JPH0992461A - Method for melting and smelting metal in electric steelmaking furnace - Google Patents

Method for melting and smelting metal in electric steelmaking furnace

Info

Publication number
JPH0992461A
JPH0992461A JP27191095A JP27191095A JPH0992461A JP H0992461 A JPH0992461 A JP H0992461A JP 27191095 A JP27191095 A JP 27191095A JP 27191095 A JP27191095 A JP 27191095A JP H0992461 A JPH0992461 A JP H0992461A
Authority
JP
Japan
Prior art keywords
graphite electrode
cooling liquid
cooled
electrode
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27191095A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Sakurai
文良 櫻井
Norio Nagai
紀雄 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP27191095A priority Critical patent/JPH0992461A/en
Priority to KR1019960042424A priority patent/KR970016508A/en
Priority to US08/721,221 priority patent/US5795539A/en
Priority to CA002186538A priority patent/CA2186538C/en
Publication of JPH0992461A publication Critical patent/JPH0992461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To cool graphite electrodes by spraying of a coolant without generating hydrogen gas or the like through water gas reactions inside an electric-arc furnace by greatly reducing original electrode units through the minimizing of the oxidation wear of the graphite electrodes. SOLUTION: A coolant 2 is sprayed toward the outer peripheries of the line of graphite electrodes which comprises graphite electrodes 1 connected to one another via nipples, while the coolant 2 ejected is inclined downward by a downward inclination angle of 10 deg. to 35 deg. to a horizontal level. In this case, the amount of the coolant 2 sprayed is 0.8 to 35 liter per minute.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気製鋼炉における金属
の溶解および精錬方法に係り、詳しくは、ア−ク電気炉
などの電気製鋼炉において、ニップルを介して順次に接
続される黒鉛電極に電流を通電して製鋼等金属の溶解・
精錬する際に、ア−ク電気炉の炉蓋より上方において、
黒鉛電極の外周面に対し、冷却水等の冷却液を下向き傾
斜角をとって下向きに傾斜させて噴射させ、これに併せ
て、冷却液の噴射量を適正範囲内に保ち、しかも、この
適正範囲内で冷却すべき黒鉛電極の直径に応じて最適値
を求め、この最適値に冷却水の吹付量を保って、冷却水
を吹付けて冷却して、溶解および精錬時の黒鉛電極の酸
化消耗を最小限におさえて電極原単位を大巾に低減し、
ア−ク電気炉内で水性反応による水素ガスなどを発生さ
せることなく金属の溶解および精錬する方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and refining metals in an electric steelmaking furnace. More specifically, in an electric steelmaking furnace such as an arc electric furnace, graphite electrodes sequentially connected through nipples are used. Applying electric current to melt metal such as steelmaking
When refining, above the furnace lid of the arc electric furnace,
Cooling liquid such as cooling water is jetted to the outer peripheral surface of the graphite electrode by inclining downward with a downward inclination angle, and at the same time, keeping the injection amount of the cooling liquid within an appropriate range, and Determine the optimum value according to the diameter of the graphite electrode to be cooled within the range, keep the amount of cooling water sprayed to this optimum value, spray the cooling water to cool, and oxidize the graphite electrode during melting and refining. The consumption of electricity is kept to a minimum and the basic unit of electrode is greatly reduced.
The present invention relates to a method for melting and refining a metal in an arc electric furnace without generating hydrogen gas due to an aqueous reaction.

【0002】[0002]

【従来の技術】従来から、製鋼などの電気ア−ク炉によ
る金属の溶解および精錬においては、電気エネルギのコ
ストの低下に併せて、黒鉛電極の先端部ならびに外周面
の酸化消耗を抑制し、これによって電極原単位を低下さ
せることが望まれている。この酸化消耗抑制の手段とし
て黒鉛電極を冷却することが提案実施され、冷却法の一
つとして、順次に接続される黒鉛電極列において、電気
ア−ク炉の炉蓋より上方で上部の黒鉛電極を、内部で冷
却水が流通する構造の水冷式非消耗電極によって冷却す
る方法が提案されている。
2. Description of the Related Art Conventionally, in the melting and refining of metals in an electric arc furnace such as steelmaking, in addition to the reduction in the cost of electric energy, the consumption of oxidation at the tip and outer peripheral surface of the graphite electrode is suppressed, Therefore, it is desired to reduce the electrode unit consumption. It has been proposed to cool the graphite electrode as a means for suppressing this oxidative consumption, and as one of the cooling methods, in the graphite electrode rows that are sequentially connected, the graphite electrode above the furnace lid of the electric arc furnace There has been proposed a method of cooling water by a water-cooled non-consumable electrode having a structure in which cooling water flows.

【0003】すなわち、非消耗電極は、その内部に流通
する冷却水によって水冷される構造であるが、この電極
は、非消耗電極の下端にニップルを介して接続される黒
鉛電極の冷却にとどまって、精錬操業時には、非消耗電
極の下端に接続される黒鉛電極のみの酸化消耗などを低
減する程度である。
That is, the non-consumable electrode has a structure in which it is water-cooled by cooling water flowing therein, but this electrode is not limited to cooling the graphite electrode connected to the lower end of the non-consumable electrode through a nipple. During the refining operation, the oxidation consumption of only the graphite electrode connected to the lower end of the non-consumable electrode is reduced.

【0004】例えば、米国特許4.416.014号、
4.417.344号ならびに4.451.926号の
各明細書に記載される水冷式非消耗電極は、アルミニウ
ム製の中空円筒から構成し、この中空円筒内に冷却水を
導入し、導入された冷却水によって、中空円筒の非消耗
電極の下端に接続される接続端面から黒鉛電極の長さ方
向にわたって順次に冷却している。
For example, US Pat. No. 4,416.014,
The water-cooled non-consumable electrode described in each specification of No. 4.417.344 and No. 4.451.926 is composed of a hollow cylinder made of aluminum, and cooling water is introduced into the hollow cylinder and introduced. The cooling water successively cools the graphite electrode from the connection end face connected to the lower end of the non-consumable electrode in the hollow cylinder in the length direction of the graphite electrode.

【0005】また、特開昭60−501879号ならび
に特開昭60−501880号の各明細書に記載される
水冷式非消耗電極は、黒鉛製の管状体から構成し、この
管状体の中心孔内に冷却水を導入し、この冷却水によっ
て、管状体の壁面や、それに接続される黒鉛電極は接続
端面から冷却している。
The water-cooled non-consumable electrodes described in JP-A-60-501879 and JP-A-60-501880 are composed of a tubular body made of graphite and have a central hole. Cooling water is introduced into the inside, and the wall surface of the tubular body and the graphite electrode connected thereto are cooled from the connecting end face by this cooling water.

