JPH0824068B2 - Metal melting and refining method and electrode cooling device used therefor - Google Patents

Metal melting and refining method and electrode cooling device used therefor

Info

Publication number
JPH0824068B2
JPH0824068B2 JP62157169A JP15716987A JPH0824068B2 JP H0824068 B2 JPH0824068 B2 JP H0824068B2 JP 62157169 A JP62157169 A JP 62157169A JP 15716987 A JP15716987 A JP 15716987A JP H0824068 B2 JPH0824068 B2 JP H0824068B2
Authority
JP
Japan
Prior art keywords
cooling
electrode
graphite electrode
cooling liquid
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62157169A
Other languages
Japanese (ja)
Other versions
JPH012294A (en
JPS642294A (en
Inventor
八束 中本
敏彦 森
Original Assignee
日本カ−ボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カ−ボン株式会社 filed Critical 日本カ−ボン株式会社
Priority to JP62157169A priority Critical patent/JPH0824068B2/en
Publication of JPH012294A publication Critical patent/JPH012294A/en
Publication of JPS642294A publication Critical patent/JPS642294A/en
Publication of JPH0824068B2 publication Critical patent/JPH0824068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 <発明の目的> 産業上の利用分野 本発明は金属の溶解・精錬方法ならびにそれに供する
電極冷却装置に係り、詳しくは、アーク電気炉におい
て、ニップルを介して順次に接続される黒鉛電極に電流
を通電して金属を溶解・精錬する際に、電極ホルダによ
って把持される上部の黒鉛電極の外周面に冷却水等の冷
却液を連続的に吹付けて冷却し、とくに、冷却液を水平
レベルに対して傾斜角10〜35゜をとって上向きに傾斜さ
せて噴射して、黒鉛電極の外周面に吹付け、吹付時の冷
却液の飛散を最小限におさえて黒鉛電極を効果的に冷却
し、黒鉛電極外周面の酸化消耗をおさえ、電極原単位を
大巾に低減でき、更に、冷却水の吹付けによって電気ア
ーク炉の炉蓋耐用を向上させ、高電圧高力率操業による
金属の溶解・精錬方法ならびにそれに供する電極冷却装
置に係る。
The present invention relates to a method for melting and refining metal and an electrode cooling device provided therewith, and more specifically, in an arc electric furnace, they are sequentially connected through a nipple. When melting and refining the metal by passing a current through the graphite electrode, the cooling liquid such as cooling water is continuously sprayed on the outer peripheral surface of the upper graphite electrode held by the electrode holder to cool it. Injecting the cooling liquid at an inclination angle of 10 to 35 ° with respect to the horizontal level and spraying it upwards and spraying it on the outer peripheral surface of the graphite electrode to minimize the scattering of the cooling liquid when spraying the graphite. The electrode is cooled effectively, the oxidation consumption of the graphite electrode outer surface is suppressed, and the electrode unit consumption can be greatly reduced.Furthermore, spraying cooling water improves the life of the electric arc furnace lid and increases the high voltage and high voltage. Method of melting and refining metal by power factor operation And the electrode cooling device provided therewith.

従来の技術 従来から、製鋼ならびに金属の電気アーク溶解および
精錬においては、電気エネルギのコストの低下に併せ
て、黒鉛電極の先端部ならびに外周面の酸化消耗を抑制
し、これによって電極原単位を低下させることが望まれ
ている。この酸化消耗抑制の手段として黒鉛電極を冷却
することが提案実施され、冷却法の一つとして、順次に
接続される黒鉛電極においてその上部の電極は内部を冷
却水により冷却する構造のもの、つまり、水冷式の非消
耗電極として構成し、この非消耗電極の下端にニップル
を介して黒鉛電極を接続し、溶解等の精錬操業時には上
部の非消耗電極を冷却することによって下端の黒鉛電極
を冷却し、黒鉛電極のみを消耗して精錬する方法やその
装置が提案されている。例えば、米国特許4.416.014
号、4.417.344号ならびに4.451.926号の各明細書には、
水冷式の非消耗電極をアルミニウム製の中空円筒から構
成し、この非消耗電極内に冷却水を導入し、この冷却水
によって非消耗電極の壁面や、下端に接続される黒鉛電
極を冷却する構造のものが記載されている。
Conventional technology Conventionally, in the electric arc melting and refining of steel and metal, along with the reduction of the electric energy cost, the oxidation consumption of the tip and outer peripheral surface of the graphite electrode is suppressed, thereby reducing the electrode unit consumption. It is desired to let them do. It has been proposed to cool the graphite electrode as a means for suppressing this oxidative consumption, and as one of the cooling methods, the upper electrode of the sequentially connected graphite electrodes has a structure of cooling the inside with cooling water, that is, It is configured as a water-cooled non-consumable electrode, and a graphite electrode is connected to the lower end of this non-consumable electrode via a nipple, and the lower non-consumable electrode is cooled by cooling the upper non-consumable electrode during refining operations such as melting. However, there has been proposed a method and an apparatus for refining by consuming only the graphite electrode. For example, U.S. Pat.
No., 4.417.344 and 4.451.926 specifications,
A structure in which a water-cooled non-consumable electrode is composed of an aluminum hollow cylinder, cooling water is introduced into the non-consumable electrode, and the cooling water cools the wall surface of the non-consumable electrode and the graphite electrode connected to the lower end. Are listed.

