion 32a on the other side ( ⁇ side) in the circumferential direction.
  • the other end 32c is the other end of the second magnet hole 32 in the circumferential direction.
  • the other end 32c is spaced apart from the outer end 31h of the first magnet hole 31b on one side in the circumferential direction.
  • the pair of first magnets 41a and 41b are housed inside the pair of first magnet holes 31a and 31b, respectively.
  • the first magnet 41a is housed inside the first magnet hole 31a.
  • the first magnet 41b is housed inside the first magnet hole 31b.
  • the pair of first magnets 41a and 41b have, for example, a rectangular shape when viewed in the axial direction.
  • the lengths in the extending direction of the pair of first magnets 41a and 41b are the same.
  • the lengths of the first magnets 41a, 41b in the direction orthogonal to the direction in which the pair of first magnets 41a, 41b extend are the same.
  • the first magnets 41a and 41b have, for example, a rectangular parallelepiped shape. Although not shown, the first magnets 41a and 41b are provided, for example, throughout the first magnet holes 31a and 31b in the axial direction. The pair of first magnets 41a and 41b are spaced apart from each other in the circumferential direction. The first magnet 41a is located, for example, on one circumferential side (+ ⁇ side) of the first magnet 41b.
  • the first magnet 41a extends along the first magnet hole 31a when viewed in the axial direction.
  • the first magnet 41b extends along the first magnet hole 31b when viewed in the axial direction.
  • the first magnets 41a and 41b extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction.
  • the pair of first magnets 41a and 41b extend in a direction that separates from each other in the circumferential direction from the radially inner side toward the radially outer side when viewed in the axial direction. That is, the circumferential distance between the first magnet 41a and the first magnet 41b increases from the radially inner side to the radially outer side.
  • the first magnet 41a is located, for example, on one circumferential side (+ ⁇ side) from the radially inner side to the radially outer side.
  • the first magnet 41b is located, for example, on the other circumferential side (- ⁇ side) from the radially inner side to the radially outer side.
  • the first magnet 41a and the first magnet 41b are, for example, arranged to sandwich the magnetic pole center line IL1 in the circumferential direction when viewed in the axial direction.
  • the first magnet 41a and the first magnet 41b are arranged symmetrically with respect to the magnetic pole center line IL1, for example, when viewed in the axial direction.
  • a description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line symmetrical with respect to the magnetic pole center line IL1.
  • the first magnet 41a is fitted into the first magnet hole 31a. More specifically, the first magnet 41a is fitted within the first straight portion 31c. Among the side surfaces of the first magnet 41a, at least the radially inner side surface of both side surfaces in the direction orthogonal to the direction in which the first straight portion 31c extends has a gap between it and the inner surface of the first straight portion 31c. It has a slit S1. The first magnet 41a has a slit S1 between the radially inner side surface and the inner side surface of the first straight portion 31c, so that the diameter of the first magnet 41a is increased by centrifugal force when the rotor 10 rotates, as shown in FIG.
  • the radially outer side surface contacts the inner side of the first straight portion 31c while the inner side surface in the radial direction is separated from the inner surface of the first straight portion 31c.
  • the first magnet 41a is configured to be in contact with the inner surface of the first linear portion 31c when not rotating, and a slit S1 is provided between the first magnet 41a and the inner surface of the first linear portion 31c due to centrifugal force when the rotor 10 rotates. It's okay.
  • the magnetic pole portion 70 in the rotor core 20 is divided into a first region 20A located on the radially outer side of the first magnets 41a and 41b, and a second region 20B located on the radially outer side.
  • the width of the first region 20A in the circumferential direction becomes narrower toward the inner side in the radial direction.
  • a boundary between the first region 20A and the second region 20B is formed by slits S1 and S2.
  • the angle formed by the boundary formed by the slits S1 and S2 is larger than the angle occupied by the magnetic pole portion 70 on the rotor core 20.
  • the first region 20A pushes a location radially outward from the first region 20A due to centrifugal force when the rotor 10 rotates.
  • the first region 20A and the second region 20B are connected at a third region 20C located between the radially inner ends of the first magnets 41a and 41b.
  • the length of the first magnet 41a is, for example, the same as the length of the first straight portion 31c.
  • both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first magnet hole 31a in the stretching direction.
  • an inner end 31d and an outer end 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends.
  • the inner end portion 31d constitutes the first flux barrier portion 51a.
  • the outer end portion 31e constitutes a first flux barrier portion 51b.
  • the rotor core 20 has a pair of first flux barrier parts 51a and 51b arranged with the first magnet 41a in between in the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the rotor core 20 includes a pair of first flux barrier portions 51c and 51d arranged with the first magnet 41b in between in the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the first flux barrier portion 51b located on the radially outer side extends radially outward from the radial end of the first magnet 41a in parallel to the magnetic pole center line IL1.
  • the first flux barrier portion 51d located on the radially outer side extends radially outward from the radial end of the first magnet 41b in parallel with the magnetic pole center line IL1.
  • the rotor core 20 includes first flux barrier portions 51a and 51b arranged in pairs with each of the first magnets 41a and 41b sandwiched therebetween in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c, and 51d.
  • the first flux barrier parts 51a, 51b, 51c, and 51d and the second flux barrier parts 52a and 52b, which will be described later, are parts that can suppress the flow of magnetic flux. That is, it is difficult for magnetic flux to pass through each flux barrier portion.
  • Each flux barrier section is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a gap section or a non-magnetic section such as a resin section.
  • the second magnet 42 is housed inside the second magnet hole 32.
  • the second magnet 42 is disposed at a position in the circumferential direction between the pair of first magnets 41a, 41b on the radially outer side than the radially inner end portions of the pair of first magnets 41a, 41b.
  • the second magnet 42 extends along the second magnet hole 32 when viewed in the axial direction.
  • the second magnet 42 extends in a direction perpendicular to the radial direction when viewed in the axial direction.
  • the pair of first magnets 41a, 41b and second magnet 42 are arranged, for example, along a ⁇ shape when viewed in the axial direction.
  • the second magnet is disposed at a position in the circumferential direction between the pair of first magnets
  • the position in the circumferential direction of the second magnet is located at the position in the circumferential direction between the pair of first magnets.
  • the radial position of the second magnet with respect to the first magnet is not particularly limited as long as it is included in the directional position.
  • the shape of the second magnet 42 when viewed in the axial direction is, for example, a shape that is axisymmetric with respect to the magnetic pole center line IL1.
  • the second magnet 42 has, for example, a rectangular shape when viewed in the axial direction.
  • the length of the second magnet 42 in the radial direction is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend.
  • the weight can be made smaller than the weight of the first magnets 41a and 41b.
  • the second magnet 42 By making the second magnet 42 thinner, the second magnet 42 can be placed outside the rotor core 20 in the radial direction. By arranging the second magnet 42 outside the rotor core 20 in the radial direction, it is possible to increase the output of the rotating electric machine 1. Since the magnetization of the second magnet 42 is strengthened by the first magnets 41a and 41b, it is possible to increase the strength of the rotor core 20 and the output of the rotating electric machine 1 without impairing the demagnetization resistance. Furthermore, high demagnetization resistance can be obtained with a small amount of magnets.
  • the second magnet 42 has a rectangular parallelepiped shape, for example.
  • the second magnet 42 is provided, for example, throughout the second magnet hole 32 in the axial direction.
  • the radially inner portion of the second magnet 42 is located, for example, between the radially outer ends of the pair of first magnets 41a, 41b in the circumferential direction.
  • the radially outer portion of the second magnet 42 is located, for example, radially outer than the pair of first magnets 41a, 41b.
  • the second magnet 42 is fitted into the second magnet hole 32. More specifically, the second magnet 42 is fitted within the second straight portion 32a.
  • both side surfaces in the radial direction perpendicular to the direction in which the second linear portion 32a extends are in contact with, for example, the inner surface of the second linear portion 32a, respectively.
  • the second magnet 42 may have a slit between the radially inner side surface and the inner surface of the second linear portion 32a among both side surfaces in the radial direction perpendicular to the direction in which the second linear portion 32a extends. .
  • the length of the second magnet 42 is, for example, the same as the length of the second straight portion 32a.
  • both ends of the second magnet 42 in the extending direction are spaced apart from both ends of the second magnet hole 32 in the extending direction.
  • one end 32b and the other end 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends.
  • the one end portion 32b constitutes the second flux barrier portion 52a.
  • the other end portion 32c constitutes a second flux barrier portion 52b.
  • the rotor core 20 includes a pair of second flux barrier parts 52a and 52b that are arranged to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction.
  • the second flux barrier portions 52a and 52b each have an arcuate shape that extends from the circumferential end of the second magnet 42 toward the side away from the second magnet 42 in the circumferential direction and toward the inner side in the radial direction.
  • the second flux barrier parts 52a, 52b extend radially outward, the distance between the second flux barrier parts 52a, 52b and the outer peripheral surface of the rotor core 20 becomes shorter, and the load on the rotor core 20 is reduced due to centrifugal force during rotation. It has the potential to become larger.
  • the second flux barrier portions 52a and 52b By extending the second flux barrier portions 52a and 52b radially inward, the load on the rotor core 20 can be reduced.
  • the second flux barrier portions 52a, 52b in an arcuate shape, stress concentration at the intersection between the circumferentially extending portion and the radially extending portion can be alleviated, thereby further reducing the load on the rotor core 20.
  • the pair of second flux barrier parts 52a, 52b and the second magnet 42 are composed of a first flux barrier part 51b located on the radially outer side of the pair of first flux barrier parts 51a, 51b sandwiching the first magnet 41a, and a first flux barrier part 51b located on the outside in the radial direction. It is located between the first flux barrier part 51d, which is located on the radially outer side of the pair of first flux barrier parts 51c and 51d sandwiching the first magnet 41b, and the first flux barrier part 51d in the circumferential direction.
  • the magnetic poles of the first magnet 41a are arranged along a direction perpendicular to the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the magnetic poles of the first magnet 41b are arranged along a direction perpendicular to the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the magnetic poles of the second magnet 42 are arranged along the radial direction.
  • the magnetic poles located on the outside in the radial direction, among the magnetic poles of the first magnet 41b, the magnetic poles located on the outside in the radial direction, and among the magnetic poles of the second magnet 42, the magnetic poles located on the outside in the radial direction are as follows: are the same as each other.
  • the magnetic poles located on the inside in the radial direction, among the magnetic poles of the first magnet 41b, the magnetic poles located on the inside in the radial direction, and among the magnetic poles of the second magnet 42, the magnetic poles located on the inside in the radial direction are as follows: are the same as each other.
  • the magnetic pole located on the outer side in the radial direction is, for example, an N pole.
  • one of the magnetic poles of the first magnet 41a is located on the radially inner side
  • one of the magnetic poles of the first magnet 41b is located on the radially inner side
  • one of the magnetic poles of the second magnet 42 is located on the inner side in the radial direction.
  • the magnetic pole is, for example, the S pole.
  • the magnetic poles of each magnet 40 are arranged inverted with respect to the magnetic pole part 70N. That is, in the magnetic pole part 70S, among the magnetic poles of the first magnet 41a, the magnetic pole located on the radially outer side, among the magnetic poles of the first magnet 41b, the magnetic pole located on the radially outer side, and among the magnetic poles of the second magnet 42, the magnetic pole is located on the radially outer side.
  • the magnetic pole located at is, for example, the S pole.
  • one of the magnetic poles of the first magnet 41a is located on the radially inner side
  • one of the magnetic poles of the first magnet 41b is located on the radially inner side
  • one of the magnetic poles of the second magnet 42 is located on the inner side in the radial direction.
  • the magnetic pole is, for example, the N pole.
  • the plurality of accommodating portions 33 are arranged radially outward from the plurality of magnet holes 30.
  • the accommodating portion 33 extends in an arcuate manner in the circumferential direction. Viewed in the axial direction, the accommodating portion 33 is arranged symmetrically with respect to the magnetic pole center line IL1.
  • the housing portion 33 is arranged in each of the magnetic pole portions 70 .
  • the accommodating parts 33 in the circumferentially adjacent magnetic pole parts 70 are arranged apart from each other. For example, the plurality of accommodating portions 33 penetrate the rotor core 20 in the axial direction.
  • the housing portion 33 is connected to the first flux barrier portions 51b and 51d. Since the accommodating portion 33 is connected to the first flux barrier portions 51b and 51d, the first region 20A in the rotor core 20 is connected to the second region 20B only through the third region 20C. Thereby, a larger load can be applied to the magnetostrictive portion 50 due to centrifugal force when the rotor 10 rotates.
  • a plurality of magnetostrictive sections 50 are accommodated inside the plurality of accommodating sections 33, respectively.
  • the plurality of magnetostrictive parts 50 are arranged in the housing part 33 with gaps 33a and 33b between the magnetic pole parts 70 when viewed in the axial direction.
  • the method of fixing the housing section 33 within the housing section 33 is not particularly limited.
  • the magnetostrictive portion 50 is arranged on the magnetic pole center line IL1 of the magnetic pole portion 70 on the outside in the radial direction of the magnet 40.
  • the magnetostrictive portion 50 extends in an arcuate manner in the circumferential direction.
  • the magnetostrictive portion 50 is provided with a dimension that spans the range in which the magnet 40 is arranged in the circumferential direction.
  • the magnetostrictive portion 50 includes a material whose relative magnetic permeability changes with elastic deformation.
  • the magnetostrictive portion 50 is made of, for example, an electromagnetic steel plate with a small amount of Si.
  • the material of the magnetostrictive portion 50 is, for example, permendur.
  • the axis of easy magnetization is the circumferential direction, which is the longitudinal direction
  • the axis of difficult magnetization is the radial direction, which is perpendicular to the longitudinal direction. Therefore, in the magnetostrictive portion 50, the relative magnetic permeability in the circumferential direction becomes larger and the relative magnetic permeability in the radial direction becomes smaller under a tensile stress whose tensile direction is the circumferential direction, compared to when no tensile stress is applied.
  • the magnetostrictive section 50 By disposing the magnetostrictive section 50 on the radially outer side of the magnet 40, when the rotor 10 rotates at high speed, the magnetostrictive section 50 is arranged in the first region 20A, the first magnets 41a, 41b, and the second magnet 42 in the rotor core 20. is pushed radially outward by centrifugal force. Thereby, the magnetostrictive portion 50 is elastically deformed in the circumferential direction. The magnetostrictive portion 50 generates tensile stress by elastically deforming in the circumferential direction. The circumferential elastic deformation amount of the magnetostrictive portion 50 is shorter than the circumferential length of the gaps 33a and 33b.