【0006】このように非消耗電極によって冷却する
と、非消耗電極の下端に接続される黒鉛電極は直接冷却
され、この黒鉛電極の酸化消耗は直接おさえられる。
When the non-consumable electrode is cooled in this way, the graphite electrode connected to the lower end of the non-consumable electrode is directly cooled, and the oxidation and consumption of the graphite electrode is directly suppressed.

【0007】しかしながら、非消耗電極の下端に接続さ
れる黒鉛電極を冷却すると云っても、冷却に関与すると
ころは、接続される黒鉛電極と非消耗電極との接続端面
に限られ、冷却効率がきわめて低い。
However, even if the graphite electrode connected to the lower end of the non-consumable electrode is cooled, what is involved in cooling is limited to the connection end face between the graphite electrode and the non-consumable electrode, and the cooling efficiency is high. Extremely low.

【0008】なかでも、黒鉛そのものの熱伝導率は10
0℃内外をこえると低下し、精錬に関与している黒鉛電
極は、非消耗電極に接続される電極の下に更に接続され
る電極や、非消耗電極に接続される電極の下部であっ
て、このような黒鉛電極などまで冷却することは困難で
ある。
Above all, the thermal conductivity of graphite itself is 10
The graphite electrode, which falls below 0 ° C and participates in refining, is the electrode that is further connected below the electrode connected to the non-consumable electrode and the lower part of the electrode connected to the non-consumable electrode. It is difficult to cool such a graphite electrode.

【0009】また、黒鉛電極を非消耗電極から取り外す
ときには、ア−ク電気炉からオフラインに移して使用済
の黒鉛電極をニップルから外し、必要なときには、ニッ
プルも非消耗電極から取り外す。
When removing the graphite electrode from the non-consumable electrode, the graphite electrode is moved off-line from the arc electric furnace to remove the used graphite electrode from the nipple, and when necessary, the nipple is also removed from the non-consumable electrode.

【0010】また、新しい黒鉛電極を接続するときに
は、非消耗電極にニップルを取付け、このニップルに新
しい黒鉛電極を取付ける。
When connecting a new graphite electrode, a nipple is attached to the non-consumable electrode and a new graphite electrode is attached to this nipple.

【0011】従って、水冷式非消耗電極によって下部に
接続される黒鉛電極を冷却するときには、黒鉛電極を交
換のために、オフラインに移送し、そこで、重筋労働の
取外しや接続作業を行なうことになって、作業がきわめ
てはん雑化する。黒鉛電極の取外しならびに接続がくり
返されると、黒鉛電極、非消耗電極、ニップル等のねじ
山が変形、つぶれ、破損し、接続不良、電気抵抗の増加
等が起こり、操業上に支障がある。
Therefore, when the graphite electrode connected to the lower portion by the water-cooled non-consumable electrode is cooled, the graphite electrode is transferred offline for replacement, and heavy muscle labor is removed and connection work is performed there. Then, the work becomes extremely complicated. If the graphite electrode is repeatedly removed and connected, the threads of the graphite electrode, the non-consumable electrode, the nipple, etc. may be deformed, crushed or damaged, resulting in poor connection or increase in electrical resistance, thus hindering the operation.

【0012】このところから、実公昭59−23357
号公報には、ニップルを介して接続される黒鉛電極を冷
却するために、水冷式非消耗電極を用いることなく、ア
−ク電気炉の炉蓋から上方に突出する黒鉛電極の表面に
対して冷却水を吹付けて冷却する冷却装置が記載されて
いる。
[0012] From this point,
In the publication, in order to cool the graphite electrode connected through the nipple, without using a water-cooled non-consumable electrode, the graphite electrode surface protruding upward from the furnace lid of the arc electric furnace is used. A cooling device for spraying and cooling cooling water is described.

【0013】この冷却装置は、図4に示す通り、炉蓋1
1に黒鉛電極列が昇降自在に挿通されている。黒鉛電極
列では、黒鉛電極12の下部にはニップルを介して黒鉛
電極が順次に接続され、一つの黒鉛電極列において、下
部の黒鉛電極、つまり、炉蓋11より下方の黒鉛電極が
ア−ク電気炉内にあって、ア−ク電気炉内の製鋼などの
精錬に関与している。炉蓋11の上方において、上部の
黒鉛電極12は電極ホルダ13によって把持され、電極
ホルダ13の下面には、上部の黒鉛電極12の外周を包
囲する環状冷却管14が設けられ、環状冷却管14から
下向きに複数本の縦パイプ15が突出され、各縦パイプ
15の内面には黒鉛電極12の表面に指向するノズル1
6が設けられている。従って、環状冷却管14に供給さ
れた冷却水は各縦パイプ15に沿って下降し、内面の各
ノズル16から冷却水が上部の黒鉛電極12の外周面に
吹付けられて冷却される。
As shown in FIG. 4, this cooling device has a furnace lid 1
A graphite electrode array is vertically inserted through the column 1. In the graphite electrode array, the graphite electrodes are sequentially connected to the lower part of the graphite electrode 12 via a nipple, and in one graphite electrode array, the lower graphite electrode, that is, the graphite electrode below the furnace lid 11 is arced. It is in the electric furnace and is involved in the refining of steel making in the arc electric furnace. Above the furnace lid 11, the upper graphite electrode 12 is held by the electrode holder 13, and on the lower surface of the electrode holder 13, an annular cooling pipe 14 that surrounds the outer periphery of the upper graphite electrode 12 is provided. A plurality of vertical pipes 15 are projected downward from the nozzle 1, and the nozzles 1 directed to the surface of the graphite electrode 12 are provided on the inner surface of each vertical pipe 15.
6 are provided. Therefore, the cooling water supplied to the annular cooling pipe 14 descends along each vertical pipe 15, and the cooling water is sprayed from each nozzle 16 on the inner surface to the outer peripheral surface of the upper graphite electrode 12 to be cooled.

【0014】しかし、図4に示す冷却装置は、各ノズル
16から冷却水が水平レベル若しくはそれと平行な方向
に指向して噴射される。このため、冷却水が黒鉛電極2
の外周面に衝突したときに相当量のものが反射されて飛
散し、この飛散した冷却水が多く、電極ホルダ13や炉
蓋11の汚染、破損が激しく、実用に供することがむづ
かしく、とくに、炉蓋は高価なハイアルミナ質耐火物か
らつくられている例がほとんどなく、シャモットなどの
耐火物でつくられていることからも、汚染、損耗がはげ
しい。
However, in the cooling device shown in FIG. 4, the cooling water is jetted from each nozzle 16 in a horizontal level or in a direction parallel to the horizontal level. For this reason, the cooling water is
When it collides with the outer peripheral surface, a considerable amount of it is reflected and scattered, and the scattered cooling water is large, and the electrode holder 13 and the furnace lid 11 are severely contaminated and damaged, making it difficult to put them into practical use. In particular, furnace lids are rarely made of expensive high-alumina refractory materials, and because they are made of refractory materials such as chamotte, contamination and wear are severe.