また、日本国特開昭60−501879号ならびに特開昭60−
501880号の各明細書には、水冷式の非消耗電極を黒鉛製
の管状体から構成し、この非消耗電極の中心孔内に冷却
水を導入し、この冷却水によって、非消耗電極の壁面
や、それに接続される黒鉛電極を冷却する構造のものが
記載されている。
In addition, JP-A-60-501879 and JP-A-60-
In each specification of 501880, a water-cooled non-consumable electrode is composed of a tubular body made of graphite, and cooling water is introduced into the center hole of the non-consumable electrode, and the cooling water causes the wall surface of the non-consumable electrode to flow. And a structure for cooling a graphite electrode connected thereto.

このように上端の非消耗電極の冷却によって下部に接
続される黒鉛電極を冷却する場合は、黒鉛電極の先端部
ならびに外周部の酸化消耗がおさえられ、電極原単位の
低減が達成できる。
When the graphite electrode connected to the lower part is cooled by cooling the non-consumable electrode at the upper end in this way, the oxidation consumption of the tip end portion and the outer peripheral portion of the graphite electrode is suppressed, and the electrode unit consumption can be reduced.

しかしながら、下部に接続される黒鉛電極が消耗さ
れ、この黒鉛電極を外すときには、電極炉からオフライ
ンに移して使用済の黒鉛電極をニップルから外し、必要
なときには、ニップルも非消耗電極から外す。また、新
しい黒鉛電極を接続するときには、非消耗電極にニップ
ルを取付け、このニップルに新しい黒鉛電極を取付ける
ことになる。従って、上記の如き水冷式の非消耗電極に
よって下部に接続される黒鉛電極を冷却するときには、
黒鉛電極を交換のために、オフラインに移送し、そこで
重筋労働の取外しや接続作業を行なう必要があって、作
業がきわめてはん雑化する。また、黒鉛電極の取外しな
らびに接続がくり返されると、黒鉛電極、非消耗電極、
ニップル等のねじ山が変形、つぶれ、破損し、接続不
良、電気抵抗の増加等が起こり、操業上に支障がある。
However, the graphite electrode connected to the lower part is consumed, and when this graphite electrode is removed, it is moved off-line from the electrode furnace to remove the used graphite electrode from the nipple, and when necessary, the nipple is also removed from the non-consumable electrode. When connecting a new graphite electrode, a nipple is attached to the non-consumable electrode, and a new graphite electrode is attached to this nipple. Therefore, when cooling the graphite electrode connected to the lower part by the water-cooled non-consumable electrode as described above,
The graphite electrodes must be transferred offline for replacement, where heavy-duty labor must be removed and connected, which complicates the work. When the graphite electrode is repeatedly removed and connected, the graphite electrode, the non-consumable electrode,
The threads of the nipple or the like may be deformed, crushed, or damaged, resulting in poor connection, increased electrical resistance, etc., resulting in operational problems.

このところから、上記の如く、下部に接続される黒鉛
電極を冷却するために、水冷式の非消耗電極を用いるこ
となく、日本国実公昭59−23357号には、アーク電気炉
の炉蓋から上方に突出する黒鉛電極の表面に対して冷却
水を吹付けて冷却する冷却装置が記載され、この冷却装
置は第2図に示す通りに構成されている。すなわち、第
2図において、符号1はアーク電力炉の炉蓋を示し、こ
の炉蓋1に黒鉛電極2が昇降自在に挿通され、この黒鉛
電極2の下部には黒鉛電極が接続され、この下部の黒鉛
がアーク電気炉内に位置し、製鋼等の精錬が行なわれ
る。炉蓋1の上方において、黒鉛電極2の上端部は電極
ホルダ3によって把持されている。電極ホルダ3の下面
には黒鉛電極2の外周を包囲する環状冷却管4が設けら
れ、環状冷却管4から下向きに複数本の縦パイプ5が突
出されて、各縦パイプ5の内面には黒鉛電極表面に指向
するノズル6が設けられている。従って、環状冷却管4
に供給された冷却水は各縦パイプ5に沿って下降し、内
面の各ノズル6から冷却水が黒鉛電極外周面に吹付けら
れて冷却される。
From this point, as described above, in order to cool the graphite electrode connected to the lower part, without using a water-cooled non-consumable electrode, in Japanese Utility Model No. 59-23357, from the furnace lid of the arc electric furnace A cooling device is described in which cooling water is sprayed onto the surface of a graphite electrode protruding upward to cool the surface, and the cooling device is configured as shown in FIG. That is, in FIG. 2, reference numeral 1 denotes a furnace lid of an arc electric power furnace, a graphite electrode 2 is vertically inserted through the furnace lid 1, and a graphite electrode is connected to a lower portion of the graphite electrode 2 and a lower portion of the lower portion. Graphite is located in the arc electric furnace, and refining such as steelmaking is performed. Above the furnace lid 1, the upper end of the graphite electrode 2 is held by the electrode holder 3. An annular cooling pipe 4 that surrounds the outer circumference of the graphite electrode 2 is provided on the lower surface of the electrode holder 3, and a plurality of vertical pipes 5 are projected downward from the annular cooling pipe 4, and graphite is provided on the inner surface of each vertical pipe 5. A nozzle 6 is provided which is directed toward the electrode surface. Therefore, the annular cooling pipe 4
The cooling water supplied to the pipes descends along the vertical pipes 5, and the cooling water is sprayed from the inner nozzles 6 onto the outer peripheral surface of the graphite electrode to be cooled.