  • the magnetostrictive portion 50 is elastically deformed without being restricted in the housing portion 33.
  • the relative magnetic permeability in the circumferential direction can be increased, and the relative magnetic permeability in the radial direction can be decreased. This provides a large variable field width and maximum torque.
  • the relative magnetic permeability ⁇ r (per) in the radial direction of the magnetostrictive portion 50 is 5000.
  • the relative magnetic permeability ⁇ r (per) in the radial direction of the magnetostrictive portion 50 is approximately 100. That is, according to the above configuration, the relative magnetic permeability in the radial direction can be reduced to 1/10 or less.
  • the relative magnetic permeability ⁇ r (per) in the radial direction of the magnetostrictive portion 50 is approximately 200.
  • the magnetic flux of the magnet passes through the magnetostrictive portion 50 and almost flows to the stator 60 and interlinks therewith.
  • the excitation current of the coil 65 decreases, so a part of the magnetic flux leaks to the bypass path in the rotor core 20, and the magnetic flux preferentially passes through the magnetostrictive section 50.
  • the magnetic flux linkage to the stator 60 decreases.
  • the magnetic flux of the magnet interlinking with the stator 60 can be passively varied according to the rotational speed without inputting energy for a magnetic field.
  • the magnetostrictive portion 50 is arranged symmetrically with respect to the magnetic pole center line IL1.
  • the magnetostrictive portion 50 line-symmetrically with respect to the magnetic pole center line IL1, it is possible to apply tensile stress to the magnetostrictive portion 50 in a well-balanced manner, thereby reducing the relative magnetic permeability in the radial direction.
  • the rotor core 20 has a first region 20A and a second region 20B, and the circumferential width of the first region 20A narrows toward the inside in the radial direction, so that when the rotor 10 rotates at high speed, the first region 20A becomes easier to push the magnetostrictive section 50 by centrifugal force.
  • the first region 20A and the second region 20B are bounded by the slits S1 and S2, the first region 20A can easily push the magnetostrictive section 50 by centrifugal force when the rotor 10 rotates at high speed. . This makes it easier to apply tensile stress to the magnetostrictive portion 50. Since the angle formed by the boundary is larger than the angle occupied by the magnetic pole part 70 on the rotor core 20, the first region 20A can easily push the magnetostrictive part 50 by centrifugal force when the rotor 10 rotates at high speed. This makes it easier to apply tensile stress to the magnetostrictive portion 50.
  • the magnetostrictive portion 50 is disposed within 0% or more and within 10% of the diameter of the rotor core 20 from the outer periphery of the rotor core 20.
  • the magnetostrictive portion 50 may be exposed on the outside in the radial direction.
  • the accommodating portion 33 is constituted by a recessed portion recessed radially inward from the outer peripheral surface of the rotor core 20 .
  • the relative magnetic permeability in the radial direction can be reduced to 1/10 or less compared to when the magnetostrictive portion 50 is stress-free, and as a result, a variable field width of 30% or more can be obtained. was completed. Furthermore, according to the above configuration, it was possible to apply an average stress of 60 MPa or more to the magnetostrictive portion 50, and a maximum torque of 200 Nm or more was obtained.
  • the magnetic flux starts variable field from 5000 rpm, becomes 70% of the magnetic flux at 12000 rpm, and when the magnetic flux changes to maximize efficiency according to the speed, NEDC (New European The theoretical efficiency in Driving Cycles mode was calculated.
  • the motor having the magnetostrictive section 50 can increase the motor average efficiency by 1.8% and the system efficiency including the gear section and the inverter by 1.5% compared to a motor not having the magnetostrictive section 50. Ta.
  • FIG. 4 is a diagram showing a second embodiment of the rotor of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • the rotor 10 of the second embodiment includes a third magnet hole 34 as the magnet hole 30 and a third magnet 43 as the magnet 40.
  • the third magnet hole 34 has an arc shape that curves and extends in the circumferential direction.
  • the third magnet hole 34 is located inside the housing portion 33 in the radial direction.
  • the magnetic pole center line IL1 passes through the circumferential center of the third magnet hole 34 when viewed in the axial direction. That is, the circumferential position of the circumferential center of the third magnet hole 34 coincides with the circumferential position of the circumferential center of the magnetic pole portion 70, for example.
  • the shape of the third magnet hole 34 when viewed in the axial direction is, for example, a line-symmetrical shape about the magnetic pole center line IL1.
  • the third magnet hole 34 has a curved portion 34a, one end 34b, and the other end 34c.
  • the curved portion 34a extends in a curved manner in the direction in which the third magnet hole 34 extends when viewed in the axial direction.
  • the curved portion 34a has, for example, an arc shape when viewed in the axial direction.
  • the one end portion 34b is an end portion on one circumferential side (+ ⁇ side) of the curved portion 34a.
  • the other end portion 34c is the end portion on the other circumferential side ( ⁇ side) of the curved portion 34a.
  • the third magnet 43 is housed inside the third magnet hole 34.
  • the third magnet 43 extends along the third magnet hole 34 when viewed in the axial direction.
  • the third magnet 43 extends in a curved manner in the circumferential direction when viewed in the axial direction.
  • the third magnet 43 has an arc shape that curves and extends in the circumferential direction.
  • the circumferential end of the third magnet 43 is located closer to the magnetic pole center line IL1 than the circumferential end of the magnetostrictive portion 50. Therefore, the magnetic flux from the third magnet 43 can be varied outward in the radial direction or in the circumferential direction depending on the relative magnetic permeability of the magnetostrictive portion 50.
  • the shape of the third magnet 43 when viewed in the axial direction is, for example, a shape that is axisymmetric with respect to the magnetic pole center line IL1.
  • both ends of the third magnet 43 in the circumferential direction are spaced apart from both ends of the third magnet hole 34 in the circumferential direction.
  • One end 34b and the other end 34c are arranged adjacent to each other on both sides of the third magnet 43 in the direction in which the third magnet 43 extends when viewed in the axial direction.
  • the one end portion 34b constitutes a third flux barrier portion 53a.
  • the other end portion 34c constitutes a third flux barrier portion 53b.
  • the rotor core 20 includes a pair of third flux barrier parts 53a and 53b that are arranged to sandwich the third magnet 43 in the direction in which the third magnet 43 extends when viewed in the axial direction.
  • a boundary between the first region 20A and the second region 20B in this embodiment is formed by slits S3 and S4.
  • the slit S3 extends from one end of the third magnet hole 34 in the circumferential direction toward the magnetic pole center line IL1 as it goes radially inward.
  • the slit S4 extends from the other circumferential end of the third magnet hole 34 toward the magnetic pole center line IL1 as it goes radially inward.
  • a third region 20C is provided between the radially inner ends of the slits S3 and S4. The radially outer sides of the slits S3 and S4 are connected to the third magnet hole 34.
  • the first region 20A has a length larger than the circumferential dimension of the third magnet 43 due to centrifugal force when the rotor 10 rotates. Stress can be applied to the magnetostrictive portion 50 by the following steps.
  • the number of magnets is reduced, which contributes to weight reduction and cost reduction.
  • FIG. 5 is a diagram showing a third embodiment of the rotor of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the explanation thereof may be omitted or simplified in some cases.
  • the rotor 10 of the third embodiment includes a rotor core 20 and a plurality of magnets 40.
  • the rotor core 20 includes a pair of first magnet holes 31 a and 31 b and a second magnet hole 32 as the plurality of magnet holes 30 .
  • the pair of first magnet holes 31a and 31b are connected at their radially inner ends.
  • the plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 45.
  • the second magnet hole 32 is located radially inside the pair of first magnet holes 31a and 31b.
  • the end of the second magnet hole 32 on one side in the circumferential direction is located closer to the one side in the circumferential direction than the end of the first magnet hole 31a on the other side in the circumferential direction.
  • the end of the second magnet hole 32 on the other side in the circumferential direction is located on the other side in the circumferential direction than the end of the first magnet hole 31b on the one side in the circumferential direction. That is, both ends of the second magnet hole 32 in the circumferential direction are located further from the magnetic pole center line IL1 than the radially inner sides of the first magnet holes 31a and 31b.
  • the pair of first magnets 41a and 41b are housed inside the pair of first magnet holes 31a and 31b, respectively.
  • the first magnet 41a is housed inside the first magnet hole 31a.
  • the first magnet 41b is housed inside the first magnet hole 31b.
  • the pair of first magnets 41a and 41b have, for example, a rectangular shape when viewed in the axial direction.
  • the lengths in the extending direction of the pair of first magnets 41a and 41b are the same.
  • the lengths of the first magnets 41a, 41b in the direction orthogonal to the direction in which the pair of first magnets 41a, 41b extend are the same.
  • the pair of first magnets 41a and 41b have their respective radially outer ends in contact with the magnetostrictive portion 50.
  • both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first magnet hole 31a in the stretching direction.
  • an inner end 31d and an outer end 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends.
  • both ends of the first magnet 41b in the extending direction are spaced apart from both ends of the first magnet hole 31b in the extending direction.
  • an inner end portion 31d and an outer end portion 31h are arranged adjacent to each other on both sides of the first magnet 41b in the direction in which the first magnet 41b extends. That is, the radially inner ends of the first magnets 41a, 41b both face the inner end 31d.
  • the inner end portion 31d constitutes a fourth flux barrier portion 54a in the first magnets 41a, 41b.
  • the second magnet 45 is housed inside the second magnet hole 32.
  • the second magnet 45 is arranged radially inward from the radially inner end portions of the pair of first magnets 41a, 41b.
  • the second magnet 45 is located further from the magnetic pole center line IL1 in the circumferential direction than the radially inner end portions of the pair of first magnets 41a and 41b.
  • the second magnet 45 is arranged at a circumferential position that includes the radially inner ends of the pair of first magnets 41a and 41b.
  • the second magnet 45 is curved in the circumferential direction when viewed in the axial direction and extends in an arc shape.
  • the radially outer surface of the second magnet 45 faces the fourth flux barrier portion 54a and is exposed.
  • the pair of first magnets 41a, 41b and second magnet 45 are arranged, for example, along a U shape when viewed in the axial direction.
  • the rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator.
  • the rotating electrical machine may be a three-phase AC generator.
  • the use of the rotating electric machine is not particularly limited.
  • the rotating electrical machine may be mounted on a vehicle, or may be mounted on equipment other than the vehicle, for example.
  • the number of poles and the number of slots of the rotating electric machine are not particularly limited.
  • a coil may be wound in any manner.
  • SYMBOLS 1 Rotating electric machine, 10... Rotor, 20... Rotor core, 20A... First region, 20B... Second region, 30... Magnet hole, 33... Accommodating part, 33a, 33b... Gap, 40... Magnet, 41a, 41b...th 1 magnet, 42, 45...second magnet, 50...magnetostrictive part, 60...stator, 70, 70N, 70S...magnetic pole part, IL1...magnetic pole center line (d axis), S1, S2, S3, S4... slit

Abstract

One aspect of a rotor of the present invention comprises: a rotor core having a plurality of magnet holes extending axially about a central axis, and a plurality of storage parts; a plurality of magnetic pole parts having magnets disposed in the magnet holes; and a magnetostrictive part that is disposed in the storage part with a gap between the magnetic pole parts, and has a relative magnetic permeability which varies with elastic deformation. The magnetostrictive part is disposed on the d-axis of the magnetic pole part on a radially outer side of the magnets, and extends in a circumferential direction.

Description

ロータおよび回転電機Rotor and rotating electrical machine
 本発明は、ロータおよび回転電機に関する。 The present invention relates to a rotor and a rotating electric machine.
 自動車用トラクションモータは、低速大トルクから高速回転高出力まで幅広い動作が要求されるため、全ての動作領域において効率を高めることは困難である。近年、運転中の動作点に応じてモータの有効磁束を可変することができる「可変界磁技術」が注目されている。 Automotive traction motors are required to operate in a wide range from low-speed, high-torque to high-speed rotation and high output, so it is difficult to increase efficiency in all operating ranges. In recent years, "variable field technology" that can vary the effective magnetic flux of a motor depending on the operating point during operation has been attracting attention.
 特許文献1には、隣接する磁石挿入孔間にあけた複数のフラックスバリア内にそれぞれ配置され、隣接する永久磁石の一方の第1極から他方の第2極への磁束の通路を有する磁束短絡部材とを含み、磁束短絡部材の少なくとも一部が超磁歪材料から成るロータコアが開示されている。特許文献1に記載されたロータコアにおいては、ロータが高速で回転するとき、低速で回転するときよりも超磁歪材料の透磁率を向上させて短絡磁束を増加させている。 Patent Document 1 discloses a magnetic flux short circuit that is arranged in a plurality of flux barriers formed between adjacent magnet insertion holes and has a magnetic flux path from one first pole of the adjacent permanent magnet to the other second pole. Disclosed is a rotor core comprising a magnetic flux shorting member, at least a portion of which is made of a giant magnetostrictive material. In the rotor core described in Patent Document 1, when the rotor rotates at high speed, the magnetic permeability of the giant magnetostrictive material is improved compared to when the rotor rotates at low speed, thereby increasing the short-circuit magnetic flux.
日本国公開公報特開2004-343842号公報Japanese Publication No. 2004-343842
 モータの平均効率を考慮すると、ロータが高速で回転するときには、ロータの径方向の透磁率を小さくして磁石磁束を低減させることが好ましいが、特許文献1に記載されたロータコアにおいては、ロータが高速で回転するときに透磁率を大きくしている。そのため、モータの平均効率およびシステム効率の向上には効果が小さい。また、特許文献1に記載されたロータコアでは、透磁率を変化させるために、ウエートおよび圧縮バネを設けており、大型化およびコスト増を生じさせる。 Considering the average efficiency of the motor, when the rotor rotates at high speed, it is preferable to reduce the radial magnetic permeability of the rotor to reduce the magnet magnetic flux. However, in the rotor core described in Patent Document 1, the rotor Magnetic permeability increases when rotating at high speed. Therefore, the effect on improving the average efficiency of the motor and the system efficiency is small. Further, the rotor core described in Patent Document 1 is provided with a weight and a compression spring in order to change the magnetic permeability, which results in an increase in size and cost.