【0015】また、衝突した冷却水16は、ほとんど反
射され、黒鉛電極に沿って下降することがほとんどな
い。このため、冷却される黒鉛電極は、冷却水が衝突す
る黒鉛電極のみに限られ、冷却水の使用量を異常に大き
くしないと、精錬に関与する下部の黒鉛電極や、その精
錬関与部分まで冷却できず、きわめて不経済である。
Further, the cooling water 16 which has collided is almost reflected and hardly descends along the graphite electrode. Therefore, the graphite electrode to be cooled is limited to the graphite electrode with which the cooling water collides, and unless the amount of cooling water used is abnormally increased, the lower graphite electrode involved in refining and the part involved in refining are also cooled. It cannot be done, and it is extremely uneconomical.

【0016】なお、冷却水使用量を増加させて冷却効果
を高めることも考えられる。しかし、冷却水量の増加
は、飛散する冷却水が多なり、冷却水がそのままア−ク
電気炉内に入りやすく、これが炉内反応に影響を与え
る。なかでも、水素ぜい性などをきらう鋼種の製鋼に
は、炉内での水性反応によって発生する水素ガスが溶鋼
中に入り易いため、図4の方法では操業中に黒鉛電極そ
のものを冷却することは不可能とされている。
It is possible to increase the cooling effect by increasing the amount of cooling water used. However, as the amount of cooling water increases, the amount of scattered cooling water increases, and the cooling water easily enters the arc electric furnace as it is, which affects the reaction in the furnace. Among them, in the steel making of steel types that are not susceptible to hydrogen embrittlement, hydrogen gas generated by an aqueous reaction in the furnace is likely to enter molten steel. Therefore, in the method of Fig. 4, the graphite electrode itself must be cooled during operation. Is considered impossible.

【0017】また、冷却管4から多数の縦パイプ15が
下向きに突出し、しかも、この突出長さがきわめて長
い。このために、電極交換のときに冷却装置を取外す場
合に、長い縦パイプ15が障害になり、電極交換がきわ
めてめんどうになる。
Further, a large number of vertical pipes 15 project downward from the cooling pipe 4, and the projecting length thereof is extremely long. For this reason, when the cooling device is removed during electrode replacement, the long vertical pipe 15 becomes an obstacle, and electrode replacement becomes extremely troublesome.

【0018】また、冷却管4によって電磁力がシ−ルド
されるため、黒鉛電極12に流れる電流の相当部分が遮
断され、操業に大きな支障が生じる。
Further, since the electromagnetic force is shielded by the cooling pipe 4, a considerable part of the current flowing through the graphite electrode 12 is cut off, which causes a great hindrance to the operation.

【0019】また、黒鉛電極に対し冷却水などの冷却液
を下向きに傾斜させて吹付ける場合、冷却液の吹付量と
の関連で、次の通りの問題がある。
Further, when a cooling liquid such as cooling water is sprayed with a downward inclination to the graphite electrode, there are the following problems in relation to the spray amount of the cooling liquid.

【0020】すなわち、黒鉛電極の外周面に冷却液を吹
付けた場合、冷却液の吹付量が適正範囲にないと、冷却
液の一部は飛散し、それがそのままア−ク電気炉の内部
に入る。内部に入った冷却水は、黒鉛電極の表面に沿っ
て流れる冷却水と異なって、ア−ク電気炉炉内で高温条
件下におかれると、水性ガス反応によって水素を生成
し、この水素が溶鋼中に入る。水素が入ると、水素ぜい
性をひき起こし、鋼種によっては懸念されている。この
ため、じん性などが強く要求される鋼種の製鋼には、黒
鉛電極に冷却液を吹付ける操業は行なわれていないし、
実公昭59−23357号公報に示す冷却装置も提案さ
れているが、実際に使用されてもいない。
That is, when the cooling liquid is sprayed on the outer peripheral surface of the graphite electrode, if the spraying amount of the cooling liquid is not within the proper range, a part of the cooling liquid will be scattered, and it will be as it is inside the arc electric furnace. to go into. Unlike the cooling water that flows along the surface of the graphite electrode, the cooling water that has entered inside produces hydrogen by a water-gas reaction when placed under high temperature conditions in an arc electric furnace, and this hydrogen is generated. Enter molten steel. The entry of hydrogen causes hydrogen embrittlement, which is a concern depending on the steel type. For this reason, the operation of spraying the cooling liquid on the graphite electrode has not been carried out for steel making of steel types that are strongly required toughness, etc.
The cooling device shown in Japanese Utility Model Publication No. 59-23357 is also proposed, but it is not actually used.

【0021】また、酸化消耗防止、電極原単位の低減、
電力原単位の低減の上から、冷却液を吹付けて黒鉛電極
を冷却することが好ましいと云っても、冷却の程度が過
剰になると、黒鉛電極が過冷却されている分だけ、通電
によって黒鉛電極を加熱しないと、製鋼などの精錬反応
が損なわれる。このため、過冷却をおこすと、過冷却の
分だけは加熱することになり、そのために、かえって電
力原単位や電極原単位が上昇し、大巾なコストアップに
なる。
Further, prevention of oxidation and consumption, reduction of electrode unit consumption,
Although it is preferable to cool the graphite electrode by spraying a cooling liquid from the viewpoint of reducing the power consumption, if the degree of cooling is excessive, the graphite electrode is overcooled and the graphite electrode is energized. If the electrodes are not heated, refining reactions such as steelmaking will be impaired. For this reason, when supercooling is performed, only the amount of supercooling is heated, which in turn raises the electric power consumption rate and the electrode consumption rate, resulting in a significant cost increase.

【0022】[0022]

【発明が解決しようとする課題】本発明は上記欠点の解
決を目的とし、具体的には、ア−ク電気炉などの電気製
鋼炉において、ニップルを介して順次に接続される黒鉛
電極列のうちの上部の黒鉛電極に冷却液を吹付け、この
冷却水の吹付けにおいて、水平レベルより下向きに所定
の傾斜角で傾斜させて冷却液を吹付ける一方、冷却液の
吹付量若しくは噴射量を所定の適正範囲内にとどめると
共に、この適正範囲内で最適値の吹付量を求める金属の
溶解および精錬方法を提案する。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks. Specifically, in an electric steelmaking furnace such as an arc electric furnace, graphite electrode arrays which are sequentially connected through nipples are used. The cooling liquid is sprayed on the graphite electrode on the upper part of this, and in spraying this cooling water, the cooling liquid is sprayed at a predetermined inclination angle downward from the horizontal level, while the spray amount or injection amount of the cooling liquid is adjusted. We propose a metal melting and refining method that keeps the amount within a predetermined appropriate range and obtains the optimum spray amount within this appropriate range.