しかしながら、第1図に示す冷却装置では各ノズル6
から冷却水は水平レベル若しくはそれと平行な方向に指
向して噴射される。このため、冷却水が黒鉛電極2の外
周面に衝突したときに相当量のものが反射されて飛散
し、この飛散した冷却水が多いことから、電極ホルダ3
や炉蓋1の汚染、破損が激しく、実用に供することがで
きない。また、噴射された冷却水のうちで、冷却に寄与
するのは僅かであるため、冷却水の使用量が異常に大き
くなり、きわめて不経済である。また、冷却管4から多
数の縦パイプ5が下向きに突出し、しかも、この突出長
さがきわめて長い。このために、電極交換のときに冷却
装置を取外す場合に、この長い縦パイプ5が障害にな
り、取扱いがきわめてめんどうである。
However, in the cooling device shown in FIG.
The cooling water is jetted from the horizontal level or a direction parallel to the horizontal level. Therefore, when the cooling water collides with the outer peripheral surface of the graphite electrode 2, a considerable amount of it is reflected and scattered, and the scattered cooling water is large.
The furnace lid 1 is severely contaminated and damaged, and cannot be put to practical use. Further, of the injected cooling water, only a small amount contributes to cooling, so that the amount of cooling water used becomes abnormally large, which is extremely uneconomical. Further, a large number of vertical pipes 5 project downward from the cooling pipe 4, and the projecting length thereof is extremely long. For this reason, this long vertical pipe 5 becomes an obstacle when the cooling device is removed during electrode replacement, and handling is extremely troublesome.

また、第2図に示す冷却装置は上記の如き欠点がある
ほかに、黒鉛電極2の外周を包囲して環状の冷却管4を
設けるため、この冷却管4が電磁力をシールドすること
により黒鉛電極2に流れる電流の相当部分が遮断され、
操業に大きな支障が生じる。すなわち、アーク電気炉の
操業では通常3相交流電源に対応して3本の黒鉛電極が
用いられ、黒鉛電極を冷却するときには、各黒鉛電極に
それぞれ第2図に示す冷却装置を設ける。このため、各
冷却管4は環状である故に、黒鉛電極2相互間により電
磁的影響が与えられる一方、各冷却管4が電磁力をシー
ルドすることによって黒鉛電極2の電流が遮断され、金
属を十分に通電加熱できず、電力原単位が大巾にアップ
して好ましくない。
In addition to the above-mentioned drawbacks, the cooling device shown in FIG. 2 has a ring-shaped cooling pipe 4 surrounding the outer periphery of the graphite electrode 2. Therefore, the cooling pipe 4 shields electromagnetic force from A considerable part of the current flowing through the electrode 2 is cut off,
The operation will be seriously hindered. That is, in the operation of the arc electric furnace, usually, three graphite electrodes are used corresponding to the three-phase AC power source, and when cooling the graphite electrodes, each graphite electrode is provided with the cooling device shown in FIG. For this reason, since each cooling pipe 4 is ring-shaped, electromagnetic influence is exerted between the graphite electrodes 2 while the cooling pipes 4 shield the electromagnetic force so that the current of the graphite electrode 2 is interrupted and metal is removed. It is not preferable because electric power cannot be sufficiently heated by heating, and the power consumption rate is greatly increased.

発明が解決しようとする問題点 本発明は、これらの問題点の解決を目的とし、具体的
には、冷却液を水平レベルに対して10〜35℃上向きの傾
斜角をとって噴射し、この噴射された冷却水をループさ
せて黒鉛電極の外周面に吹付ける金属の溶解・精錬方法
とそれに供する電極冷却装置を提供する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention aims to solve these problems, specifically, by injecting a cooling liquid at an inclination angle of 10 to 35 ° C. upward with respect to a horizontal level, (EN) A method for melting and refining a metal in which jetted cooling water is looped and sprayed on the outer peripheral surface of a graphite electrode, and an electrode cooling device used for the method.