 本発明は、以上のような点を考慮してなされたもので、簡単な構成で効率を高めることが可能なロータおよび回転電機を提供することを目的の一つとする。 The present invention has been made in consideration of the above points, and one of the objects of the present invention is to provide a rotor and a rotating electrical machine that can improve efficiency with a simple configuration.
 本発明のロータの一つの態様は、中心軸を中心として軸方向に延びる複数のマグネット孔および複数の収容部が設けられるロータコアと、前記マグネット孔に配置されるマグネットを有する複数の磁極部と、前記磁極部同士の間に隙間を有して前記収容部に配置され、弾性変形に伴い比透磁率が変化する磁歪部と、を備え、前記磁歪部は、前記マグネットの径方向外側で前記磁極部におけるd軸上に配置され、周方向に延びる。 One aspect of the rotor of the present invention includes: a rotor core provided with a plurality of magnet holes and a plurality of accommodating parts extending in the axial direction around a central axis; a plurality of magnetic pole parts having magnets arranged in the magnet holes; a magnetostrictive part that is arranged in the housing part with a gap between the magnetic pole parts and whose relative magnetic permeability changes with elastic deformation, the magnetostrictive part being arranged on the radially outer side of the magnet, It is arranged on the d-axis in the section and extends in the circumferential direction.
 本発明の回転電機の一つの態様は、上記のロータと、前記ロータに対向するステータと、を備える。 One aspect of the rotating electric machine of the present invention includes the above rotor and a stator facing the rotor.
 本発明の一つの態様によれば、ロータおよび回転電機において簡単な構成で効率を高めることができる。 According to one aspect of the present invention, efficiency can be increased in a rotor and a rotating electric machine with a simple configuration.
図1は、本実施形態のロータを有する回転電機を示す断面図である。FIG. 1 is a sectional view showing a rotating electric machine having a rotor according to the present embodiment. 図2は、第1実施形態のロータを有する回転電機の一部を示す断面図であって、図1におけるII-II断面図である。FIG. 2 is a sectional view showing a part of the rotating electric machine having the rotor of the first embodiment, and is a sectional view taken along line II-II in FIG. 図3は、第1実施形態のロータの磁極部およびステータコアの一部を示す断面図である。FIG. 3 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the first embodiment. 図4は、第2実施形態のロータの磁極部およびステータコアの一部を示す断面図である。FIG. 4 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the second embodiment. 図5は、第3実施形態のロータの磁極部およびステータコアの一部を示す断面図である。FIG. 5 is a sectional view showing a part of the magnetic pole part and stator core of the rotor according to the third embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るロータおよび回転電機について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a rotor and a rotating electric machine according to embodiments of the present invention will be described with reference to the drawings. Note that the scope of the present invention is not limited to the following embodiments, and can be arbitrarily modified within the scope of the technical idea of the present invention. Further, in the following drawings, in order to make each structure easier to understand, the scale, number, etc. of each structure may be different from the actual structure.
 各図に適宜示すZ軸方向は、正の側を「上側」とし、負の側を「下側」とする上下方向である。各図に適宜示す中心軸Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。各図に適宜示す矢印θは、周方向を示している。矢印θは、上側から見て中心軸Jを中心として時計回りの向きを向いている。以下の説明では、或る対象を基準として周方向のうち矢印θが向かう側、すなわち上側から見て時計回りに進む側を「周方向一方側」と呼び、或る対象を基準として周方向のうち矢印θが向かう側と逆側、すなわち上側から見て反時計回りに進む側を「周方向他方側」と呼ぶ。 The Z-axis direction appropriately shown in each figure is an up-down direction in which the positive side is the "upper side" and the negative side is the "lower side." A central axis J shown as appropriate in each figure is a virtual line that is parallel to the Z-axis direction and extends in the vertical direction. In the following explanation, the axial direction of the central axis J, that is, the direction parallel to the vertical direction is simply referred to as the "axial direction," and the radial direction centered on the central axis J is simply referred to as the "radial direction." The circumferential direction centered on is simply called the "circumferential direction." Arrows θ appropriately shown in each figure indicate the circumferential direction. The arrow θ is oriented clockwise around the central axis J when viewed from above. In the following explanation, the side in the circumferential direction where the arrow θ is directed with a certain object as a reference, that is, the side that proceeds clockwise when viewed from above, will be referred to as "one side in the circumferential direction", and the side in the circumferential direction with a certain object as a reference The side opposite to the side toward which the arrow θ is directed, that is, the side that proceeds counterclockwise when viewed from above, is called the "other side in the circumferential direction."
 なお、上下方向、上側、および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 Note that the terms "vertical direction, upper side," and "lower side" are simply names used to explain the arrangement of each part, and the actual arrangement may be other than those indicated by these names. There may be.
[回転電機]
 図1に示すように、回転電機1は、インナーロータ型の回転電機である。
 本実施形態において回転電機1は、三相交流式の回転電機である。回転電機1は、例えば、三相交流の電源が供給されることで駆動される三相モータである。回転電機1は、ハウジング2と、ロータ10と、ステータ60と、ベアリングホルダ4と、ベアリング5a,5bと、を備える。
[Rotating electrical machine]
As shown in FIG. 1, the rotating electrical machine 1 is an inner rotor type rotating electrical machine.
In this embodiment, the rotating electrical machine 1 is a three-phase AC rotating electrical machine. The rotating electric machine 1 is, for example, a three-phase motor that is driven by being supplied with three-phase AC power. The rotating electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
 ハウジング2は、ロータ10、ステータ60、ベアリングホルダ4、およびベアリング5a,5bを内部に収容している。ハウジング2の底部は、ベアリング5bを保持している。ベアリングホルダ4は、ベアリング5aを保持している。ベアリング5a,5bは、例えば、ボールベアリングである。 The housing 2 accommodates the rotor 10, stator 60, bearing holder 4, and bearings 5a and 5b inside. The bottom of the housing 2 holds a bearing 5b. The bearing holder 4 holds a bearing 5a. The bearings 5a and 5b are, for example, ball bearings.
 ステータ60は、ロータ10の径方向外側に位置する。ステータ60は、ステータコア61と、インシュレータ64と、複数のコイル65と、を有する。ステータコア61は、コアバック62と、複数のティース63と、を有する。コアバック62は、後述するロータコア20の径方向外側に位置する。なお、以下の図2から図3においては、コイル65の図示を省略している。図2から図3においては、インシュレータ64の図示を省略している。 The stator 60 is located on the outside of the rotor 10 in the radial direction. Stator 60 includes a stator core 61, an insulator 64, and a plurality of coils 65. Stator core 61 has a core back 62 and a plurality of teeth 63. The core back 62 is located on the radially outer side of the rotor core 20, which will be described later. Note that in FIGS. 2 to 3 below, illustration of the coil 65 is omitted. In FIGS. 2 and 3, illustration of the insulator 64 is omitted.
 図2に示すように、コアバック62は、ロータコア20を囲む環状である。コアバック62は、例えば、中心軸Jを中心とする円環状である。 As shown in FIG. 2, the core back 62 has an annular shape surrounding the rotor core 20. The core back 62 has, for example, an annular shape centered on the central axis J.
 複数のティース63は、コアバック62から径方向内側に延びている。複数のティース63は、周方向に間隔を空けて並んで配置されている。複数のティース63は、例えば、周方向に沿って一周に亘って等間隔に配置されている。ティース63は、例えば、48個設けられている。つまり、回転電機1のスロット67の数は、例えば、48である。図3に示すように、複数のティース63は、基部63aと、アンブレラ部63bと、をそれぞれ有する。 The plurality of teeth 63 extend radially inward from the core back 62. The plurality of teeth 63 are arranged side by side at intervals in the circumferential direction. For example, the plurality of teeth 63 are arranged at equal intervals all around the circumferential direction. For example, 48 teeth 63 are provided. That is, the number of slots 67 in the rotating electric machine 1 is, for example, 48. As shown in FIG. 3, each of the plurality of teeth 63 has a base portion 63a and an umbrella portion 63b.
 基部63aは、コアバック62から径方向内側に延びている。基部63aの周方向の寸法は、例えば、径方向の全体に亘って同じである。なお、基部63aの周方向の寸法は、例えば、径方向内側に向かうに従って小さくなっていてもよい。 The base 63a extends radially inward from the core back 62. The circumferential dimension of the base portion 63a is, for example, the same throughout the radial direction. Note that the circumferential dimension of the base portion 63a may become smaller toward the inside in the radial direction, for example.
 アンブレラ部63bは、基部63aの径方向内側の端部に設けられている。アンブレラ部63bは、基部63aよりも周方向の両側に突出している。アンブレラ部63bの周方向の寸法は、基部63aの径方向内側の端部における周方向の寸法よりも大きい。アンブレラ部63bの径方向内側の面は、周方向に沿った曲面である。アンブレラ部63bの径方向内側の面は、軸方向に見て、中心軸Jを中心とする円弧状に延びている。アンブレラ部63bの径方向内側の面は、後述するロータコア20の外周面と径方向に隙間を介して対向している。周方向に隣り合うティース63同士において、アンブレラ部63b同士は、周方向に隙間を介して並んで配置されている。 The umbrella portion 63b is provided at the radially inner end of the base portion 63a. The umbrella portion 63b protrudes from the base portion 63a on both sides in the circumferential direction. The circumferential dimension of the umbrella portion 63b is larger than the circumferential dimension at the radially inner end of the base portion 63a. The radially inner surface of the umbrella portion 63b is a curved surface along the circumferential direction. The radially inner surface of the umbrella portion 63b extends in an arc shape centered on the central axis J when viewed in the axial direction. A radially inner surface of the umbrella portion 63b faces an outer circumferential surface of a rotor core 20, which will be described later, with a gap in the radial direction. In the teeth 63 adjacent to each other in the circumferential direction, the umbrella portions 63b are arranged side by side with a gap in the circumferential direction.
 複数のコイル65は、ステータコア61に取り付けられている。図1に示すように、複数のコイル65は、例えば、インシュレータ64を介してティース63に取り付けられている。本実施形態においてコイル65は、分布巻きされている。つまり、各コイル65は、複数のティース63に跨って巻き回されている。本実施形態においてコイル65は、全節巻きされている。つまり、コイル65が差し込まれるステータ60のスロット同士の周方向ピッチが、ステータ60に三相交流電源が供給された際に生じる磁極の周方向ピッチと等しい。回転電機1の極数は、例えば、8である。つまり、回転電機1は、例えば、8極48スロットの回転電機である。このように、本実施形態の回転電機1においては、極数をNとしたとき、スロット数がN×6となる。 The plurality of coils 65 are attached to the stator core 61. As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via an insulator 64, for example. In this embodiment, the coil 65 is wound in a distributed manner. In other words, each coil 65 is wound across a plurality of teeth 63. In this embodiment, the coil 65 is fully wound. That is, the circumferential pitch between the slots of the stator 60 into which the coils 65 are inserted is equal to the circumferential pitch of the magnetic poles that occurs when the stator 60 is supplied with three-phase AC power. The number of poles of the rotating electric machine 1 is, for example, eight. That is, the rotating electrical machine 1 is, for example, a rotating electrical machine with 8 poles and 48 slots. Thus, in the rotating electric machine 1 of this embodiment, when the number of poles is N, the number of slots is N×6.
[ロータ10の第1実施形態]
 ロータ10は、中心軸Jを中心として回転可能である。図2に示すように、ロータ10は、シャフト11と、ロータコア20と、複数のマグネット40と、複数の磁歪部50とを有する。シャフト11は、中心軸Jを中心として軸方向に延びる円柱状である。図1に示すように、シャフト11は、ベアリング5a,5bによって中心軸J回りに回転可能に支持されている。
[First embodiment of rotor 10]
The rotor 10 is rotatable around a central axis J. As shown in FIG. 2, the rotor 10 includes a shaft 11, a rotor core 20, a plurality of magnets 40, and a plurality of magnetostrictive sections 50. The shaft 11 has a cylindrical shape that extends in the axial direction centering on the central axis J. As shown in FIG. 1, the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
 ロータコア20は、磁性体である。ロータコア20は、シャフト11の外周面に固定されている。ロータコア20は、ロータコア20を軸方向に貫通する貫通孔21を有する。図2に示すように、貫通孔21は、軸方向に見て、中心軸Jを中心とする円形状である。貫通孔21には、シャフト11が通されている。シャフト11は、例えば圧入等により、貫通孔21内に固定されている。図示は省略するが、ロータコア20は、例えば、複数の電磁鋼板が軸方向に積層されて構成されている。 The rotor core 20 is a magnetic material. The rotor core 20 is fixed to the outer peripheral surface of the shaft 11. The rotor core 20 has a through hole 21 that passes through the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction. The shaft 11 is passed through the through hole 21 . The shaft 11 is fixed within the through hole 21 by, for example, press fitting. Although not shown, the rotor core 20 is configured by, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
 ロータコア20は、複数のマグネット孔30と、複数の収容部33と、を有する。複数のマグネット孔30は、例えば、ロータコア20を軸方向に貫通している。複数のマグネット孔30の内部には、複数のマグネット40がそれぞれ収容されている。マグネット孔30内におけるマグネット40の固定方法は、特に限定されない。複数のマグネット孔30は、一対の第1マグネット孔31a,31bと、第2マグネット孔32と、を含む。 The rotor core 20 has a plurality of magnet holes 30 and a plurality of accommodating portions 33. For example, the plurality of magnet holes 30 penetrate the rotor core 20 in the axial direction. A plurality of magnets 40 are accommodated inside the plurality of magnet holes 30, respectively. The method of fixing the magnet 40 within the magnet hole 30 is not particularly limited. The plurality of magnet holes 30 include a pair of first magnet holes 31 a and 31 b and a second magnet hole 32 .
 複数のマグネット40の種類は、特に限定されない。マグネット40は、例えば、ネオジム磁石であってもよいし、フェライト磁石であってもよい。複数のマグネット40は、一対の第1マグネット41a,41bと、第2マグネット42と、を含む。一対の第1マグネット41a,41bと、第2マグネット42とは極を構成する。 The types of the plurality of magnets 40 are not particularly limited. The magnet 40 may be, for example, a neodymium magnet or a ferrite magnet. The plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 42. The pair of first magnets 41a and 41b and the second magnet 42 constitute poles.