【0023】[0023]

【課題を解決するための手段】すなわち、本発明方法は
ニップルを介して黒鉛電極が順次に接続される黒鉛電極
列に通電して、電気製鋼炉の炉蓋より上部で、黒鉛電極
列の黒鉛電極の外周に向け水平レベルに対し10°から
35°までの範囲の下向き傾斜角をもって下向きに傾斜
させて冷却液を噴射して吹付けて、黒鉛電極列を冷却し
つつ、電気製鋼炉中の金属をア−ク溶解して精錬する際
に、冷却液の吹付量を0.8〜35リットル/分にする
ことを特徴とする。
That is, according to the method of the present invention, a graphite electrode array in which graphite electrodes are sequentially connected through a nipple is energized, and graphite of the graphite electrode array is provided above a furnace lid of an electric steelmaking furnace. Inclining downward with a downward inclination angle in the range of 10 ° to 35 ° with respect to the horizontal level toward the outer periphery of the electrode, the cooling liquid is jetted and sprayed to cool the graphite electrode array, while When the metal is arc-melted and refined, the cooling liquid is sprayed at a rate of 0.8 to 35 liters / minute.

【0024】換言すると、本発明方法では、ニップルを
介して順次に接続された黒鉛電極の外周面に、冷却液を
吹付けて冷却する際に、冷却液は、水平レベルに対して
所定の傾斜角をとって下向きに傾斜させて吹付ける一
方、冷却液の吹付量は適正範囲において黒鉛電極の直径
に合わせて最適の吹付量に調整する。従って、吹付けた
冷却液のほとんど大部分は、黒鉛電極の外周面に接触し
つつ、外周面に沿って下降し、下降途中で一部は蒸発す
るが、冷却液はア−ク電気炉内の黒鉛電極に達し、黒鉛
電極列の先端まで冷却される。黒鉛電極に合わせて冷却
水の吹付量が調整されているため、冷却は過冷却になら
ず、良好に冷却され、電力原単位や、電極原単位が大巾
に低減される。
In other words, in the method of the present invention, when the cooling liquid is sprayed and cooled on the outer peripheral surface of the graphite electrodes sequentially connected through the nipple, the cooling liquid has a predetermined inclination with respect to the horizontal level. While spraying with an angle and tilted downward, the spray amount of the cooling liquid is adjusted to an optimum spray amount in accordance with the diameter of the graphite electrode within an appropriate range. Therefore, almost all of the sprayed cooling liquid descends along the outer peripheral surface of the graphite electrode while contacting the outer peripheral surface of the graphite electrode, and a part of the cooling liquid evaporates while the cooling liquid is inside the arc electric furnace. It reaches the graphite electrode and is cooled to the tip of the graphite electrode array. Since the spray amount of the cooling water is adjusted according to the graphite electrode, the cooling does not become supercooling, and the cooling is performed well, and the power consumption rate and the electrode consumption rate are greatly reduced.

【0025】また、ア−ク電気炉内においても、侵入し
た冷却液は常に黒鉛電極の外周面に沿って流れかつ接触
している。このため、侵入した冷却液は下降の間にほと
んど蒸発飛散し、水性ガス反応が生じない。
Also in the arc electric furnace, the invading cooling liquid always flows along and contacts the outer peripheral surface of the graphite electrode. For this reason, the invading cooling liquid is almost evaporated and scattered during the descent, and the water-gas reaction does not occur.

【0026】また、冷却液の中に耐酸化剤を含有させる
と、冷却液が黒鉛電極外周面に沿って下降する際に、そ
の中に含まれる耐酸化剤が付着し、この付着によって形
成された耐酸化剤皮膜によって黒鉛電極の酸化消耗の効
果的に防止できる。
When the cooling liquid contains an oxidation resistant agent, when the cooling liquid descends along the outer peripheral surface of the graphite electrode, the oxidation resistant agent contained therein adheres and is formed by this adhesion. The oxidation resistant coating effectively prevents the graphite electrode from being consumed by oxidation.

【0027】更に、冷却液の吹付量は適正範囲にとどま
っている。このため、一部の冷却液がア−ク電気炉内に
入っても、ほとんどが途中で飛散し、炉内で水性ガス反
応が起こることもなく、水素ガスも発生しない。そのと
ころから、このように精錬すると、溶鋼中に水素などの
混入がなく、水素ぜい性を問題視する鋼種でも容易に精
錬できる。
Further, the spray amount of the cooling liquid is within the proper range. For this reason, even if a part of the cooling liquid enters the arc electric furnace, most of the cooling liquid is scattered in the middle of the furnace, no water gas reaction occurs in the furnace, and no hydrogen gas is generated. From that point, when refining in this way, hydrogen and the like are not mixed in the molten steel, and it is possible to easily refine even the steel type having a problem of hydrogen embrittlement.

【0028】そこで、これら手段たる構成ならびにその
作用について、図面によって具体的に説明すると、次の
通りである。
The structure and operation of these means will be described below in detail with reference to the drawings.

【0029】なお、図1は、本発明方法によって、黒鉛
電極に冷却液を吹付けて冷却しながら、金属を精錬する
際の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of refining a metal while spraying a cooling liquid on a graphite electrode to cool it by the method of the present invention.

【0030】図2は、図1に示す環状冷却管のうちの一
部を切断して示す説明図である。
FIG. 2 is an explanatory view showing a part of the annular cooling pipe shown in FIG. 1 by cutting.

【0031】図3は図2に示す環状冷却管の一部を拡大
して示す説明図である。
FIG. 3 is an enlarged view of a part of the annular cooling pipe shown in FIG.

【0032】まず、図1、図2において符号1は、黒鉛
電極を示し、黒鉛電極1はニップルを介して順次に接続
され、黒鉛電極列が形成される。黒鉛電極列において、
炉蓋より上方にある上部の黒鉛電極1は電極ホルダ(図
示せず)によって把持される。
First, in FIGS. 1 and 2, reference numeral 1 indicates a graphite electrode, and the graphite electrodes 1 are sequentially connected via a nipple to form a graphite electrode array. In the graphite electrode array,
The upper graphite electrode 1 above the furnace lid is held by an electrode holder (not shown).

【0033】黒鉛電極列はア−ク電気炉(図示せず)の
炉蓋を挿通し、精錬に関与する黒鉛電極によってア−ク
電気炉内で金属その他はア−ク加熱され、製鋼などの精
錬が行なわれる。
The graphite electrode array is inserted through the furnace lid of an arc electric furnace (not shown), and the graphite electrodes involved in refining are used to arc heat the metal and other materials in the arc electric furnace to produce steel. Refining is performed.