<発明の構成> 問題点を解決するための手段ならびにその作用 すなわち、本発明方法は、ニップルを介して順次に接
続された黒鉛電極の外周面に、冷却液を吹付けて冷却し
て、金属を溶解、精錬する際に、冷却液を水平レベルに
対して10〜35゜上向きの傾斜角をとって噴射しこの噴射
された冷却液をループさせて黒鉛電極の外周面に吹付け
ることを特徴とする。
<Structure of the Invention> Means for Solving the Problem and Its Action That is, the method of the present invention is such that the cooling liquid is sprayed onto the outer peripheral surface of the graphite electrodes sequentially connected through the nipple to cool the metal. When melting and refining, the cooling liquid is sprayed at an inclination angle of 10 to 35 ° with respect to the horizontal level, and the sprayed cooling liquid is looped and sprayed on the outer peripheral surface of the graphite electrode. And

また、これを実施するのに好適な装置においては、ア
ーク電気炉の炉蓋と黒鉛電極の上端部を把持する電極ホ
ルダとの間に、この黒鉛電極の外周を包囲しかつ冷却液
が流動する環状の冷却管を配置し、この環状冷却管の黒
鉛電極の外周面に対向する内周面から冷却液を吹付ける
金属の溶解・精錬時に供する電極冷却装置において、環
状冷却管の少なくとも1ケ所を切欠いて切欠き部を構成
し、環状冷却管の内周面に、水平レベルに対して上向き
に10〜35゜傾斜しかつ黒鉛電極の中心軸方向に指向して
冷却液を噴射する少なくとも1つの噴射孔を設ける。
Further, in an apparatus suitable for carrying out this, between the furnace lid of the arc electric furnace and the electrode holder which holds the upper end of the graphite electrode, the graphite electrode is surrounded and the cooling liquid flows. In an electrode cooling device in which an annular cooling pipe is arranged and at the time of melting and refining a metal sprayed with a cooling liquid from the inner peripheral surface of the annular cooling pipe facing the outer peripheral surface of the graphite electrode, at least one place of the annular cooling pipe is provided. At least one which forms a notch by forming a notch, injects a cooling liquid on the inner peripheral surface of the annular cooling pipe, is inclined upward by 10 to 35 ° with respect to the horizontal level, and is directed in the central axis direction of the graphite electrode. Provide an injection hole.

以下、図面によって本発明の手段たる構成ならびに作
用を説明すると次の通りである。
The structure and operation of the present invention will be described below with reference to the drawings.

第1図は本発明方法の実施態様の一例を示す説明図で
あり、第2図は従来例に係る冷却装置の斜視図である。
FIG. 1 is an explanatory view showing an example of an embodiment of the method of the present invention, and FIG. 2 is a perspective view of a cooling device according to a conventional example.

まず、本発明は、例えば、日本国実公昭59−23357号
に示す如く、ニップルを介して順次に接続された黒鉛電
極の上端部の外周面に、冷却液を直接吹付けて冷却し
て、金属を溶解、精錬する方法である。
First, the present invention is, for example, as shown in Japanese Utility Model Publication No. 59-23357, the outer peripheral surface of the upper end portion of the graphite electrodes sequentially connected via a nipple, by cooling by directly spraying a cooling liquid, It is a method of melting and refining metals.

しかし、本発明では、冷却液を水平レベルで吹付ける
ことなく、水平レベルに対して10〜35゜の上向きの傾斜
角をとって、冷却水を噴射し、吹付ける。従って、冷却
液はループをとって黒鉛電極の外周面に当たると共に、
その一部はあまり飛散せずに外周面に沿って下降し、こ
の冷却液フィルムによって黒鉛電極の外周面は冷却さ
れ、その冷却は外周面で局部的に限られることなく、冷
却されて黒色状態に保つ部分の長さが長くなり、接続さ
れた黒鉛電極の酸化消耗が大巾に低減できる。
However, in the present invention, the cooling water is not sprayed at the horizontal level, but the cooling water is jetted and sprayed at an upward inclination angle of 10 to 35 ° with respect to the horizontal level. Therefore, the cooling liquid takes a loop and hits the outer peripheral surface of the graphite electrode,
Part of it does not scatter very much and descends along the outer peripheral surface, and the outer peripheral surface of the graphite electrode is cooled by this cooling liquid film, and the cooling is not locally limited at the outer peripheral surface and is cooled to a black state. The length of the portion kept at is increased, and the oxidation consumption of the connected graphite electrode can be greatly reduced.

また、冷却水を水とするか、この冷却液の中に耐酸化
剤を含有させることができる。従って、冷却液が黒鉛電
極外周面に沿って下降する際に、その中に含まれる耐酸
化剤が付着し、この付着によって形成された耐酸化剤皮
膜によって黒鉛電極の酸化消耗が効果的に防止できる。
Further, the cooling water may be water, or an antioxidant may be contained in the cooling liquid. Therefore, when the cooling liquid descends along the outer peripheral surface of the graphite electrode, the oxidation resistant agent contained therein adheres, and the oxidation resistant film formed by this adhesion effectively prevents the graphite electrode from being oxidized and consumed. it can.

また、冷却液を噴射圧力0.5〜3kg/cm2、噴射量0.8〜
6.0/分で吹付ける。従って、この範囲で吹付ける
と、冷却液が吹付け時にほとくで飛散せず、冷却液が黒
鉛電極の外周面に沿って下降してたとえ炉内に入って
も、冷却液は瞬時に蒸発気化してしまうため、電気炉内
の操業上障害が起こらない。
In addition, the cooling liquid injection pressure 0.5 to 3 kg / cm 2 , injection amount 0.8 to
Spray at 6.0 / min. Therefore, if sprayed in this range, the cooling liquid will not scatter at all during spraying, and the cooling liquid will evaporate instantly even if it descends along the outer peripheral surface of the graphite electrode and enters the furnace. Since it vaporizes, there will be no operational problems in the electric furnace.