 本実施形態において一対の第1マグネット孔31a,31bと一対の第1マグネット41a,41bと第2マグネット孔32と第2マグネット42とは、周方向に間隔を空けて複数ずつ設けられている。一対の第1マグネット孔31a,31bと一対の第1マグネット41a,41bと第2マグネット孔32と第2マグネット42とは、例えば、8つずつ設けられている。 In this embodiment, a plurality of the pair of first magnet holes 31a, 31b, the pair of first magnets 41a, 41b, the second magnet hole 32, and the second magnet 42 are provided at intervals in the circumferential direction. The pair of first magnet holes 31a, 31b, the pair of first magnets 41a, 41b, the second magnet hole 32, and the second magnet 42 are provided, for example, eight each.
 ロータ10は、一対の第1マグネット孔31a,31bと一対の第1マグネット41a,41bと第2マグネット孔32と第2マグネット42とを1つずつ含む磁極部70を複数有する。磁極部70は、例えば、8つ設けられている。複数の磁極部70は、例えば、周方向に沿って一周に亘って等間隔に配置されている。複数の磁極部70は、ロータコア20の外周面における磁極がN極の磁極部70Nと、ロータコア20の外周面における磁極がS極の磁極部70Sと、を複数ずつ含む。磁極部70Nと磁極部70Sとは、例えば、4つずつ設けられている。4つの磁極部70Nと4つの磁極部70Sとは、周方向に沿って交互に配置されている。各磁極部70の構成は、ロータコア20の外周面の磁極が異なる点および周方向位置が異なる点を除いて、同様の構成である。 The rotor 10 has a plurality of magnetic pole parts 70 each including a pair of first magnet holes 31a, 31b, a pair of first magnets 41a, 41b, a second magnet hole 32, and a second magnet 42. For example, eight magnetic pole parts 70 are provided. For example, the plurality of magnetic pole parts 70 are arranged at equal intervals all around the circumferential direction. The plurality of magnetic pole parts 70 include a plurality of magnetic pole parts 70N whose magnetic poles on the outer circumferential surface of the rotor core 20 are north poles, and a plurality of magnetic pole parts 70S whose magnetic poles on the outer circumferential surface of the rotor core 20 are south poles. For example, four magnetic pole parts 70N and four magnetic pole parts 70S are provided. The four magnetic pole parts 70N and the four magnetic pole parts 70S are arranged alternately along the circumferential direction. The configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
 図3に示すように、磁極部70において、一対の第1マグネット孔31a,31bは、周方向に互いに間隔を空けて配置されている。第1マグネット孔31aは、例えば、第1マグネット孔31bの周方向一方側(+θ側)に位置する。第1マグネット孔31a,31bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1マグネット孔31a,31bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1マグネット孔31aと第1マグネット孔31bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。第1マグネット孔31aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側に位置する。第1マグネット孔31bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1マグネット孔31a,31bの径方向外側の端部は、ロータコア20の径方向外周縁部に位置する。 As shown in FIG. 3, in the magnetic pole part 70, the pair of first magnet holes 31a, 31b are arranged at intervals from each other in the circumferential direction. The first magnet hole 31a is located, for example, on one circumferential side (+θ side) of the first magnet hole 31b. For example, the first magnet holes 31a and 31b extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction. The pair of first magnet holes 31a, 31b extend in a direction that separates from each other in the circumferential direction from the radially inner side toward the radially outer side when viewed in the axial direction. That is, the circumferential distance between the first magnet hole 31a and the first magnet hole 31b increases from the radially inner side to the radially outer side. The first magnet hole 31a is located, for example, on one side in the circumferential direction from the inside in the radial direction to the outside in the radial direction. The first magnet hole 31b is located, for example, on the other circumferential side (−θ side) from the radially inner side toward the radially outer side. The radially outer ends of the first magnet holes 31 a and 31 b are located at the radially outer peripheral edge of the rotor core 20 .
 第1マグネット孔31aと第1マグネット孔31bとは、例えば、軸方向に見て、d軸を構成する図3に示す磁極中心線IL1を周方向に挟んで配置されている。磁極中心線IL1は、磁極部70の周方向中心と中心軸Jとを通り、径方向に延びる仮想線である。第1マグネット孔31aと第1マグネット孔31bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1マグネット孔31aと同様の構成については、第1マグネット孔31bについての説明を省略する場合がある。 The first magnet hole 31a and the first magnet hole 31b are, for example, arranged to sandwich the magnetic pole center line IL1 shown in FIG. 3, which constitutes the d-axis, in the circumferential direction when viewed in the axial direction. The magnetic pole center line IL1 is an imaginary line that passes through the circumferential center of the magnetic pole portion 70 and the central axis J and extends in the radial direction. The first magnet hole 31a and the first magnet hole 31b are, for example, arranged symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction. Hereinafter, a description of the first magnet hole 31b may be omitted as the structure is similar to the first magnet hole 31a except that it is axisymmetric with respect to the magnetic pole center line IL1.
 第1マグネット孔31aは、第1直線部31cと、内端部31dと、外端部31eと、を有する。第1直線部31cは、軸方向に見て、第1マグネット孔31aが延びる方向に直線状に延びている。第1直線部31cは、例えば、軸方向に見て長方形状である。内端部31dは、第1直線部31cの径方向内側の端部に繋がっている。内端部31dは、第1マグネット孔31aの径方向内側の端部である。外端部31eは、第1直線部31cの径方向外側の端部に繋がっている。外端部31eは、第1マグネット孔31aの径方向外側の端部である。外端部31eは、第1直線部31cの径方向外側の端部から径方向外側に磁極中心線IL1に沿って延びている(詳細は後述)。第1マグネット孔31bは、第1直線部31fと、内端部31gと、外端部31hと、を有する。 The first magnet hole 31a has a first straight portion 31c, an inner end 31d, and an outer end 31e. The first straight portion 31c extends linearly in the direction in which the first magnet hole 31a extends when viewed in the axial direction. The first straight portion 31c has, for example, a rectangular shape when viewed in the axial direction. The inner end portion 31d is connected to the radially inner end portion of the first straight portion 31c. The inner end 31d is a radially inner end of the first magnet hole 31a. The outer end portion 31e is connected to the radially outer end of the first straight portion 31c. The outer end 31e is a radially outer end of the first magnet hole 31a. The outer end portion 31e extends radially outward from the radially outer end of the first straight portion 31c along the magnetic pole center line IL1 (details will be described later). The first magnet hole 31b has a first straight portion 31f, an inner end 31g, and an outer end 31h.
 第2マグネット孔32は、一対の第1マグネット孔31a,31bの径方向外側の端部同士の周方向の間に位置する。つまり、本実施形態において第2マグネット孔32は、外端部31eと外端部31hとの周方向の間に位置する。第2マグネット孔32は、例えば、軸方向に見て、径方向と直交する方向に略直線状に延びている。第2マグネット孔32は、例えば、軸方向に見て、磁極中心線IL1と直交する方向に延びている。一対の第1マグネット孔31a,31bと第2マグネット孔32とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second magnet hole 32 is located between the radially outer ends of the pair of first magnet holes 31a and 31b in the circumferential direction. That is, in this embodiment, the second magnet hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction. For example, the second magnet hole 32 extends substantially linearly in a direction orthogonal to the radial direction when viewed in the axial direction. The second magnet hole 32 extends, for example, in a direction perpendicular to the magnetic pole center line IL1 when viewed in the axial direction. The pair of first magnet holes 31a, 31b and the second magnet hole 32 are arranged, for example, along a ∇ shape when viewed in the axial direction.
 なお、本明細書において「或る対象が或る方向と直交する方向に延びる」とは、或る対象が、或る方向と厳密に直交する方向に延びる場合に加えて、或る対象が、或る方向と略直交する方向に延びる場合も含む。「或る方向と略直交する方向」とは、例えば、製造時の公差等によって、或る方向と厳密に直交する方向に対して数度[°]程度の範囲内で傾いた方向を含む。 Note that in this specification, "a certain object extends in a direction perpendicular to a certain direction" means that a certain object extends in a direction strictly orthogonal to a certain direction; This also includes cases in which it extends in a direction substantially orthogonal to a certain direction. "A direction substantially perpendicular to a certain direction" includes, for example, a direction that is tilted within a range of several degrees [°] with respect to a direction strictly perpendicular to a certain direction, due to manufacturing tolerances or the like.
 軸方向に見て、第2マグネット孔32の周方向の中心には、例えば、磁極中心線IL1が通っている。つまり、第2マグネット孔32の周方向中心の周方向位置は、例えば、磁極部70の周方向中心の周方向位置と一致している。第2マグネット孔32の軸方向に見た形状は、例えば、磁極中心線IL1を中心とする線対称な形状である。第2マグネット孔32は、ロータコア20の径方向外周縁部に位置する。 When viewed in the axial direction, for example, the magnetic pole center line IL1 passes through the circumferential center of the second magnet hole 32. That is, the circumferential position of the circumferential center of the second magnet hole 32 coincides with the circumferential position of the circumferential center of the magnetic pole portion 70, for example. The shape of the second magnet hole 32 when viewed in the axial direction is, for example, a line-symmetrical shape centered on the magnetic pole center line IL1. The second magnet hole 32 is located at the radially outer peripheral edge of the rotor core 20 .
 第2マグネット孔32は、第2直線部32aと、一端部32bと、他端部32cと、を有する。第2直線部32aは、軸方向に見て、第2マグネット孔32が延びる方向に直線状に延びている。第2直線部32aは、例えば、軸方向に見て長方形状である。一端部32bは、第2直線部32aの周方向一方側(+θ側)の端部に繋がっている。一端部32bは、第2マグネット孔32の周方向一方側の端部である。一端部32bは、第1マグネット孔31aにおける外端部31eの周方向他方側(-θ側)に間隔を空けて配置されている。他端部32cは、第2直線部32aの周方向他方側(-θ側)の端部に繋がっている。他端部32cは、第2マグネット孔32の周方向他方側の端部である。他端部32cは、第1マグネット孔31bにおける外端部31hの周方向一方側に間隔を空けて配置されている。 The second magnet hole 32 has a second straight portion 32a, one end 32b, and the other end 32c. The second straight portion 32a extends linearly in the direction in which the second magnet hole 32 extends when viewed in the axial direction. The second straight portion 32a has, for example, a rectangular shape when viewed in the axial direction. The one end portion 32b is connected to the end portion of the second straight portion 32a on one circumferential side (+θ side). One end portion 32b is an end portion of the second magnet hole 32 on one side in the circumferential direction. The one end portion 32b is disposed at a distance from the outer end portion 31e of the first magnet hole 31a on the other circumferential side (−θ side). The other end portion 32c is connected to the end portion of the second straight portion 32a on the other side (−θ side) in the circumferential direction. The other end 32c is the other end of the second magnet hole 32 in the circumferential direction. The other end 32c is spaced apart from the outer end 31h of the first magnet hole 31b on one side in the circumferential direction.
 一対の第1マグネット41a,41bは、一対の第1マグネット孔31a,31bの内部にそれぞれ収容されている。第1マグネット41aは、第1マグネット孔31aの内部に収容されている。第1マグネット41bは、第1マグネット孔31bの内部に収容されている。一対の第1マグネット41a,41bは、例えば、軸方向に見て長方形状である。一対の第1マグネット41a,41bが延びる方向の長さは同じである。一対の第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さは同じである。 The pair of first magnets 41a and 41b are housed inside the pair of first magnet holes 31a and 31b, respectively. The first magnet 41a is housed inside the first magnet hole 31a. The first magnet 41b is housed inside the first magnet hole 31b. The pair of first magnets 41a and 41b have, for example, a rectangular shape when viewed in the axial direction. The lengths in the extending direction of the pair of first magnets 41a and 41b are the same. The lengths of the first magnets 41a, 41b in the direction orthogonal to the direction in which the pair of first magnets 41a, 41b extend are the same.
 図示は省略するが、第1マグネット41a,41bは、例えば、直方体状である。図示は省略するが、第1マグネット41a,41bは、例えば、第1マグネット孔31a,31b内の軸方向の全体に亘って設けられている。一対の第1マグネット41a,41bは、周方向に互いに間隔を空けて配置されている。第1マグネット41aは、例えば、第1マグネット41bの周方向一方側(+θ側)に位置する。 Although not shown, the first magnets 41a and 41b have, for example, a rectangular parallelepiped shape. Although not shown, the first magnets 41a and 41b are provided, for example, throughout the first magnet holes 31a and 31b in the axial direction. The pair of first magnets 41a and 41b are spaced apart from each other in the circumferential direction. The first magnet 41a is located, for example, on one circumferential side (+θ side) of the first magnet 41b.
 第1マグネット41aは、軸方向に見て第1マグネット孔31aに沿って延びている。第1マグネット41bは、軸方向に見て第1マグネット孔31bに沿って延びている。第1マグネット41a,41bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1マグネット41a,41bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1マグネット41aと第1マグネット41bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。 The first magnet 41a extends along the first magnet hole 31a when viewed in the axial direction. The first magnet 41b extends along the first magnet hole 31b when viewed in the axial direction. For example, the first magnets 41a and 41b extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction. The pair of first magnets 41a and 41b extend in a direction that separates from each other in the circumferential direction from the radially inner side toward the radially outer side when viewed in the axial direction. That is, the circumferential distance between the first magnet 41a and the first magnet 41b increases from the radially inner side to the radially outer side.
 第1マグネット41aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側(+θ側)に位置する。第1マグネット41bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1を周方向に挟んで配置されている。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1マグネット41aと同様の構成については、第1マグネット41bについての説明を省略する場合がある。 The first magnet 41a is located, for example, on one circumferential side (+θ side) from the radially inner side to the radially outer side. The first magnet 41b is located, for example, on the other circumferential side (-θ side) from the radially inner side to the radially outer side. The first magnet 41a and the first magnet 41b are, for example, arranged to sandwich the magnetic pole center line IL1 in the circumferential direction when viewed in the axial direction. The first magnet 41a and the first magnet 41b are arranged symmetrically with respect to the magnetic pole center line IL1, for example, when viewed in the axial direction. Hereinafter, a description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line symmetrical with respect to the magnetic pole center line IL1.