【0034】また、ア−ク電気炉において、3相交流電
圧により加熱する場合には、そのセンタ−を中心とする
所定半径の円サ−クル上に間隔をおいてニップルを介し
て順次に接続される黒鉛電極列が3本配置される。
Further, in the arc electric furnace, when heating is performed by a three-phase AC voltage, they are sequentially connected via a nipple on a circle circle having a predetermined radius centered on the center of the arc electric furnace. Three graphite electrode rows are arranged.

【0035】また、交流加熱に代って、直流加熱する場
合は、1本の黒鉛電極列が配置され、この黒鉛電極列が
直流加熱される。
When DC heating is used instead of AC heating, one graphite electrode array is arranged and this graphite electrode array is DC heated.

【0036】そこで、一つの黒鉛電極列において、炉蓋
より上方にある黒鉛電極1の外周面に、例えば冷却水の
如き冷却液2を、水平レベルに対して下向きに10°か
ら35°までの傾斜角をとって、傾斜させて噴射吹付
け、このときの冷却液2の吹付量は0.8〜35リット
ル/分の範囲に保った上、冷却すべき黒鉛電極の直径と
対応して最適量を求め、最適量の冷却水を黒鉛電極の外
周面に下向きに傾斜させて吹付ける。
Therefore, in one graphite electrode array, a cooling liquid 2 such as cooling water is provided on the outer peripheral surface of the graphite electrode 1 above the furnace lid downwardly with respect to the horizontal level from 10 ° to 35 °. The spray angle is set to an angle and sprayed, and the spray amount of the cooling liquid 2 at this time is kept in the range of 0.8 to 35 liters / minute, and is optimal in accordance with the diameter of the graphite electrode to be cooled. The amount is determined, and the optimum amount of cooling water is sprayed on the outer peripheral surface of the graphite electrode while inclining downward.

【0037】すなわち、冷却液の吹付量については、冷
却すべき黒鉛電極の直径と合わせて、最適範囲の吹付量
を求める。また、各電極径に応じた最適範囲内におい
て、主として電極原単位との関係から、冷却液の最適量
を求め、この量になるよう、冷却液を吹付ける。
That is, with respect to the spray amount of the cooling liquid, the spray amount in the optimum range is obtained in combination with the diameter of the graphite electrode to be cooled. Further, within the optimum range corresponding to each electrode diameter, the optimum amount of the cooling liquid is obtained mainly from the relationship with the electrode basic unit, and the cooling liquid is sprayed to reach this amount.

【0038】この冷却液の最適量は、すでに示した通
り、冷却すべき黒鉛電極の直径との関連性から、ちなみ
に、電極直径が400mm±20mmの場合には、冷却
液は、6〜9リットル/分の割合で、吹付ける。
The optimum amount of this cooling liquid is, as already shown, from the relation with the diameter of the graphite electrode to be cooled, by the way, when the electrode diameter is 400 mm ± 20 mm, the cooling liquid is 6 to 9 liters. Spray at a rate of / minute.

【0039】冷却すべき黒鉛電極の直径が大きくなって
大径化するとき、つまり、直径が450mm±20mm
の場合には、8〜12リットル/分の割合で吹付ける。
冷却すべき黒鉛電極の直径が500mm±30mmの場
合には、10〜14リットル/分の割合で冷却液を吹付
ける。
When the diameter of the graphite electrode to be cooled becomes large and becomes large, that is, the diameter is 450 mm ± 20 mm.
In the case of, spray at a rate of 8 to 12 liters / minute.
When the diameter of the graphite electrode to be cooled is 500 mm ± 30 mm, the cooling liquid is sprayed at a rate of 10 to 14 l / min.

【0040】また、冷却すべき黒鉛電極の直径が550
mm±20mmの場合には、12〜17リットル/分の
割合で冷却液を吹付ける。
The diameter of the graphite electrode to be cooled is 550
In the case of mm ± 20 mm, the cooling liquid is sprayed at a rate of 12 to 17 liters / minute.

【0041】また、冷却すべき黒鉛電極の直径が600
mm±30mmの場合には、14〜20リットル/分の
割合で吹付ける。
The diameter of the graphite electrode to be cooled is 600
In the case of mm ± 30 mm, spray at a rate of 14 to 20 liters / minute.

【0042】また、冷却すべき黒鉛電極の直径が650
mm±20mmの場合には、17〜24リットル/分の
割合で冷却液を吹付ける。
The diameter of the graphite electrode to be cooled is 650.
In the case of mm ± 20 mm, the cooling liquid is sprayed at a rate of 17 to 24 l / min.

【0043】また、冷却すべき黒鉛電極の直径が700
mm±30mmの場合には、20〜28リットル/分の
割合で冷却液を吹付ける。
The diameter of the graphite electrode to be cooled is 700
In the case of mm ± 30 mm, the cooling liquid is sprayed at a rate of 20 to 28 liters / minute.

【0044】また、冷却すべき黒鉛電極の直径が760
mm±30mmの場合には、23〜32リットル/分の
割合で吹付ける。
The diameter of the graphite electrode to be cooled is 760
In the case of mm ± 30 mm, spray at a rate of 23 to 32 liters / minute.

【0045】この適正範囲であると、従来例(消耗電極
で冷却した場合)に較べると、電極原単位(kg/t)
は14〜19%程度減少し、電力原単位(kwh/t)
も3〜5%程度減少する。
Within this proper range, the electrode unit (kg / t) is lower than that of the conventional example (when cooled by the consumable electrode).
Is reduced by about 14 to 19%, and electric power consumption rate (kwh / t)
Is also reduced by about 3-5%.

【0046】冷却液は、上記の条件のもとであれば、何
れの方法によっても吹付けることができるが、次の通り
に、環状冷却管3を用いて、冷却液を吹付けることがで
きる。
The cooling liquid can be sprayed by any method under the above conditions, but the cooling liquid can be sprayed using the annular cooling pipe 3 as follows. .

【0047】図1に示すように、冷却液を吹付けるべき
黒鉛電極1の外周に環状冷却管3を配置し、環状冷却管
3内に冷却液を送る。環状冷却管3の内面には吹付ノズ
ル4を下向きに傾斜させて取付け、吹付けノズル4から
冷却液を下向きに傾斜させて噴射し、黒鉛電極1の外周
面に吹付ける。環状冷却管3は、黒鉛電極1の上部を把
持する電極ホルダ(図示せず)とア−ク電気炉の炉蓋
(図示せず)との間に配置する。
As shown in FIG. 1, an annular cooling pipe 3 is arranged around the graphite electrode 1 to which the cooling liquid is sprayed, and the cooling liquid is fed into the annular cooling pipe 3. The spray nozzle 4 is attached to the inner surface of the annular cooling pipe 3 while inclining downward, and the cooling liquid is sprayed while inclining downward from the spray nozzle 4 and sprayed onto the outer peripheral surface of the graphite electrode 1. The annular cooling pipe 3 is arranged between an electrode holder (not shown) that holds the upper portion of the graphite electrode 1 and a furnace lid (not shown) of the arc electric furnace.