また、上記の如く、本発明を実施する際に、アーク電
気炉の炉蓋と黒鉛電極の上端部を把持する電極ホルダと
の間に、環状の冷却管を配置し、この環状冷却管の内周
面に吹付けノズルを設けて、これら吹付けノズルから黒
鉛電極の外周面に冷却液を吹付けるが、この環状冷却管
の少なくとも1ケ所を切欠いて切欠き部を構成する。従
って、黒鉛電極に流れる電流の電磁的影響をうけても、
冷却管には切欠き部の存在のために電流が流れることが
なく、これによって黒鉛電極に流れる電流が遮断される
ことはない。また、環状冷却管の内周面に設けられる少
なくとも1つの吹付けノズルは、水平レベルに対して上
向きに10〜35゜の傾斜角をとって、傾斜させかつ前記黒
鉛電極の中心軸に指向するよう、冷却液を噴射する噴射
孔を、環状冷却管に設けている。従って、吹付けノズル
からの冷却液は上向きに傾斜させて噴射し、その冷却液
はループされて黒鉛電極の外周面に衝突するため、その
ときには、相当の噴射エネルギが失なわれることもあっ
て、周囲に飛散することなく外周面に沿って流下して冷
却液層を形成する。このため、電極ホルダにより把持さ
れる黒鉛電極の外周面は全長にわたって均一に冷却で
き、黒鉛原単位は大巾に低減できる。
Further, as described above, when carrying out the present invention, an annular cooling pipe is arranged between the furnace lid of the electric arc furnace and the electrode holder that holds the upper end of the graphite electrode. Spray nozzles are provided on the peripheral surface, and the cooling liquid is sprayed from the spray nozzles to the outer peripheral surface of the graphite electrode. At least one location of this annular cooling pipe is cut out to form a cutout portion. Therefore, even if it is affected by the electromagnetic current of the graphite electrode,
No current flows through the cooling tube due to the presence of the cutout portion, so that the current flowing through the graphite electrode is not interrupted. Further, at least one spray nozzle provided on the inner peripheral surface of the annular cooling tube is inclined at an inclination angle of 10 to 35 ° upward with respect to the horizontal level and directed toward the central axis of the graphite electrode. As described above, the injection hole for injecting the cooling liquid is provided in the annular cooling pipe. Therefore, the cooling liquid from the spray nozzle is jetted with an upward inclination, and the cooling liquid is looped and collides with the outer peripheral surface of the graphite electrode, and at that time, considerable injection energy may be lost. , And flows down along the outer peripheral surface without being scattered around to form a cooling liquid layer. Therefore, the outer peripheral surface of the graphite electrode held by the electrode holder can be uniformly cooled over the entire length, and the graphite unit can be greatly reduced.

まず、第1図において、符号10は黒鉛電極を示すが、
この黒鉛電極10の上端は電極ホルダによって把持される
と共に、下端はニップルを介して黒鉛電極が接続され、
この接続される黒鉛電極は炉蓋を通って電気炉内に入れ
られている。
First, in FIG. 1, reference numeral 10 indicates a graphite electrode,
The upper end of this graphite electrode 10 is gripped by an electrode holder, and the lower end is connected to a graphite electrode via a nipple,
The graphite electrode to be connected is put in an electric furnace through the furnace lid.

また、電気炉内に黒鉛電極10を配置する場合、電気炉
のセンターを中心として所定半径の円サークルを画き、
この円サークルの上に位置するよう、間隔をおいて3本
の黒鉛電極を配置する。ここで3本の黒鉛電極を配置す
るのは電源として3相交流が用いられるからである。し
かしながら、第1図においては、そのうちの代表例とし
て、1本の黒鉛電極10を示しているが、3本の黒鉛電極
において各黒鉛電極10にはそれぞれ上記の如くニップル
を介して下部に黒鉛電極が接続され、電気炉内でこれら
各電極に通電して製鋼等金属の溶解および精錬が行なわ
れる。
Further, when the graphite electrode 10 is arranged in the electric furnace, a circle with a predetermined radius is drawn centering on the center of the electric furnace,
Three graphite electrodes are arranged at intervals so as to be located on this circular circle. The three graphite electrodes are arranged here because a three-phase alternating current is used as a power source. However, in FIG. 1, one graphite electrode 10 is shown as a typical example, but in three graphite electrodes, each graphite electrode 10 has a graphite electrode in the lower part through the nipple as described above. Are connected to each other, and current is applied to each of these electrodes in an electric furnace to melt and refine metal such as steelmaking.