 第1マグネット41aは、第1マグネット孔31a内に嵌め合わされている。より詳細には、第1マグネット41aは、第1直線部31c内に嵌め合わされている。第1マグネット41aの側面のうち、第1直線部31cが延びる方向と直交する方向における両側面のうち、少なくとも径方向内側の側面は、例えば、第1直線部31cの内側面との間に隙間としてスリットS1を有している。第1マグネット41aは、径方向内側の側面が第1直線部31cの内側面との間にスリットS1を有することで、ロータ10が回転したときの遠心力によって、図3に示すように、径方向内側の側面が第1直線部31cの内側面と離れた状態で、径方向外側の側面が第1直線部31cの内側に接する。第1マグネット41aは、非回転時に第1直線部31cの内側面と接し、ロータ10が回転したときの遠心力によって第1直線部31cの内側面との間にスリットS1が設けられる構成であってもよい。 The first magnet 41a is fitted into the first magnet hole 31a. More specifically, the first magnet 41a is fitted within the first straight portion 31c. Among the side surfaces of the first magnet 41a, at least the radially inner side surface of both side surfaces in the direction orthogonal to the direction in which the first straight portion 31c extends has a gap between it and the inner surface of the first straight portion 31c. It has a slit S1. The first magnet 41a has a slit S1 between the radially inner side surface and the inner side surface of the first straight portion 31c, so that the diameter of the first magnet 41a is increased by centrifugal force when the rotor 10 rotates, as shown in FIG. The radially outer side surface contacts the inner side of the first straight portion 31c while the inner side surface in the radial direction is separated from the inner surface of the first straight portion 31c. The first magnet 41a is configured to be in contact with the inner surface of the first linear portion 31c when not rotating, and a slit S1 is provided between the first magnet 41a and the inner surface of the first linear portion 31c due to centrifugal force when the rotor 10 rotates. It's okay.
 スリットS1が設けられることにより、ロータコア20における磁極部70は、第1マグネット41a,41bの径方向外側に位置する第1領域20Aと、径方向外側に位置する第2領域20Bとに分けられる。第1領域20Aは、径方向内側に向かうにつれて周方向の幅が狭まる。第1領域20Aと第2領域20Bとは、スリットS1、S2で境界が作られている。スリットS1、S2で作られる境界がなす角度は、ロータコア20上で磁極部70が占める角度よりも大きい。 By providing the slit S1, the magnetic pole portion 70 in the rotor core 20 is divided into a first region 20A located on the radially outer side of the first magnets 41a and 41b, and a second region 20B located on the radially outer side. The width of the first region 20A in the circumferential direction becomes narrower toward the inner side in the radial direction. A boundary between the first region 20A and the second region 20B is formed by slits S1 and S2. The angle formed by the boundary formed by the slits S1 and S2 is larger than the angle occupied by the magnetic pole portion 70 on the rotor core 20.
 従って、第1領域20Aは、ロータ10が回転したときの遠心力によって第1領域20Aよりも径方向外側の箇所を押すことになる。第1領域20Aと第2領域20Bとは、第1マグネット41a,41bにおける径方向内側の端部の間に位置する第3領域20Cで繋がっている。軸方向に見て第1直線部31cが延びる方向において、第1マグネット41aの長さは、例えば、第1直線部31cの長さと同じである。 Therefore, the first region 20A pushes a location radially outward from the first region 20A due to centrifugal force when the rotor 10 rotates. The first region 20A and the second region 20B are connected at a third region 20C located between the radially inner ends of the first magnets 41a and 41b. In the direction in which the first straight portion 31c extends when viewed in the axial direction, the length of the first magnet 41a is, for example, the same as the length of the first straight portion 31c.
 軸方向に見て、第1マグネット41aの延伸方向の両端部は、第1マグネット孔31aの延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aの両側には、内端部31dと外端部31eとがそれぞれ隣接して配置されている。ここで、本実施形態において内端部31dは、第1フラックスバリア部51aを構成している。外端部31eは、第1フラックスバリア部51bを構成している。つまり、ロータコア20は、軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aを挟んで配置された一対の第1フラックスバリア部51a,51bを有する。ロータコア20は、軸方向に見て、第1マグネット41bが延びる方向において第1マグネット41bを挟んで配置された一対の第1フラックスバリア部51c,51dを有する。 When viewed in the axial direction, both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first magnet hole 31a in the stretching direction. When viewed in the axial direction, an inner end 31d and an outer end 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends. Here, in this embodiment, the inner end portion 31d constitutes the first flux barrier portion 51a. The outer end portion 31e constitutes a first flux barrier portion 51b. In other words, the rotor core 20 has a pair of first flux barrier parts 51a and 51b arranged with the first magnet 41a in between in the direction in which the first magnet 41a extends when viewed in the axial direction. The rotor core 20 includes a pair of first flux barrier portions 51c and 51d arranged with the first magnet 41b in between in the direction in which the first magnet 41b extends when viewed in the axial direction.
 径方向外側に位置する第1フラックスバリア部51bは、第1マグネット41aの径方向端部から磁極中心線IL1と平行に径方向外側に延びている。径方向外側に位置する第1フラックスバリア部51dは、第1マグネット41bの径方向端部から磁極中心線IL1と平行に径方向外側に延びている。 The first flux barrier portion 51b located on the radially outer side extends radially outward from the radial end of the first magnet 41a in parallel to the magnetic pole center line IL1. The first flux barrier portion 51d located on the radially outer side extends radially outward from the radial end of the first magnet 41b in parallel with the magnetic pole center line IL1.
 このように、ロータコア20は、軸方向に見て、各第1マグネット41a,41bが延びる方向において各第1マグネット41a,41bのそれぞれを挟んで一対ずつ配置された第1フラックスバリア部51a,51b,51c,51dを有する。第1フラックスバリア部51a,51b,51c,51d、後述する第2フラックスバリア部52a,52bは、磁束の流れを抑制できる部分である。すなわち、各フラックスバリア部には、磁束が通りにくい。各フラックスバリア部は、磁束の流れを抑制できるならば、特に限定されず、空隙部を含んでもよいし、樹脂部等の非磁性部を含んでもよい。 As described above, the rotor core 20 includes first flux barrier portions 51a and 51b arranged in pairs with each of the first magnets 41a and 41b sandwiched therebetween in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c, and 51d. The first flux barrier parts 51a, 51b, 51c, and 51d and the second flux barrier parts 52a and 52b, which will be described later, are parts that can suppress the flow of magnetic flux. That is, it is difficult for magnetic flux to pass through each flux barrier portion. Each flux barrier section is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a gap section or a non-magnetic section such as a resin section.
 第2マグネット42は、第2マグネット孔32の内部に収容されている。第2マグネット42は、一対の第1マグネット41a,41bの径方向内端部よりも径方向外側において一対の第1マグネット41a,41b同士の間の周方向位置に配置されている。第2マグネット42は、軸方向に見て第2マグネット孔32に沿って延びている。第2マグネット42は、軸方向に見て径方向と直交する方向に延びている。一対の第1マグネット41a,41bと第2マグネット42とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second magnet 42 is housed inside the second magnet hole 32. The second magnet 42 is disposed at a position in the circumferential direction between the pair of first magnets 41a, 41b on the radially outer side than the radially inner end portions of the pair of first magnets 41a, 41b. The second magnet 42 extends along the second magnet hole 32 when viewed in the axial direction. The second magnet 42 extends in a direction perpendicular to the radial direction when viewed in the axial direction. The pair of first magnets 41a, 41b and second magnet 42 are arranged, for example, along a ∇ shape when viewed in the axial direction.
 なお、本明細書において「第2マグネットが一対の第1マグネット同士の間の周方向位置に配置されている」とは、第2マグネットの周方向位置が一対の第1マグネット同士の間の周方向位置に含まれていればよく、第1マグネットに対する第2マグネットの径方向位置は特に限定されない。 Note that in this specification, "the second magnet is disposed at a position in the circumferential direction between the pair of first magnets" means that the position in the circumferential direction of the second magnet is located at the position in the circumferential direction between the pair of first magnets. The radial position of the second magnet with respect to the first magnet is not particularly limited as long as it is included in the directional position.
 第2マグネット42の軸方向に見た形状は、例えば、磁極中心線IL1に対して線対称な形状である。第2マグネット42は、例えば、軸方向に見て長方形状である。軸方向に見て、第2マグネット42の径方向の長さは、第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短い。第2マグネット42の径方向の長さを第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短くして薄くすることにより、第2マグネット42の重量を各第1マグネット41a,41bの重量よりも小さくできる。第2マグネット42の重量を小さくすることにより、ロータ10の回転時の第2マグネット42の遠心力を小さくできる。従って、ロータコア20の負荷を小さくできる。 The shape of the second magnet 42 when viewed in the axial direction is, for example, a shape that is axisymmetric with respect to the magnetic pole center line IL1. The second magnet 42 has, for example, a rectangular shape when viewed in the axial direction. When viewed in the axial direction, the length of the second magnet 42 in the radial direction is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend. By making the length of the second magnet 42 in the radial direction shorter and thinner than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend, the weight of the second magnet 42 can be reduced. The weight can be made smaller than the weight of the first magnets 41a and 41b. By reducing the weight of the second magnet 42, the centrifugal force of the second magnet 42 during rotation of the rotor 10 can be reduced. Therefore, the load on the rotor core 20 can be reduced.
 第2マグネット42を薄くすることにより、第2マグネット42をロータコア20の径方向の外側に配置できる。第2マグネット42をロータコア20の径方向の外側に配置することにより、回転電機1の高出力化を図ることができる。第2マグネット42の磁化は第1マグネット41a,41bによって強められるので、減磁耐力を損なわずにロータコア20の高強度化と、回転電機1の高出力化を図ることができる。さらに、少ない磁石量で高い減磁耐力を得ることができる。 By making the second magnet 42 thinner, the second magnet 42 can be placed outside the rotor core 20 in the radial direction. By arranging the second magnet 42 outside the rotor core 20 in the radial direction, it is possible to increase the output of the rotating electric machine 1. Since the magnetization of the second magnet 42 is strengthened by the first magnets 41a and 41b, it is possible to increase the strength of the rotor core 20 and the output of the rotating electric machine 1 without impairing the demagnetization resistance. Furthermore, high demagnetization resistance can be obtained with a small amount of magnets.
 図示は省略するが、第2マグネット42は、例えば、直方体状である。図示は省略するが、第2マグネット42は、例えば、第2マグネット孔32内の軸方向の全体に亘って設けられている。第2マグネット42の径方向内側部分は、例えば、一対の第1マグネット41a,41bの径方向外端部同士の周方向の間に位置する。第2マグネット42の径方向外側部分は、例えば、一対の第1マグネット41a,41bよりも径方向外側に位置する。 Although not shown, the second magnet 42 has a rectangular parallelepiped shape, for example. Although not shown, the second magnet 42 is provided, for example, throughout the second magnet hole 32 in the axial direction. The radially inner portion of the second magnet 42 is located, for example, between the radially outer ends of the pair of first magnets 41a, 41b in the circumferential direction. The radially outer portion of the second magnet 42 is located, for example, radially outer than the pair of first magnets 41a, 41b.
 第2マグネット42は、第2マグネット孔32内に嵌め合わされている。より詳細には、第2マグネット42は、第2直線部32a内に嵌め合わされている。第2マグネット42の側面のうち、第2直線部32aが延びる方向と直交する径方向における両側面は、例えば、第2直線部32aの内側面とそれぞれ接触している。第2マグネット42は、第2直線部32aが延びる方向と直交する径方向における両側面のうち、径方向内側の側面は第2直線部32aの内側面との間にスリットが設けられてもよい。軸方向に見て第2直線部32aが延びる方向において、第2マグネット42の長さは、例えば、第2直線部32aの長さと同じである。 The second magnet 42 is fitted into the second magnet hole 32. More specifically, the second magnet 42 is fitted within the second straight portion 32a. Among the side surfaces of the second magnet 42, both side surfaces in the radial direction perpendicular to the direction in which the second linear portion 32a extends are in contact with, for example, the inner surface of the second linear portion 32a, respectively. The second magnet 42 may have a slit between the radially inner side surface and the inner surface of the second linear portion 32a among both side surfaces in the radial direction perpendicular to the direction in which the second linear portion 32a extends. . In the direction in which the second straight portion 32a extends when viewed in the axial direction, the length of the second magnet 42 is, for example, the same as the length of the second straight portion 32a.
 軸方向に見て、第2マグネット42の延伸方向の両端部は、第2マグネット孔32の延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第2マグネット42が延びる方向において第2マグネット42の両側には、一端部32bと他端部32cとがそれぞれ隣接して配置されている。ここで、本実施形態において一端部32bは、第2フラックスバリア部52aを構成している。他端部32cは、第2フラックスバリア部52bを構成している。つまり、ロータコア20は、軸方向に見て、第2マグネット42が延びる方向において第2マグネット42挟んで配置された一対の第2フラックスバリア部52a,52bを有する。 When viewed in the axial direction, both ends of the second magnet 42 in the extending direction are spaced apart from both ends of the second magnet hole 32 in the extending direction. When viewed in the axial direction, one end 32b and the other end 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends. Here, in this embodiment, the one end portion 32b constitutes the second flux barrier portion 52a. The other end portion 32c constitutes a second flux barrier portion 52b. In other words, the rotor core 20 includes a pair of second flux barrier parts 52a and 52b that are arranged to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction.
 第2フラックスバリア部52a,52bは、それぞれ第2マグネット42の周方向端部から周方向で第2マグネット42から離れる側に延びるに従って径方向内側に向かう円弧状である。第2フラックスバリア部52a,52bが径方向外側に向って延びる場合、第2フラックスバリア部52a,52bとロータコア20の外周面との距離が短くなり、回転時の遠心力によりロータコア20の負荷が大きくなる可能性がある。第2フラックスバリア部52a,52bが径方向内側に向って延びることにより、ロータコア20の負荷を小さくできる。第2フラックスバリア部52a,52bを円弧状とすることにより、周方向の延びる箇所と径方向に延びる箇所との交差部における応力集中を緩和してロータコア20の負荷を一層小さくできる。 The second flux barrier portions 52a and 52b each have an arcuate shape that extends from the circumferential end of the second magnet 42 toward the side away from the second magnet 42 in the circumferential direction and toward the inner side in the radial direction. When the second flux barrier parts 52a, 52b extend radially outward, the distance between the second flux barrier parts 52a, 52b and the outer peripheral surface of the rotor core 20 becomes shorter, and the load on the rotor core 20 is reduced due to centrifugal force during rotation. It has the potential to become larger. By extending the second flux barrier portions 52a and 52b radially inward, the load on the rotor core 20 can be reduced. By forming the second flux barrier portions 52a, 52b in an arcuate shape, stress concentration at the intersection between the circumferentially extending portion and the radially extending portion can be alleviated, thereby further reducing the load on the rotor core 20.