【0048】環状冷却管3の内面の各吹付ノズル4は黒
鉛電極1の中心に向って指向させる。各吹付ノズル4の
先端ノズル部4aは、図3に示す通り、斜め下向きに1
0°をこえて35°以下の下向き傾斜角θをとって傾斜
させる。このように吹付ノズル4を取付けると、連続的
に供給される冷却液2は、冷却管3の各吹付ノズル4か
ら、斜め下向きに噴射され、冷却液2は、図1で符号2
aで示すように、黒鉛電極1の外周面に沿って流れ、こ
の冷却液2が下向きに下降する間に、黒鉛電極1を冷却
し、精錬に関与する炉内の下部の黒鉛電極1まで冷却す
る。
The spray nozzles 4 on the inner surface of the annular cooling pipe 3 are directed toward the center of the graphite electrode 1. As shown in FIG. 3, the tip nozzle portion 4a of each spray nozzle 4 is inclined downward by 1
It is inclined at a downward inclination angle θ of more than 0 ° and 35 ° or less. When the spray nozzle 4 is attached in this manner, the continuously supplied cooling liquid 2 is jetted obliquely downward from each spray nozzle 4 of the cooling pipe 3, and the cooling liquid 2 is denoted by reference numeral 2 in FIG.
As indicated by a, the graphite electrode 1 flows along the outer peripheral surface of the graphite electrode 1, and while the cooling liquid 2 descends downward, the graphite electrode 1 is cooled to the lower graphite electrode 1 in the furnace involved in refining. To do.

【0049】冷却液2は、符号2aで示すように、黒鉛
電極1の外周面に沿って層状に流れるため、ア−ク電気
炉内に入っても、冷却液は内部の熱により気化され消滅
し、水性反応などが起こる余地がないほか、その反応で
生じる水素が溶鋼中に入ることがない。
As shown by reference numeral 2a, the cooling liquid 2 flows in layers along the outer peripheral surface of the graphite electrode 1. Therefore, even when the cooling liquid 2 enters the arc electric furnace, the cooling liquid is vaporized by the internal heat and disappears. However, there is no room for an aqueous reaction, and hydrogen generated by the reaction does not enter the molten steel.

【0050】このように下向きに傾斜させて吹付ける場
合、吹付量は、0.8〜35リットル/分、好ましく
は、6〜35リットル/分の適正範囲内に保つ必要があ
り、更に、適正範囲内で黒鉛電極の直径と対応して最適
値を求め、この最適値の冷却液を吹付けて冷却する。こ
のように冷却すると、冷却液2はほとんど飛散すること
なく、ほとんどの冷却液2は黒鉛電極群の各黒鉛電極1
の外周面上を流れて、ア−ク電気炉内に入り、下部の黒
鉛電極の先端まで冷却し、その冷却は、過冷却になるこ
となく、適正に冷却され、電極原単位は大巾に減少す
る。
When spraying with a downward inclination as described above, it is necessary to keep the spraying amount within an appropriate range of 0.8 to 35 liters / minute, preferably 6 to 35 liters / minute. An optimum value is obtained within the range corresponding to the diameter of the graphite electrode, and the cooling liquid having this optimum value is sprayed to cool. When cooled in this way, the cooling liquid 2 scarcely scatters, and most of the cooling liquid 2 is contained in each graphite electrode 1 of the graphite electrode group.
Flowing over the outer peripheral surface of the arc, enters the arc electric furnace, and cools to the tip of the lower graphite electrode. The cooling is properly cooled without overcooling, and the electrode unit is wide. Decrease.

【0051】この場合、下向きの傾斜角θが10°〜3
5°の範囲にあると、噴射圧力を適正に調節すると、黒
鉛電極で反射される量が少なく、先端までの冷却効果も
十分で電極原単位も減少する。
In this case, the downward tilt angle θ is 10 ° to 3
Within the range of 5 °, when the injection pressure is properly adjusted, the amount reflected by the graphite electrode is small, the cooling effect up to the tip is sufficient, and the electrode unit consumption is also reduced.

【0052】また、冷却液の流量の適正範囲の下限が
0.8リットル/分、なかでも6リットル/分であるの
は、それ以下になると、下向き傾斜角θが上記範囲内に
あっても、冷却液の流量が不十分で所定の冷却効果が達
成できないからである。
Further, the lower limit of the proper range of the flow rate of the cooling liquid is 0.8 liters / minute, especially 6 liters / minute. Below that, even if the downward inclination angle θ is within the above range. This is because the flow rate of the cooling liquid is insufficient and the predetermined cooling effect cannot be achieved.

【0053】また、冷却液の流量が適正範囲の上限の3
5リットル/分をこえると、相当大径の黒鉛電極であっ
ても黒鉛電極列全体の冷却が過剰となり、かえって、過
冷却分の加熱に余分の電力がかかり、電力原単位が上昇
して好ましくないからである。
Further, the flow rate of the cooling liquid is 3 which is the upper limit of the proper range.
If it exceeds 5 liters / minute, the entire graphite electrode array will be excessively cooled even with a graphite electrode having a considerably large diameter, and on the contrary, extra power will be required to heat the supercooled portion and the power consumption rate will increase, which is preferable. Because there is no.

【0054】なお、上記のところでは、複数個のノズル
から冷却液を吹出す例を示したが、上記の条件のもとで
あれば、一つのノズルから冷却液を吹出すこともでき、
この場合には、冷却装置そのものの構造をコンパクトに
できる。
In the above description, an example in which the cooling liquid is blown out from a plurality of nozzles has been shown, but under the above conditions, the cooling liquid can be blown out from one nozzle.
In this case, the structure of the cooling device itself can be made compact.

【0055】[0055]

【実施例】【Example】

実施例1.まず、表1に示す通り、各種直径の黒鉛電極
をニップルを介して接続した黒鉛電極列を用いて、炉蓋
より上方において、主として水道水から成る冷却液を下
向きの傾斜角θ(=15°、20°)をとって傾斜させ
て吹付けて冷却しつつ、製鋼用のア−ク電気炉でスクラ
ップ材を溶融してア−ク精錬を行なった。
Embodiment 1 FIG. First, as shown in Table 1, using a graphite electrode array in which graphite electrodes of various diameters were connected via nipples, a cooling liquid mainly consisting of tap water was directed downward at an inclination angle θ (= 15 °) above the furnace lid. , 20 °) while inclining and spraying to cool, the scrap material was melted in an arc electric furnace for steelmaking to perform arc refining.