そこで、これら3本の黒鉛電極のうちで少なくとも1
つの黒鉛電極10の外周面10a、具体的には、電極ホルダ
と炉蓋との間で黒鉛電極10の外周面10aに例えば実質的
に水から成る冷却液11を連続的に吹付ける。このとき
に、冷却液11は水平レベルL−Lと平行でなく水平レベ
ルL−Lに対して上向きに10〜35゜の傾斜角をとって傾
斜させて吹付けて冷却する。
Therefore, at least one of these three graphite electrodes
An outer peripheral surface 10a of one graphite electrode 10, specifically, an outer peripheral surface 10a of the graphite electrode 10 is continuously sprayed with a cooling liquid 11 made of, for example, water between the electrode holder and the furnace lid. At this time, the cooling liquid 11 is not parallel to the horizontal level L-L but is inclined upward with respect to the horizontal level L-L at an inclination angle of 10 to 35 [deg.] To be sprayed and cooled.

すなわち、黒鉛電極10の外周面10aに冷却液11を吹付
けて冷却する場合、何れの方法で吹付けて冷却できる
が、冷却液11を水平レベルL−Lと略々平行に噴射して
黒鉛電極10の外周面10aに吹付けると、吹付け時の衝突
エネルギが高くなって、冷却液11の相当部分が外部に飛
散し、黒鉛電極10の外周面10aでも衝突部分のみしか局
部的に冷却できない。更に、飛散した冷却水によって電
極ホルダや炉蓋の損耗が早められる。この点から、本発
明では黒鉛電極10の外側に冷却管16を配置し、冷却液11
は傾斜角θ=10〜35゜で上向きに傾斜させて吹付ける。
この冷却管16は、黒鉛電極10の上端を把持する電極ホル
ダとアーク電気炉の上蓋(図示せず)との間、好ましく
は、冷却管16は電極ホルダの直下に配置する。
That is, when the cooling liquid 11 is sprayed on the outer peripheral surface 10a of the graphite electrode 10 to cool, the cooling liquid 11 can be sprayed and cooled by any method, but the cooling liquid 11 is jetted substantially parallel to the horizontal level L-L to cool the graphite. When the outer peripheral surface 10a of the electrode 10 is sprayed, the collision energy at the time of spraying is increased, and a considerable portion of the cooling liquid 11 is scattered to the outside, and only the collision portion of the outer peripheral surface 10a of the graphite electrode 10 is locally cooled. Can not. Further, the scattered cooling water accelerates the wear of the electrode holder and the furnace lid. From this point, in the present invention, the cooling pipe 16 is arranged outside the graphite electrode 10, and the cooling liquid 11
Is tilted upward at an angle of inclination of 10 to 35 ° and sprayed.
The cooling pipe 16 is arranged between the electrode holder that holds the upper end of the graphite electrode 10 and the upper lid (not shown) of the electric arc furnace, and preferably the cooling pipe 16 is arranged immediately below the electrode holder.

冷却管16は、黒鉛電極10の外周面10aから所定の距離
だけ離間するよう、黒鉛電極10と同心円状をなして環状
に構成するが、この環状冷却管16の一部を切欠いて少な
くとも1つの切欠き部を設ける。すなわち、上記の通
り、例えば、3本の黒鉛電極10がアーク電気炉の中心部
を中心とする同心円状に配置され、それぞれに黒鉛電極
を接続して操業する場合に、各黒鉛電極10ならびにそれ
に接続される黒鉛電極に流れる電流によって各黒鉛軽極
10を包囲する各冷却管16は単独または相互に電磁的影響
をうける。この冷却管16のうける電磁的影響によって黒
鉛電極10ならびにそれに接続する黒鉛電極に流れる電流
の一部は遮断されて電気炉操業が損なわれる。このた
め、この電磁気的影響を考慮して、冷却管16の一部に切
欠き部を設け、冷却管16に電磁気的影響が与えられない
よう構成する。平たく云うと、上述の如く、アーク電気
炉においては、3相交流を電源とするため、各交流分に
対応させて、3本の黒鉛電極10が同心円状に配置されて
いる。従って、これら各黒鉛電極10相互間では互いに電
磁気的に影響し合っており、この影響を周囲の各冷却管
16がうけて、冷却管16が環状で連続していると、電流が
流れ、この電流にもとずく電磁気的影響によって黒鉛電
極10に流れる電流が影響され、操業に支障が生じる。し
かしながら、冷却管16の一部に切欠き部を設けると、内
部の黒鉛電極10や周囲の黒鉛電極10からの電磁気的影響
をうけても冷却管16の中には電流が誘起されて流れるこ
とがなく、操業上に全く支障がない。
The cooling pipe 16 is formed in an annular shape concentric with the graphite electrode 10 so as to be separated from the outer peripheral surface 10a of the graphite electrode 10 by a predetermined distance. Provide a notch. That is, as described above, for example, three graphite electrodes 10 are arranged concentrically around the center of the electric arc furnace, and when the graphite electrodes are connected to the respective graphite electrodes to operate, the graphite electrodes 10 and Each graphite light pole depends on the current flowing through the connected graphite electrode.
Each cooling pipe 16 surrounding 10 is electromagnetically affected either alone or with each other. Due to the electromagnetic influence of the cooling pipe 16, a part of the current flowing through the graphite electrode 10 and the graphite electrode connected to the graphite pipe 10 is cut off and the operation of the electric furnace is impaired. Therefore, in consideration of this electromagnetic influence, a cutout portion is provided in a part of the cooling pipe 16 so that the cooling pipe 16 is not affected by the electromagnetic influence. In simple terms, as described above, in the arc electric furnace, since three-phase alternating current is used as the power source, three graphite electrodes 10 are arranged concentrically corresponding to each alternating current. Therefore, these graphite electrodes 10 electromagnetically influence each other, and this influence is affected by the surrounding cooling tubes.
If the cooling pipe 16 is continuous in an annular shape by receiving the current 16, an electric current flows, and the electric current causes an electric current to flow through the graphite electrode 10 due to an electromagnetic effect, which hinders the operation. However, if a notch is provided in a part of the cooling pipe 16, a current will be induced in the cooling pipe 16 to flow even if it is electromagnetically affected by the graphite electrode 10 inside and the surrounding graphite electrode 10. There is no problem, and there is no problem in operation.