 一対の第2フラックスバリア部52a,52bおよび第2マグネット42は、第1マグネット41aを挟む一対の第1フラックスバリア部51a,51bのうち径方向外側に位置する第1フラックスバリア部51bと、第1マグネット41bを挟む一対の第1フラックスバリア部51c,51dのうち径方向外側に位置する第1フラックスバリア部51dとの周方向の間に位置する。 The pair of second flux barrier parts 52a, 52b and the second magnet 42 are composed of a first flux barrier part 51b located on the radially outer side of the pair of first flux barrier parts 51a, 51b sandwiching the first magnet 41a, and a first flux barrier part 51b located on the outside in the radial direction. It is located between the first flux barrier part 51d, which is located on the radially outer side of the pair of first flux barrier parts 51c and 51d sandwiching the first magnet 41b, and the first flux barrier part 51d in the circumferential direction.
 第1マグネット41aの磁極は、軸方向に見て第1マグネット41aが延びる方向と直交する方向に沿って配置されている。第1マグネット41bの磁極は、軸方向に見て第1マグネット41bが延びる方向と直交する方向に沿って配置されている。第2マグネット42の磁極は、径方向に沿って配置されている。 The magnetic poles of the first magnet 41a are arranged along a direction perpendicular to the direction in which the first magnet 41a extends when viewed in the axial direction. The magnetic poles of the first magnet 41b are arranged along a direction perpendicular to the direction in which the first magnet 41b extends when viewed in the axial direction. The magnetic poles of the second magnet 42 are arranged along the radial direction.
 第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、互いに同じである。第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、互いに同じである。 Among the magnetic poles of the first magnet 41a, the magnetic poles located on the outside in the radial direction, among the magnetic poles of the first magnet 41b, the magnetic poles located on the outside in the radial direction, and among the magnetic poles of the second magnet 42, the magnetic poles located on the outside in the radial direction are as follows: are the same as each other. Among the magnetic poles of the first magnet 41a, the magnetic poles located on the inside in the radial direction, among the magnetic poles of the first magnet 41b, the magnetic poles located on the inside in the radial direction, and among the magnetic poles of the second magnet 42, the magnetic poles located on the inside in the radial direction are as follows: are the same as each other.
 図3に示すように、磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、N極である。磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、S極である。 As shown in FIG. 3, in the magnetic pole portion 70N, the magnetic pole of the first magnet 41a that is located on the radially outer side, the magnetic pole of the first magnet 41b that is located on the radially outer side, and the magnetic pole of the second magnet 42. The magnetic pole located on the outer side in the radial direction is, for example, an N pole. In the magnetic pole portion 70N, one of the magnetic poles of the first magnet 41a is located on the radially inner side, one of the magnetic poles of the first magnet 41b is located on the radially inner side, and one of the magnetic poles of the second magnet 42 is located on the inner side in the radial direction. The magnetic pole is, for example, the S pole.
 図示は省略するが、磁極部70Sにおいては、磁極部70Nに対して、各マグネット40の磁極が反転して配置されている。つまり、磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、S極である。磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、N極である。 Although not shown, in the magnetic pole part 70S, the magnetic poles of each magnet 40 are arranged inverted with respect to the magnetic pole part 70N. That is, in the magnetic pole part 70S, among the magnetic poles of the first magnet 41a, the magnetic pole located on the radially outer side, among the magnetic poles of the first magnet 41b, the magnetic pole located on the radially outer side, and among the magnetic poles of the second magnet 42, the magnetic pole is located on the radially outer side. The magnetic pole located at is, for example, the S pole. In the magnetic pole portion 70S, one of the magnetic poles of the first magnet 41a is located on the radially inner side, one of the magnetic poles of the first magnet 41b is located on the radially inner side, and one of the magnetic poles of the second magnet 42 is located on the inner side in the radial direction. The magnetic pole is, for example, the N pole.
 複数の収容部33は、複数のマグネット孔30よりも径方向外側に配置されている。収容部33は、周方向に円弧状に湾曲して延びている。軸方向に見て収容部33は、磁極中心線IL1に対して線対称に配置されている。収容部33は、磁極部70のそれぞれに配置されている。周方向で隣り合う磁極部70において収容部33は、離れて配置されている。複数の収容部33は、例えば、ロータコア20を軸方向に貫通している。 The plurality of accommodating portions 33 are arranged radially outward from the plurality of magnet holes 30. The accommodating portion 33 extends in an arcuate manner in the circumferential direction. Viewed in the axial direction, the accommodating portion 33 is arranged symmetrically with respect to the magnetic pole center line IL1. The housing portion 33 is arranged in each of the magnetic pole portions 70 . The accommodating parts 33 in the circumferentially adjacent magnetic pole parts 70 are arranged apart from each other. For example, the plurality of accommodating portions 33 penetrate the rotor core 20 in the axial direction.
 収容部33は、第1フラックスバリア部51b,51dと繋がっている。収容部33が第1フラックスバリア部51b,51dと繋がることで、ロータコア20における第1領域20Aは、第3領域20Cのみで第2領域20Bと繋がる。
 これにより、ロータ10が回転したときの遠心力によって磁歪部50により大きな負荷を加えることができる。
The housing portion 33 is connected to the first flux barrier portions 51b and 51d. Since the accommodating portion 33 is connected to the first flux barrier portions 51b and 51d, the first region 20A in the rotor core 20 is connected to the second region 20B only through the third region 20C.
Thereby, a larger load can be applied to the magnetostrictive portion 50 due to centrifugal force when the rotor 10 rotates.
 複数の収容部33の内部には、複数の磁歪部50がそれぞれ収容されている。複数の磁歪部50は、軸方向に見て磁極部70同士の間に隙間33a、33bを有して収容部33に配置されている。収容部33内における収容部33の固定方法は、特に限定されない。 A plurality of magnetostrictive sections 50 are accommodated inside the plurality of accommodating sections 33, respectively. The plurality of magnetostrictive parts 50 are arranged in the housing part 33 with gaps 33a and 33b between the magnetic pole parts 70 when viewed in the axial direction. The method of fixing the housing section 33 within the housing section 33 is not particularly limited.
 磁歪部50は、マグネット40の径方向外側で磁極部70における磁極中心線IL1上に配置されている。磁歪部50は、周方向に円弧状に湾曲して延びている。磁歪部50は、周方向でマグネット40が配置される範囲に亘る寸法で設けられている。磁歪部50は、弾性変形に伴い比透磁率が変化する素材を含む。磁歪部50は、例えば、Si量が少ない電磁鋼板で作製されている。磁歪部50の素材は、一例として、パーメンジュールである。磁歪部50は、長手方向である周方向が磁化容易軸であり、長手方向と直交する径方向が困難軸である。従って、磁歪部50は、引張応力が作用しないときに対して、周方向を引張方向とする引張応力下では周方向の比透磁率が大きくなり、径方向の比透磁率が小さくなる。 The magnetostrictive portion 50 is arranged on the magnetic pole center line IL1 of the magnetic pole portion 70 on the outside in the radial direction of the magnet 40. The magnetostrictive portion 50 extends in an arcuate manner in the circumferential direction. The magnetostrictive portion 50 is provided with a dimension that spans the range in which the magnet 40 is arranged in the circumferential direction. The magnetostrictive portion 50 includes a material whose relative magnetic permeability changes with elastic deformation. The magnetostrictive portion 50 is made of, for example, an electromagnetic steel plate with a small amount of Si. The material of the magnetostrictive portion 50 is, for example, permendur. In the magnetostrictive portion 50, the axis of easy magnetization is the circumferential direction, which is the longitudinal direction, and the axis of difficult magnetization is the radial direction, which is perpendicular to the longitudinal direction. Therefore, in the magnetostrictive portion 50, the relative magnetic permeability in the circumferential direction becomes larger and the relative magnetic permeability in the radial direction becomes smaller under a tensile stress whose tensile direction is the circumferential direction, compared to when no tensile stress is applied.
 磁歪部50がマグネット40の径方向外側に配置されることで、ロータ10が高速回転したときに、磁歪部50は、ロータコア20における第1領域20A、第1マグネット41a,41bおよび第2マグネット42の遠心力によって径方向外側に押される。これにより、磁歪部50は周方向に弾性変形する。磁歪部50は、周方向に弾性変形することで引張応力が発生する。磁歪部50の周方向の弾性変形量は、隙間33a、33bの周方向の長さよりも短い。このため、磁歪部50は、収容部33において制約されることなく弾性変形する。磁歪部50に引張応力が印加されることで周方向の比透磁率を大きくできるとともに、径方向の比透磁率を小さくできる。これにより、大きな可変界磁幅と最大トルクが得られる。 By disposing the magnetostrictive section 50 on the radially outer side of the magnet 40, when the rotor 10 rotates at high speed, the magnetostrictive section 50 is arranged in the first region 20A, the first magnets 41a, 41b, and the second magnet 42 in the rotor core 20. is pushed radially outward by centrifugal force. Thereby, the magnetostrictive portion 50 is elastically deformed in the circumferential direction. The magnetostrictive portion 50 generates tensile stress by elastically deforming in the circumferential direction. The circumferential elastic deformation amount of the magnetostrictive portion 50 is shorter than the circumferential length of the gaps 33a and 33b. Therefore, the magnetostrictive portion 50 is elastically deformed without being restricted in the housing portion 33. By applying tensile stress to the magnetostrictive portion 50, the relative magnetic permeability in the circumferential direction can be increased, and the relative magnetic permeability in the radial direction can be decreased. This provides a large variable field width and maximum torque.
 例えば、透磁率5000μのロータコア20が低速回転して磁歪部50の引張応力が0MPaのときに、磁歪部50における径方向の比透磁率μr(per)は、5000である。これに対して、ロータコア20が高速回転して磁歪部50の引張応力が50MPaのときに、磁歪部50における径方向の比透磁率μr(per)は、およそ100である。すなわち、上記構成によれば、径方向の比透磁率を1/10以下に低減することができる。また、ロータコア20が例えば、15000rpmで高速回転したときに、磁歪部50における径方向の比透磁率μr(per)は、およそ200である。 For example, when the rotor core 20 with a magnetic permeability of 5000 μ is rotated at a low speed and the tensile stress of the magnetostrictive portion 50 is 0 MPa, the relative magnetic permeability μr (per) in the radial direction of the magnetostrictive portion 50 is 5000. On the other hand, when the rotor core 20 rotates at high speed and the tensile stress of the magnetostrictive portion 50 is 50 MPa, the relative magnetic permeability μr (per) in the radial direction of the magnetostrictive portion 50 is approximately 100. That is, according to the above configuration, the relative magnetic permeability in the radial direction can be reduced to 1/10 or less. Furthermore, when the rotor core 20 rotates at a high speed of, for example, 15,000 rpm, the relative magnetic permeability μr (per) in the radial direction of the magnetostrictive portion 50 is approximately 200.
 このため、ロータコア20が低速回転した際のマグネット磁束は、磁歪部50を通過してほぼステータ60に流れて鎖交する。一方、ロータコア20が高速回転した際には、コイル65の励磁電流が低下するのでマグネット磁束の一部がロータコア20におけるバイパス路に漏洩するとともに、マグネット磁束は磁歪部50を優先的に通過してステータ60への鎖交磁束が低下する。ロータ10の回転速度と磁歪部50の引張応力は比例関係にあるため、界磁のためのエネルギー投入をすることなく回転速度に応じてステータ60に鎖交するマグネット磁束を受動的に可変できる。 Therefore, when the rotor core 20 rotates at a low speed, the magnetic flux of the magnet passes through the magnetostrictive portion 50 and almost flows to the stator 60 and interlinks therewith. On the other hand, when the rotor core 20 rotates at high speed, the excitation current of the coil 65 decreases, so a part of the magnetic flux leaks to the bypass path in the rotor core 20, and the magnetic flux preferentially passes through the magnetostrictive section 50. The magnetic flux linkage to the stator 60 decreases. Since the rotational speed of the rotor 10 and the tensile stress of the magnetostrictive portion 50 are in a proportional relationship, the magnetic flux of the magnet interlinking with the stator 60 can be passively varied according to the rotational speed without inputting energy for a magnetic field.
 磁歪部50は、磁極中心線IL1に対して線対称に配置されている。磁歪部50が磁極中心線IL1に対して線対称に配置されていることで、磁歪部50にバランス良く引張応力を印加して径方向の比透磁率を小さくできる。ロータコア20が第1領域20Aと第2領域20Bとを有し、第1領域20Aが径方向内側に向かうにつれて周方向の幅が狭まることで、ロータ10が高速回転したときに、第1領域20Aが磁歪部50を遠心力で押しやすくなる。これにより、磁歪部50に引張応力を印加しやすくなる。第1領域20Aと第2領域20Bとが、スリットS1、S2で境界が作られていることで、ロータ10が高速回転したときに、第1領域20Aが磁歪部50を遠心力で押しやすくなる。これにより、磁歪部50に引張応力を印加しやすくなる。境界がなす角度が、ロータコア20上で磁極部70が占める角度よりも大きいことで、ロータ10が高速回転したときに、第1領域20Aが磁歪部50を遠心力で押しやすくなる。これにより、磁歪部50に引張応力を印加しやすくなる。 The magnetostrictive portion 50 is arranged symmetrically with respect to the magnetic pole center line IL1. By arranging the magnetostrictive portion 50 line-symmetrically with respect to the magnetic pole center line IL1, it is possible to apply tensile stress to the magnetostrictive portion 50 in a well-balanced manner, thereby reducing the relative magnetic permeability in the radial direction. The rotor core 20 has a first region 20A and a second region 20B, and the circumferential width of the first region 20A narrows toward the inside in the radial direction, so that when the rotor 10 rotates at high speed, the first region 20A becomes easier to push the magnetostrictive section 50 by centrifugal force. This makes it easier to apply tensile stress to the magnetostrictive portion 50. Since the first region 20A and the second region 20B are bounded by the slits S1 and S2, the first region 20A can easily push the magnetostrictive section 50 by centrifugal force when the rotor 10 rotates at high speed. . This makes it easier to apply tensile stress to the magnetostrictive portion 50. Since the angle formed by the boundary is larger than the angle occupied by the magnetic pole part 70 on the rotor core 20, the first region 20A can easily push the magnetostrictive part 50 by centrifugal force when the rotor 10 rotates at high speed. This makes it easier to apply tensile stress to the magnetostrictive portion 50.