【0056】この際、冷却液としての水道水は、各直径
毎の黒鉛電極について、流量を変化させ、黒鉛電極の直
径と流量とに対する電極原単位ならびに電力原単位を求
めた。
At this time, the flow rate of the tap water as the cooling liquid was changed for each graphite electrode for each diameter, and the electrode unit and power unit for the diameter and flow of the graphite electrode were determined.

【0057】この結果は、表1に示す通りであった。The results are shown in Table 1.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】表1において、最適水量、過少水量ならび
に過大水量は以下の通りである。
In Table 1, the optimum water amount, the excessive water amount and the excessive water amount are as follows.

【0061】冷却水から成る冷却水の水量と、電極原単
位ならびに電力原単位との関係を8種の直径の異なる黒
鉛電極毎に求め、その中で電極原単位ならびに電力原単
位が最良の結果を示す水量を最適冷却水量と定めた。
The relationship between the amount of cooling water consisting of cooling water and the electrode unit and power unit was determined for each of the eight graphite electrodes having different diameters, and the electrode unit and power unit were the best results. The amount of water that indicates is determined as the optimum amount of cooling water.

【0062】また、過少水量は最適水量より少ない水量
であり、過剰水量は最適水量より多い水量である。
The excessive water amount is smaller than the optimum water amount, and the excess water amount is larger than the optimum water amount.

【0063】次に、このように求めた最適水量の範囲内
において、各黒鉛電極毎に適正値として一つの水量を定
めて電極原単位について実験を行なった。
Next, within the range of the optimum amount of water thus obtained, one water amount was determined as an appropriate value for each graphite electrode, and an experiment was conducted on the electrode unit.

【0064】表2のところから明らかなように、噴射
用、つまり、下向き傾斜角θが10〜35°の範囲内で
あっても、各電極直径に対応して水量が最適水量の範囲
内にないと、電気炉操業で重要な電極原単位の大巾な減
少、つまり、2.5〜1.2kg/tの電極原単位が達
成できない。
As is clear from Table 2, even if the water is for jetting, that is, even if the downward inclination angle θ is in the range of 10 to 35 °, the water amount is within the range of the optimum water amount corresponding to each electrode diameter. Without it, a significant reduction of the electrode unit consumption, which is important in the operation of the electric furnace, that is, the electrode unit unit of 2.5 to 1.2 kg / t cannot be achieved.

【0065】このところは、電気炉操業で操業コストの
主要部分を占める電極原単位であるところからしても、
きわめて大きな特徴である。
Even from the fact that it is an electrode unit that occupies a major part of the operating cost in the electric furnace operation,
This is an extremely important feature.

【0066】また、更に、同様な実験を一つの吹付ノズ
ルによっても行なったところ、表1や表2に示すところ
と同等の結果が得られた。
Further, when the same experiment was performed using one spray nozzle, the same results as those shown in Table 1 and Table 2 were obtained.

【0067】[0067]

【発明の効果】以上詳しく説明した通り、本発明方法に
おいては、ニップルを介して黒鉛電極が順次に接続され
る黒鉛電極列に通電して、電気製鋼炉中において金属を
ア−ク溶解して精錬する際に、電気製鋼炉の炉蓋より上
部において、黒鉛電極列の黒鉛電極の外周に向け水平レ
ベルに対し10°をこえて35°以下の下向き傾斜角を
もって下向きに傾斜させて冷却液を噴射吹付ける一方、
冷却液の吹付量は、冷却すべき黒鉛電極の直径に対応さ
せて、0.8〜35リットル/分の範囲内で、最適水量
などの吹付量を求め、この最適水量などの範囲内の吹付
量で冷却液を吹付けて、黒鉛電極を冷却する。
As described in detail above, in the method of the present invention, the graphite electrode array in which the graphite electrodes are sequentially connected via the nipple is energized to melt the metal in an electric steelmaking furnace. At the time of refining, the cooling liquid is tilted downward with a downward tilt angle of more than 10 ° and 35 ° or less with respect to the horizontal level toward the outer periphery of the graphite electrode of the graphite electrode array above the furnace lid of the electric steelmaking furnace. While spraying,
The spray amount of the cooling liquid is determined within a range of 0.8 to 35 liters / minute in accordance with the diameter of the graphite electrode to be cooled, and the spray amount such as the optimum water amount is obtained. A quantity of cooling liquid is sprayed to cool the graphite electrode.

【0068】このように冷却液を吹付けつつ、金属を溶
解、精錬すると、溶解および精錬時の黒鉛電極の酸化消
耗は最小限におさえられて、電極原単位を大巾に低減す
ると共に、操業時の電力原単位も大巾に低減でき、更
に、ア−ク電気炉内で水性反応による水素ガスなどを発
生させることなく、更に、シャモットなどの安価な耐火
物から成る炉蓋であっても耐用年数を損なうことがな
い。
When the metal is melted and refined while spraying the cooling liquid in this manner, the oxidation consumption of the graphite electrode during the melting and refining is suppressed to a minimum, and the electrode unit consumption is greatly reduced and the operation is performed. The power consumption per unit time can be greatly reduced, and even if the furnace lid is made of inexpensive refractory such as chamotte, it does not generate hydrogen gas due to aqueous reaction in the arc electric furnace. It does not impair the service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法によって、黒鉛電極に冷却液を吹付
けて冷却しながら、金属を精錬する際の一例を示す説明
図である。
FIG. 1 is an explanatory view showing an example of refining a metal while spraying a cooling liquid on a graphite electrode to cool the graphite electrode by the method of the present invention.

【図2】図1に示す環状冷却管のうちの一部を切断して
示す説明図である。
FIG. 2 is an explanatory diagram showing a part of the annular cooling pipe shown in FIG. 1 by cutting.

【図3】図2に示す環状冷却管の一部を拡大して示す説
明図である。
FIG. 3 is an explanatory view showing a part of the annular cooling pipe shown in FIG. 2 in an enlarged manner.