なお、冷却管16は電磁気的影響を受けずかつ耐酸化性
にすぐれ、しかも、成型加工性に優れる材質から構成
し、例えば、成型加工性から金属材料から構成するとき
には非磁性材料であるステンレス鋼などから構成するこ
とが好ましい。金属材料以外であっても、例えば、セラ
ミックなどの如く電磁気的影響を受けず、しかも、耐酸
化性を持つ材料からも構成することができる。
The cooling pipe 16 is made of a material that is not affected by electromagnetic effects, has excellent oxidation resistance, and has excellent moldability. For example, stainless steel, which is a non-magnetic material when it is made of a metal material due to moldability, is used. It is preferable to be composed of Even if it is made of a material other than a metal material, it can be made of a material that is not affected by electromagnetic effects, such as ceramics, and has oxidation resistance.

また、冷却管16の内周面から冷却液11を噴射して吹付
けるために、冷却管16の内周面には間隔をおいて複数
個、例えば、4〜8個の吹付けノズルを設ける。各吹付
けノズルは半径方向に黒鉛電極10の中心に向って指向さ
せ、各吹付けノズルの先端ノズル部は、斜め上向きに、
傾斜角θ=10〜35゜の如く傾斜させる。この範囲で傾斜
させて冷却液を吹付けると、導入ダクトから連続的に供
給される冷却液11は冷却管16の各吹付けノズルから、第
1図に示す如く、斜め上向きに噴射される。すなわち、
冷却液11を上向きに傾斜させて吹付けると、黒鉛電極10
の外周面10aに衝突するときに、その衝突エネルギは緩
和され、冷却液11はほとんど飛散せず、しかも、上向き
に指向しているため、黒鉛電極10の外周面10aに沿って
薄い冷却液フィルム11aが形成される。従って、このフ
ィルム11aが黒鉛電極10の外周面10aに沿って下向きに下
降する間に、冷却液11は黒鉛電極10の内部の熱により気
化され、その気化熱によって黒鉛電極10の保有熱はうば
われてその全長にわたって良好に冷却される。このよう
に上部の黒鉛電極10が冷却されると、その下端部に接続
されている黒鉛電極は上部の黒鉛電極によって冷却さ
れ、下部の黒鉛電極の酸化消耗はおさえられる。
Further, in order to spray and spray the cooling liquid 11 from the inner peripheral surface of the cooling pipe 16, a plurality of, for example, 4 to 8 spray nozzles are provided on the inner peripheral surface of the cooling pipe 16 at intervals. . Each spray nozzle is directed in the radial direction toward the center of the graphite electrode 10, and the tip nozzle portion of each spray nozzle is diagonally upward,
Inclination angle θ = 10 to 35 °. When the cooling liquid is sprayed while inclining in this range, the cooling liquid 11 continuously supplied from the introduction duct is jetted obliquely upward from each spray nozzle of the cooling pipe 16 as shown in FIG. That is,
When the cooling liquid 11 is tilted upward and sprayed, the graphite electrode 10
When colliding with the outer peripheral surface 10a, the collision energy is relaxed, the cooling liquid 11 scarcely scatters, and moreover, since it is directed upward, a thin cooling liquid film along the outer peripheral surface 10a of the graphite electrode 10. 11a is formed. Therefore, while the film 11a descends along the outer peripheral surface 10a of the graphite electrode 10, the cooling liquid 11 is vaporized by the heat inside the graphite electrode 10, and the heat of vaporization causes the heat retained by the graphite electrode 10 to be And is cooled well over its entire length. When the upper graphite electrode 10 is cooled in this manner, the graphite electrode connected to the lower end of the upper graphite electrode 10 is cooled by the upper graphite electrode, and the oxidation consumption of the lower graphite electrode is suppressed.

換言すると、黒鉛電極は導電性に優れるため、電極ホ
ルダは把持される上部の黒鉛電極が冷却され、とくに、
なるべく下端まで広範囲に冷却されると、下部に接続さ
れる黒鉛電極まで良好に冷却され、大巾に電極原単位が
減少する。
In other words, since the graphite electrode has excellent conductivity, the upper part of the graphite electrode held by the electrode holder is cooled,
When it is cooled as far as possible to the lower end, the graphite electrode connected to the lower part is also cooled well, and the electrode unit consumption is greatly reduced.