 磁歪部50は、ロータコア20の外周からロータコア20の直径の0%以上、10%以内に配置されている。磁歪部50は、径方向外側が露出していてもよい。磁歪部50の径方向外側が露出する場合、収容部33はロータコア20の外周面から径方向内側に窪んだ凹部で構成される。磁歪部50がロータコア20の外周からロータコア20の直径の0%以上、10%以内に配置されることで、マグネット40をロータコア20の外周に近い位置に配置できるため、高トルク化を実現できる。 The magnetostrictive portion 50 is disposed within 0% or more and within 10% of the diameter of the rotor core 20 from the outer periphery of the rotor core 20. The magnetostrictive portion 50 may be exposed on the outside in the radial direction. When the radially outer side of the magnetostrictive portion 50 is exposed, the accommodating portion 33 is constituted by a recessed portion recessed radially inward from the outer peripheral surface of the rotor core 20 . By arranging the magnetostrictive portion 50 within 0% or more and within 10% of the diameter of the rotor core 20 from the outer periphery of the rotor core 20, the magnet 40 can be arranged close to the outer periphery of the rotor core 20, thereby achieving high torque.
 上記構成によれば、ロータコア20が高速回転したときの遠心力により、磁歪部50に引張応力が印加され径方向の比透磁率を変化させるため、比透磁率を変化させるための機器を別途設ける必要がなくなり、小型化およびコスト低減に寄与できる。上記構成によれば、既存のロータ10に対して磁歪部50を設けることで、容易に可変界磁機能を付加することが可能になる。 According to the above configuration, tensile stress is applied to the magnetostrictive portion 50 due to centrifugal force when the rotor core 20 rotates at high speed, and the relative magnetic permeability in the radial direction is changed, so a device for changing the relative magnetic permeability is separately provided. This eliminates the need for this, contributing to miniaturization and cost reduction. According to the above configuration, by providing the magnetostrictive section 50 to the existing rotor 10, it becomes possible to easily add a variable field function.
 上記構成によれば、磁歪部50が無応力のときと比較して、径方向の比透磁率を1/10以下に低減することができ、その結果30%以上の可変界磁幅を得ることができた。 また、上記構成によれば、磁歪部50に対して60MPa以上の平均応力を付加することができ、200Nm以上の最大トルクが得られた。 According to the above configuration, the relative magnetic permeability in the radial direction can be reduced to 1/10 or less compared to when the magnetostrictive portion 50 is stress-free, and as a result, a variable field width of 30% or more can be obtained. was completed. Furthermore, according to the above configuration, it was possible to apply an average stress of 60 MPa or more to the magnetostrictive portion 50, and a maximum torque of 200 Nm or more was obtained.
 さらに、A20 70kWモータにおいて、マグネット磁束が5000rpmから可変界磁を開始し、12000rpmで70%の磁束量とし、速度に応じて効率が最大になるようマグネット磁束が変化したときに、NEDC(New European Driving Cycles)モードでの理論効率を算出した。磁歪部50を有するモータでは、磁歪部50を有さないモータに対して、モータ平均効率を1.8%上昇させ、ギヤ部およびインバータを含めたシステム効率を1.5%上昇させることができた。 Furthermore, in the A20 70kW motor, the magnetic flux starts variable field from 5000 rpm, becomes 70% of the magnetic flux at 12000 rpm, and when the magnetic flux changes to maximize efficiency according to the speed, NEDC (New European The theoretical efficiency in Driving Cycles mode was calculated. The motor having the magnetostrictive section 50 can increase the motor average efficiency by 1.8% and the system efficiency including the gear section and the inverter by 1.5% compared to a motor not having the magnetostrictive section 50. Ta.
[ロータ10の第2実施形態]
 ロータ10の第2実施形態について、図4を参照して説明する。
 図4は、本発明のロータの第2実施形態を示す図である。
 この図において、図1から図3に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
[Second embodiment of rotor 10]
A second embodiment of the rotor 10 will be described with reference to FIG. 4.
FIG. 4 is a diagram showing a second embodiment of the rotor of the present invention.
In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the explanation thereof will be omitted.
 図4に示すように、第2実施形態のロータ10は、マグネット孔30としての第3マグネット孔34と、マグネット40としての第3マグネット43と、を有する。
 軸方向に見て、第3マグネット孔34は、周方向に湾曲して延びる円弧状である。第3マグネット孔34は、収容部33の径方向内側に位置する。軸方向に見て、第3マグネット孔34の周方向の中心には、例えば、磁極中心線IL1が通っている。つまり、第3マグネット孔34の周方向中心の周方向位置は、例えば、磁極部70の周方向中心の周方向位置と一致している。第3マグネット孔34の軸方向に見た形状は、例えば、磁極中心線IL1を中心とする線対称な形状である。
As shown in FIG. 4, the rotor 10 of the second embodiment includes a third magnet hole 34 as the magnet hole 30 and a third magnet 43 as the magnet 40.
When viewed in the axial direction, the third magnet hole 34 has an arc shape that curves and extends in the circumferential direction. The third magnet hole 34 is located inside the housing portion 33 in the radial direction. For example, the magnetic pole center line IL1 passes through the circumferential center of the third magnet hole 34 when viewed in the axial direction. That is, the circumferential position of the circumferential center of the third magnet hole 34 coincides with the circumferential position of the circumferential center of the magnetic pole portion 70, for example. The shape of the third magnet hole 34 when viewed in the axial direction is, for example, a line-symmetrical shape about the magnetic pole center line IL1.
 第3マグネット孔34は、湾曲部34aと、一端部34bと、他端部34cと、を有する。湾曲部34aは、軸方向に見て、第3マグネット孔34が延びる方向に湾曲して延びている。湾曲部34aは、例えば、軸方向に見て円弧状である。一端部34bは、湾曲部34aの周方向一方側(+θ側)の端部である。他端部34cは、湾曲部34aの周方向他方側(-θ側)の端部である。 The third magnet hole 34 has a curved portion 34a, one end 34b, and the other end 34c. The curved portion 34a extends in a curved manner in the direction in which the third magnet hole 34 extends when viewed in the axial direction. The curved portion 34a has, for example, an arc shape when viewed in the axial direction. The one end portion 34b is an end portion on one circumferential side (+θ side) of the curved portion 34a. The other end portion 34c is the end portion on the other circumferential side (−θ side) of the curved portion 34a.
 第3マグネット43は、第3マグネット孔34の内部に収容されている。第3マグネット43は、軸方向に見て第3マグネット孔34に沿って延びている。第3マグネット43は、軸方向に見て周方向に湾曲して延びている。第3マグネット43は、周方向に湾曲して延びる円弧状である。第3マグネット43の周方向端部は、磁歪部50の周方向端部よりも磁極中心線IL1に近い位置である。従って、第3マグネット43からの磁束を、磁歪部50の比透磁率に応じて径方向外側または周方向に可変できる。第3マグネット43の軸方向に見た形状は、例えば、磁極中心線IL1に対して線対称な形状である。軸方向に見て、第3マグネット43の周方向の両端部は、第3マグネット孔34の周方向の両端部からそれぞれ離れて配置されている。 The third magnet 43 is housed inside the third magnet hole 34. The third magnet 43 extends along the third magnet hole 34 when viewed in the axial direction. The third magnet 43 extends in a curved manner in the circumferential direction when viewed in the axial direction. The third magnet 43 has an arc shape that curves and extends in the circumferential direction. The circumferential end of the third magnet 43 is located closer to the magnetic pole center line IL1 than the circumferential end of the magnetostrictive portion 50. Therefore, the magnetic flux from the third magnet 43 can be varied outward in the radial direction or in the circumferential direction depending on the relative magnetic permeability of the magnetostrictive portion 50. The shape of the third magnet 43 when viewed in the axial direction is, for example, a shape that is axisymmetric with respect to the magnetic pole center line IL1. When viewed in the axial direction, both ends of the third magnet 43 in the circumferential direction are spaced apart from both ends of the third magnet hole 34 in the circumferential direction.
 軸方向に見て、第3マグネット43が延びる方向において第3マグネット43の両側には、一端部34bと他端部34cとがそれぞれ隣接して配置されている。ここで、本実施形態において一端部34bは、第3フラックスバリア部53aを構成している。他端部34cは、第3フラックスバリア部53bを構成している。つまり、ロータコア20は、軸方向に見て、第3マグネット43が延びる方向において第3マグネット43挟んで配置された一対の第3フラックスバリア部53a,53bを有する。 One end 34b and the other end 34c are arranged adjacent to each other on both sides of the third magnet 43 in the direction in which the third magnet 43 extends when viewed in the axial direction. Here, in this embodiment, the one end portion 34b constitutes a third flux barrier portion 53a. The other end portion 34c constitutes a third flux barrier portion 53b. In other words, the rotor core 20 includes a pair of third flux barrier parts 53a and 53b that are arranged to sandwich the third magnet 43 in the direction in which the third magnet 43 extends when viewed in the axial direction.
 本実施形態の第1領域20Aと第2領域20Bとは、スリットS3、S4で境界が作られている。スリットS3は、第3マグネット孔34の周方向一方側の端部から径方向内側に向かうにつれて磁極中心線IL1に向かう方向に延びている。スリットS4、第3マグネット孔34の周方向他方側の端部から径方向内側に向かうにつれて磁極中心線IL1に向かう方向に延びている。スリットS3、S4の径方向内側の端部同士の間に第3領域20Cが設けられている。スリットS3、S4の径方向外側は、第3マグネット孔34に繋がっている。スリットS3、S4の径方向外側が第3マグネット孔34に繋がることで、第1領域20Aは、ロータ10が回転したときの遠心力によって、第3マグネット43の周方向の寸法よりも大きな長さで磁歪部50に応力を印加することができる。 A boundary between the first region 20A and the second region 20B in this embodiment is formed by slits S3 and S4. The slit S3 extends from one end of the third magnet hole 34 in the circumferential direction toward the magnetic pole center line IL1 as it goes radially inward. The slit S4 extends from the other circumferential end of the third magnet hole 34 toward the magnetic pole center line IL1 as it goes radially inward. A third region 20C is provided between the radially inner ends of the slits S3 and S4. The radially outer sides of the slits S3 and S4 are connected to the third magnet hole 34. By connecting the radially outer sides of the slits S3 and S4 to the third magnet hole 34, the first region 20A has a length larger than the circumferential dimension of the third magnet 43 due to centrifugal force when the rotor 10 rotates. Stress can be applied to the magnetostrictive portion 50 by the following steps.
 上記構成によれば、磁歪部50に対して50MPa以上の平均応力を付加することができ、200Nm以上の最大トルクが得られた。 According to the above configuration, it was possible to apply an average stress of 50 MPa or more to the magnetostrictive portion 50, and a maximum torque of 200 Nm or more was obtained.
 本実施形態のロータ10および回転電機1によれば、上記第1実施形態と同様の作用・効果が得られることに加えて、マグネットが少なくなることで、軽量化および低コスト化に寄与できる。 According to the rotor 10 and rotating electric machine 1 of this embodiment, in addition to obtaining the same functions and effects as those of the first embodiment, the number of magnets is reduced, which contributes to weight reduction and cost reduction.
[ロータ10の第3実施形態]
 ロータ10の第3実施形態について、図5を参照して説明する。
 図5は、本発明のロータの第3実施形態を示す図である。
 この図において、図1から図3に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する場合がある。
[Third embodiment of rotor 10]
A third embodiment of the rotor 10 will be described with reference to FIG. 5.
FIG. 5 is a diagram showing a third embodiment of the rotor of the present invention.
In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the explanation thereof may be omitted or simplified in some cases.
 図5に示すように、第3実施形態のロータ10は、ロータコア20と、複数のマグネット40と、を有する。ロータコア20は、複数のマグネット孔30として、一対の第1マグネット孔31a,31bと、第2マグネット孔32と、を含む。一対の第1マグネット孔31a,31bは、径方向の内側の端部同士が繋がっている。複数のマグネット40は、一対の第1マグネット41a,41bと、第2マグネット45と、を有する。 As shown in FIG. 5, the rotor 10 of the third embodiment includes a rotor core 20 and a plurality of magnets 40. The rotor core 20 includes a pair of first magnet holes 31 a and 31 b and a second magnet hole 32 as the plurality of magnet holes 30 . The pair of first magnet holes 31a and 31b are connected at their radially inner ends. The plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 45.
 第2マグネット孔32は、一対の第1マグネット孔31a,31bの径方向内側に位置する。第2マグネット孔32の周方向一方側の端部は、第1マグネット孔31aの周方向他方側の端部よりも周方向一方側に位置する。第2マグネット孔32の周方向他方側の端部は、第1マグネット孔31bの周方向一方側の端部よりも周方向他方側に位置する。つまり、第2マグネット孔32の周方向両端は、第1マグネット孔31a,31bの径方向内側よりも、磁極中心線IL1から遠い位置にある。 The second magnet hole 32 is located radially inside the pair of first magnet holes 31a and 31b. The end of the second magnet hole 32 on one side in the circumferential direction is located closer to the one side in the circumferential direction than the end of the first magnet hole 31a on the other side in the circumferential direction. The end of the second magnet hole 32 on the other side in the circumferential direction is located on the other side in the circumferential direction than the end of the first magnet hole 31b on the one side in the circumferential direction. That is, both ends of the second magnet hole 32 in the circumferential direction are located further from the magnetic pole center line IL1 than the radially inner sides of the first magnet holes 31a and 31b.
 一対の第1マグネット41a,41bは、一対の第1マグネット孔31a,31bの内部にそれぞれ収容されている。第1マグネット41aは、第1マグネット孔31aの内部に収容されている。第1マグネット41bは、第1マグネット孔31bの内部に収容されている。一対の第1マグネット41a,41bは、例えば、軸方向に見て長方形状である。一対の第1マグネット41a,41bが延びる方向の長さは同じである。一対の第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さは同じである。一対の第1マグネット41a,41bは、それぞれ径方向外側の端部が磁歪部50に接している。 The pair of first magnets 41a and 41b are housed inside the pair of first magnet holes 31a and 31b, respectively. The first magnet 41a is housed inside the first magnet hole 31a. The first magnet 41b is housed inside the first magnet hole 31b. The pair of first magnets 41a and 41b have, for example, a rectangular shape when viewed in the axial direction. The lengths in the extending direction of the pair of first magnets 41a and 41b are the same. The lengths of the first magnets 41a, 41b in the direction orthogonal to the direction in which the pair of first magnets 41a, 41b extend are the same. The pair of first magnets 41a and 41b have their respective radially outer ends in contact with the magnetostrictive portion 50.