【図4】従来例の冷却装置の説明図である。FIG. 4 is an explanatory diagram of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 黒鉛電極 2 冷却液 3 環状冷却管 4 吹付ノズル θ 下向き傾斜角 1 Graphite electrode 2 Cooling liquid 3 Annular cooling pipe 4 Spray nozzle θ Downward tilt angle

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニップルを介して黒鉛電極が順次に接続
される黒鉛電極列に通電して、電気製鋼炉の炉蓋より上
部で、前記黒鉛電極列の黒鉛電極の外周に向け水平レベ
ルに対し10°から35°までの範囲の下向き傾斜角を
もって下向きに傾斜させて冷却液を噴射して吹付けて、
前記黒鉛電極列を冷却しつつ、電気製鋼炉中の金属をア
−ク溶解して精錬する際に、前記冷却液の吹付量を0.
8〜35リットル/分にすることを特徴とする電気製鋼
炉における金属の溶解・精錬方法。
1. A graphite electrode array, to which graphite electrodes are sequentially connected through a nipple, is energized to a horizontal level toward the outer periphery of the graphite electrode of the graphite electrode array above the furnace lid of the electric steelmaking furnace. Inject downward with a downward inclination angle in the range of 10 ° to 35 °, spray the cooling liquid, and spray.
While cooling the graphite electrode array, when the metal in the electric steelmaking furnace was arc-melted and refined, the spray amount of the cooling liquid was set to 0.
A method for melting and refining a metal in an electric steelmaking furnace, characterized in that it is set to 8 to 35 liters / minute.
【請求項2】 前記冷却液の吹付量を、6リットル/分
をこえて35リットル/分までの範囲内において、前記
黒鉛電極の直径に対応して最適量にすることを特徴とす
る電気製鋼炉における金属の溶解・精錬方法。
2. Electric steelmaking, characterized in that the spraying amount of the cooling liquid is within the range of more than 6 liters / minute and up to 35 liters / minute corresponding to the diameter of the graphite electrode. Method for melting and refining metals in a furnace.
【請求項3】 前記冷却液の最適量は、冷却すべき前記
黒鉛電極の直径が400mm±20mmの場合に6〜9
リットル/分、冷却すべき前記黒鉛電極の直径が450
mm±20mmの場合に8〜12リットル/分、冷却す
べき前記黒鉛電極の直径が500mm±30mmの場合
に10〜14リットル/分、冷却すべき前記黒鉛電極の
直径が550mm±20mmの場合に12〜17リット
ル/分、冷却すべき前記黒鉛電極の直径が600mm±
30mmの場合に14〜20リットル/分、冷却すべき
前記黒鉛電極の直径が650mm±20mmの場合に1
7〜24リットル/分、冷却すべき前記黒鉛電極の直径
が700mm±30mmの場合に20〜28リットル/
分、冷却すべき前記黒鉛電極の直径が750mm±30
mmの場合に23〜32リットル/分にすることを特徴
とする請求項1または2記載の電気製鋼炉における金属
の溶解・精錬方法。
3. The optimum amount of the cooling liquid is 6 to 9 when the diameter of the graphite electrode to be cooled is 400 mm ± 20 mm.
L / min, the diameter of the graphite electrode to be cooled is 450
When the diameter of the graphite electrode to be cooled is 8 to 12 liters / minute, the diameter of the graphite electrode to be cooled is 500 mm ± 30 mm, and the diameter of the graphite electrode to be cooled is 550 mm ± 20 mm. 12 to 17 liters / minute, the diameter of the graphite electrode to be cooled is 600 mm ±
14 to 20 liters / minute in the case of 30 mm, 1 in the case of the diameter of the graphite electrode to be cooled being 650 mm ± 20 mm
7 to 24 liters / minute, 20 to 28 liters / minute when the diameter of the graphite electrode to be cooled is 700 mm ± 30 mm
Min., The diameter of the graphite electrode to be cooled is 750 mm ± 30
The method for melting and refining metal in an electric steelmaking furnace according to claim 1 or 2, characterized in that it is 23 to 32 liters / minute in the case of mm.
【請求項4】 前記冷却液として水を噴射することを特
徴とする請求項1、2または3記載の電気製鋼炉におけ
る金属の溶解・精錬方法。
4. The method for melting and refining metal in an electric steelmaking furnace according to claim 1, 2 or 3, wherein water is injected as the cooling liquid.
【請求項5】 前記冷却液として、耐酸化剤を含み残余
が実質的に水から成る冷却液を噴射することを特徴とす
る請求項1、2、3または4記載の電気製鋼炉における
金属の溶解・精錬方法。
5. The metal in an electric steelmaking furnace according to claim 1, 2, 3 or 4, wherein the cooling liquid is a cooling liquid containing an antioxidant and the balance being substantially water. Melting and refining method.
JP27191095A 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace Pending JPH0992461A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27191095A JPH0992461A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace
KR1019960042424A KR970016508A (en) 1995-09-26 1996-09-25 Graphite electrode cooling method used for melting and refining metal in electric arc furnace and ladle
US08/721,221 US5795539A (en) 1995-09-26 1996-09-26 Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
CA002186538A CA2186538C (en) 1995-09-26 1996-09-26 Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27191095A JPH0992461A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace

Publications (1)

Publication Number Publication Date
JPH0992461A true JPH0992461A (en) 1997-04-04

Family

ID=17506591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27191095A Pending JPH0992461A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace

Country Status (1)

Country Link
JP (1) JPH0992461A (en)

Similar Documents

Publication Publication Date Title
US4275287A (en) Plasma torch and a method of producing a plasma
JPH0795474B2 (en) Method for melting and refining metals such as electric arc steelmaking and electrode cooling device used therefor
CN103958994A (en) Fluid cooled lances for top submerged injection
EP1391142B1 (en) Plasma torch
JPS58113309A (en) Steel producer
JP3721872B2 (en) Ladle for refining molten steel
CN105612263A (en) Top submerged injection lance for enhanced submerged combustion
US5795539A (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
EP0232961B1 (en) Method and apparatus for heating molten steel utilizing a plasma arc torch
JPH0992461A (en) Method for melting and smelting metal in electric steelmaking furnace
JP2704395B2 (en) Method of cooling graphite electrode for electric arc refining and cooling device for graphite electrode
JPH0992458A (en) Method for melting and smelting metal in electric steelmaking furnace
JP2824955B2 (en) Electric furnace oxygen injection equipment
JPH0992460A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992462A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992459A (en) Method for melting and smelting metal in electric steelmaking furnace
EP0827365A2 (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
JPH10500455A (en) Method of producing steel in electric arc furnace and electric arc furnace therefor
JPH1072615A (en) Method for refining molten metal in ladle and apparatus therefor
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
JPH0824068B2 (en) Metal melting and refining method and electrode cooling device used therefor
JPH1072616A (en) Method for refining molten metal in ladle and apparatus therefor
EP1315841A1 (en) Process for the metallurgical treatment of molten steel in a converter with oxygen top blown
RU2817361C2 (en) Burner with display device, electric furnace equipped with said burner, and method of producing molten cast iron using said electric furnace
TW200932917A (en) Cooling of a metallurgical smelting reduction vessel