 軸方向に見て、第1マグネット41aの延伸方向の両端部は、第1マグネット孔31aの延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aの両側には、内端部31dと外端部31eとがそれぞれ隣接して配置されている。軸方向に見て、第1マグネット41bの延伸方向の両端部は、第1マグネット孔31bの延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第1マグネット41bが延びる方向において第1マグネット41bの両側には、内端部31dと外端部31hとがそれぞれ隣接して配置されている。すなわち、第1マグネット41a,41bの径方向の内側の端部は、いずれも内端部31dに臨んでいる。内端部31dは、第1マグネット41a,41bにおける第4フラックスバリア部54aを構成している。 When viewed in the axial direction, both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first magnet hole 31a in the stretching direction. When viewed in the axial direction, an inner end 31d and an outer end 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends. When viewed in the axial direction, both ends of the first magnet 41b in the extending direction are spaced apart from both ends of the first magnet hole 31b in the extending direction. When viewed in the axial direction, an inner end portion 31d and an outer end portion 31h are arranged adjacent to each other on both sides of the first magnet 41b in the direction in which the first magnet 41b extends. That is, the radially inner ends of the first magnets 41a, 41b both face the inner end 31d. The inner end portion 31d constitutes a fourth flux barrier portion 54a in the first magnets 41a, 41b.
 第2マグネット45は、第2マグネット孔32の内部に収容されている。第2マグネット45は、一対の第1マグネット41a,41bの径方向内端部よりも径方向内側に配置されている。第2マグネット45は、一対の第1マグネット41a,41bの径方向内端部よりも、周方向で磁極中心線IL1から遠い位置にある。第2マグネット45は、一対の第1マグネット41a,41bの径方向内端部を含む周方向位置に配置されている。第2マグネット45は、軸方向に見て周方向に湾曲して円弧状に延びる。第2マグネット45は、径方向外側の面が第4フラックスバリア部54aに臨んで露出している。一対の第1マグネット41a,41bと第2マグネット45とは、例えば、軸方向に見て、U形状に沿って配置されている。 The second magnet 45 is housed inside the second magnet hole 32. The second magnet 45 is arranged radially inward from the radially inner end portions of the pair of first magnets 41a, 41b. The second magnet 45 is located further from the magnetic pole center line IL1 in the circumferential direction than the radially inner end portions of the pair of first magnets 41a and 41b. The second magnet 45 is arranged at a circumferential position that includes the radially inner ends of the pair of first magnets 41a and 41b. The second magnet 45 is curved in the circumferential direction when viewed in the axial direction and extends in an arc shape. The radially outer surface of the second magnet 45 faces the fourth flux barrier portion 54a and is exposed. The pair of first magnets 41a, 41b and second magnet 45 are arranged, for example, along a U shape when viewed in the axial direction.
 上記構成によれば、磁歪部50に対して90MPa以上の平均応力を付加することができ、220Nm以上の最大トルクが得られた。また、上記構成によれば、35%以上の可変界磁幅を得ることができた。 According to the above configuration, it was possible to apply an average stress of 90 MPa or more to the magnetostrictive portion 50, and a maximum torque of 220 Nm or more was obtained. Further, according to the above configuration, it was possible to obtain a variable field width of 35% or more.
 本実施形態のロータ10および回転電機1によれば、上記第1実施形態と同様の作用・効果が得られることに加えて、より大きい可変界磁幅および最大トルクを得ることが可能になる。 According to the rotor 10 and rotating electric machine 1 of this embodiment, in addition to obtaining the same functions and effects as those of the first embodiment, it is possible to obtain a larger variable field width and maximum torque.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The various shapes and combinations of the constituent members shown in the above example are merely examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.
 本発明が適用される回転電機は、モータに限られず、発電機であってもよい。この場合、回転電機は、三相交流式の発電機であってもよい。回転電機の用途は、特に限定されない。回転電機は、例えば、車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。回転電機の極数およびスロット数は、特に限定されない。回転電機においてコイルはどのような巻き方で構成されていてもよい。以上、本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator. In this case, the rotating electrical machine may be a three-phase AC generator. The use of the rotating electric machine is not particularly limited. The rotating electrical machine may be mounted on a vehicle, or may be mounted on equipment other than the vehicle, for example. The number of poles and the number of slots of the rotating electric machine are not particularly limited. In a rotating electrical machine, a coil may be wound in any manner. The configurations described above in this specification can be combined as appropriate within a mutually consistent range.
 1…回転電機、 10…ロータ、 20…ロータコア、 20A…第1領域、 20B…第2領域、 30…マグネット孔、 33…収容部、 33a、33b…隙間、 40…マグネット、 41a、41b…第1マグネット、 42、45…第2マグネット、 50…磁歪部、 60…ステータ、 70、70N、70S…磁極部、 IL1…磁極中心線(d軸)、 S1、S2、S3、S4…スリット DESCRIPTION OF SYMBOLS 1... Rotating electric machine, 10... Rotor, 20... Rotor core, 20A... First region, 20B... Second region, 30... Magnet hole, 33... Accommodating part, 33a, 33b... Gap, 40... Magnet, 41a, 41b...th 1 magnet, 42, 45...second magnet, 50...magnetostrictive part, 60...stator, 70, 70N, 70S...magnetic pole part, IL1...magnetic pole center line (d axis), S1, S2, S3, S4... slit

Claims (13)

  1.  中心軸を中心として軸方向に延びる複数のマグネット孔および複数の収容部が設けられるロータコアと、
     前記マグネット孔に配置されるマグネットを有する複数の磁極部と、
     前記磁極部同士の間に隙間を有して前記収容部に配置され、弾性変形に伴い比透磁率が変化する磁歪部と、
    を備え、
     前記磁歪部は、前記マグネットの径方向外側で前記磁極部におけるd軸上に配置され、周方向に延びる、ロータ。
    a rotor core provided with a plurality of magnet holes and a plurality of accommodating portions extending in the axial direction around a central axis;
    a plurality of magnetic pole parts having magnets arranged in the magnet holes;
    a magnetostrictive part that is arranged in the housing part with a gap between the magnetic pole parts and whose relative magnetic permeability changes with elastic deformation;
    Equipped with
    The magnetostrictive portion is arranged on the d-axis of the magnetic pole portion on the radially outer side of the magnet, and extends in the circumferential direction of the rotor.
  2.  前記磁歪部は、前記ロータコアの回転に伴う遠心力で周方向に弾性変形する、
    請求項1に記載のロータ。
    The magnetostrictive portion is elastically deformed in the circumferential direction by centrifugal force accompanying rotation of the rotor core.
    A rotor according to claim 1.
  3.  前記ロータコアにおける前記磁極部は、
      径方向外側に位置する第1領域と、
      径方向内側に位置する第2領域と、
     に分けられ、
     前記第1領域は、径方向内側に向かうにつれて周方向の幅が狭まる、
    請求項1又は2に記載のロータ。
    The magnetic pole portion in the rotor core is
    a first region located on the radially outer side;
    a second region located on the radially inner side;
    Divided into
    The first region has a width in the circumferential direction that decreases toward the inside in the radial direction.
    The rotor according to claim 1 or 2.
  4.  前記第1領域と前記第2領域の間は、スリットで境界が作られている、
    請求項3に記載のロータ。
    A boundary is formed between the first region and the second region by a slit.
    A rotor according to claim 3.
  5.  前記境界がなす角度は、前記ロータコア上で前記磁極部が占める角度よりも大きい、
    請求項4に記載のロータ。
    The angle formed by the boundary is larger than the angle occupied by the magnetic pole portion on the rotor core.
    A rotor according to claim 4.
  6.  前記d軸に対して、前記マグネットおよび前記磁歪部は線対称に配置される、
    請求項1から5のいずれか一項に記載のロータ。
    The magnet and the magnetostrictive section are arranged line-symmetrically with respect to the d-axis,
    A rotor according to any one of claims 1 to 5.
  7.  前記マグネット孔の内側面と、前記マグネットにおける径方向内側の側面との間に隙間が設けられる、
    請求項1から6のいずれか一項に記載のロータ。
    A gap is provided between the inner surface of the magnet hole and the radially inner side surface of the magnet.
    A rotor according to any one of claims 1 to 6.
  8.  前記磁歪部は、周方向に湾曲して延びる、
    請求項1から7のいずれか一項に記載のロータ。
    The magnetostrictive portion extends in a curved manner in the circumferential direction.
    A rotor according to any one of claims 1 to 7.
  9.  前記磁歪部は、前記ロータコアの外周から前記ロータコアの直径の0%以上、10%以内に配置される、
    請求項8に記載のロータ。
    The magnetostrictive portion is arranged within 0% or more and 10% of the diameter of the rotor core from the outer periphery of the rotor core.
    A rotor according to claim 8.
  10.  複数の前記マグネットは、
      周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、
      前記一対の第1マグネットの径方向内端部よりも径方向外側において前記一対の第1マグネット同士の間の周方向位置に配置され、軸方向に見て径方向と直交する方向に延びる第2マグネットと、
     を含む、
    請求項1から9のいずれか一項に記載のロータ。
    The plurality of magnets are
    a pair of first magnets that are spaced apart from each other in the circumferential direction and extend in a direction that separates from each other in the circumferential direction from the radially inner side to the radially outer side when viewed in the axial direction;
    A second magnet disposed at a position in the circumferential direction between the pair of first magnets on the radially outer side of the radially inner end portions of the pair of first magnets, and extending in a direction orthogonal to the radial direction when viewed in the axial direction. magnet and
    including,
    A rotor according to any one of claims 1 to 9.
  11.  複数の前記マグネットは、周方向に湾曲して延びる、
    請求項1から9のいずれか一項に記載のロータ。
    The plurality of magnets extend in a curved manner in the circumferential direction.
    A rotor according to any one of claims 1 to 9.
  12.  複数の前記マグネットは、
      周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、
      前記一対の第1マグネットの径方向内端部よりも径方向内側において前記一対の第1マグネットの径方向内端部を含む周方向位置に配置され、軸方向に見て周方向に湾曲して延びる第2マグネットと、
     を含む、
    請求項1から9のいずれか一項に記載のロータ。
    The plurality of magnets are
    a pair of first magnets that are spaced apart from each other in the circumferential direction and extend in a direction that separates from each other in the circumferential direction from the radially inner side to the radially outer side when viewed in the axial direction;
    The magnet is disposed at a circumferential position including the radially inner ends of the pair of first magnets on the radially inner side than the radially inner ends of the pair of first magnets, and is curved in the circumferential direction when viewed in the axial direction. a second magnet extending;
    including,
    A rotor according to any one of claims 1 to 9.
  13.  請求項1から12のいずれか一項に記載のロータと、
     前記ロータに対向するステータと、
    を備える、回転電機。
    A rotor according to any one of claims 1 to 12,
    a stator facing the rotor;
    A rotating electric machine equipped with
PCT/JP2023/007545 2022-03-09 2023-03-01 Rotor and rotating electric machine WO2023171488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022036576 2022-03-09
JP2022-036576 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171488A1 true WO2023171488A1 (en) 2023-09-14

Family

ID=87935250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007545 WO2023171488A1 (en) 2022-03-09 2023-03-01 Rotor and rotating electric machine

Country Status (1)

Country Link
WO (1) WO2023171488A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200985A (en) * 1995-11-17 1997-07-31 Yaskawa Electric Corp Field of permanent magnet motor
JP2012228077A (en) * 2011-04-20 2012-11-15 Fuji Electric Co Ltd Permanent magnet type rotary electrical machine
WO2020110383A1 (en) * 2018-11-26 2020-06-04 ミネベアミツミ株式会社 Rotor, motor in which rotor is used, and electronic apparatus
CN211701649U (en) * 2020-03-20 2020-10-16 江苏汤臣汽车零部件有限公司 High-power-density permanent magnet synchronous motor rotor for driving new energy automobile and punching sheet thereof
JP2021197814A (en) * 2020-06-12 2021-12-27 日本電産株式会社 Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200985A (en) * 1995-11-17 1997-07-31 Yaskawa Electric Corp Field of permanent magnet motor
JP2012228077A (en) * 2011-04-20 2012-11-15 Fuji Electric Co Ltd Permanent magnet type rotary electrical machine
WO2020110383A1 (en) * 2018-11-26 2020-06-04 ミネベアミツミ株式会社 Rotor, motor in which rotor is used, and electronic apparatus
CN211701649U (en) * 2020-03-20 2020-10-16 江苏汤臣汽车零部件有限公司 High-power-density permanent magnet synchronous motor rotor for driving new energy automobile and punching sheet thereof
JP2021197814A (en) * 2020-06-12 2021-12-27 日本電産株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
US9502929B2 (en) Rotor and motor
US7737594B2 (en) Axial gap type motor
JP2733824B2 (en) Two-phase permanent magnet rotating electric machine
EP2226924A1 (en) Motor and rotor for dynamo-electric machine
US20110163641A1 (en) Permanent-magnet synchronous motor
JP2014003841A (en) Rotor and rotary electric machine using the same
JP2003134762A (en) Electric rotating machine
US7923887B2 (en) Brushless motor
JP2000209825A (en) Permanent magnet generator
JPWO2020110191A1 (en) Rotating machine
US7779532B2 (en) Manufacturing method of hybrid permanent magnet type electric rotating machine
US20220060070A1 (en) Rotating electric machine
WO2023171488A1 (en) Rotor and rotating electric machine
JP2010514399A (en) Electric machine
WO2022172479A1 (en) Rotating electrical machine
CN112104121A (en) Rotor and rotating electrical machine
JP2024047791A (en) Rotor and rotating electric machine
JP3591660B2 (en) Three-phase claw pole type permanent magnet type rotating electric machine
CN217335220U (en) Rotating electrical machine
WO2022172478A1 (en) Rotating electrical machine
WO2023167290A1 (en) Rotor and rotating electric machine
WO2023053604A1 (en) Rotor and rotating electric machine
JP3679294B2 (en) Ring coil type rotating electrical machine
US20230187984A1 (en) Rotary electrical device
WO2023053601A1 (en) Rotor and rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766664

Country of ref document: EP

Kind code of ref document: A1