また、このように冷却するときに、冷却液11はフィル
ム11aとして電極ホルダに把持される黒鉛電極10の外周
面10aに形成され、その一部は、電気炉の上蓋の中まで
入るが、このときに、電気炉内が非常に高温であって、
入った冷却水が多量でないときは蒸発し、操業上にあま
り支障がないが、上蓋がマグネシア等の耐火物から成る
ときには、水分を含浸して潤滑し、ぜい性が劣化するの
で好ましくない。このためには、冷却液11の噴射圧力は
0.5〜3kg/cm2噴射量を0.8〜6.0/分の範囲に調整する
のが好ましい。
Further, when cooled in this way, the cooling liquid 11 is formed as a film 11a on the outer peripheral surface 10a of the graphite electrode 10 held by the electrode holder, and a part thereof enters into the upper lid of the electric furnace. Sometimes the temperature inside the electric furnace is very high,
When the contained cooling water is not large, it evaporates and does not hinder the operation. However, when the upper lid is made of a refractory material such as magnesia, it is not preferable because it impregnates with water to lubricate it and deteriorate its brittleness. For this purpose, the injection pressure of the cooling liquid 11 is
It is preferable to adjust the injection amount of 0.5 to 3 kg / cm 2 within the range of 0.8 to 6.0 / min.

一般に、電気炉で溶解および精錬中の溶湯などに冷却
水が達すると、その中に含まれる水分が高温溶湯に接触
し、水素爆発を発生し、甚だ危険である。この点から、
黒鉛電極10の外周面10aに冷却水等の冷却液を吹付ける
ことなく、電極ホルダに保持される上部の電極は、上記
の如く、内部に冷却水が導入できる非消耗電極として構
成し、具体的には、その中心軸に沿って冷却通路を形成
し、この冷却通路によって冷却されている。
Generally, when the cooling water reaches the molten metal which is being melted and refined in an electric furnace, the water contained therein comes into contact with the high temperature molten metal to cause hydrogen explosion, which is extremely dangerous. From this point,
Without spraying a cooling liquid such as cooling water on the outer peripheral surface 10a of the graphite electrode 10, the upper electrode held by the electrode holder is configured as a non-consumable electrode into which cooling water can be introduced, as described above. Specifically, a cooling passage is formed along the central axis and is cooled by this cooling passage.

これに反し、本発明に如く冷却液11を黒鉛電極10の外
周面10aに吹付けるときには、その冷却液11によって黒
鉛電極10の外周面10aを冷却し、なるべく広範囲にわた
って冷却し、更に、冷却液11の吹付け量は最小限にとど
めて、冷却液11が上蓋内に入っても炉内で速やかに蒸成
し、上記の如き障害を起きないようにすることが必要で
ある。
Contrary to this, when the cooling liquid 11 is sprayed on the outer peripheral surface 10a of the graphite electrode 10 as in the present invention, the outer peripheral surface 10a of the graphite electrode 10 is cooled by the cooling liquid 11, and the cooling is performed over a wide range as much as possible, and further, the cooling liquid. It is necessary to keep the spray amount of 11 to a minimum so that even if the cooling liquid 11 enters the upper lid, it is quickly vaporized in the furnace so that the above-mentioned trouble does not occur.

更に詳しく説明すると、非消耗電極を用いることな
く、黒鉛電極を上部から順次に接続して、上部の黒鉛電
極のみを冷却するときには、電極の接続が通常の操業と
変るところがない。このため、現場操業に最適である。
また、上部や下部の黒鉛電極の黒鉛が極めて良好な熱伝
導性材料であることを利用しているため、きわめて優れ
た冷却法である。しかしながら、上部の黒鉛電極によっ
て下部の黒鉛電極を冷却することから、下部の黒鉛電極
の冷却効果は上部の黒鉛電極の冷却効果によって左右さ
れることになる。換言すると、上部の黒鉛電極の長さ方
向にどの程度冷却されるかによって黒鉛電極原単位の低
減の割合が決まる。ちなみに、従来から言われているこ
とがあるが、上部の黒鉛電極の一部、例えば、上端部の
みが赤熱せずに黒色状態に保っている状態であると、そ
の下に接続されている下部の黒鉛電極の外周部ならびに
先端部の酸化消耗は相当おさえられると云われている。
例えば、上部の黒鉛電極においてその長さに対して10%
程度が黒色状態を保ち、他が赤熱状態のときには、下部
の黒鉛電極では酸化消耗の抑制によって電極原単位の割
合は12%以上に低減されると言われている。
More specifically, when the graphite electrodes are sequentially connected from the upper side without using the non-consumable electrode and only the upper graphite electrode is cooled, the connection of the electrodes does not change from normal operation. Therefore, it is most suitable for on-site operation.
Moreover, since the graphite of the upper and lower graphite electrodes is a very good heat conductive material, it is an extremely excellent cooling method. However, since the lower graphite electrode is cooled by the upper graphite electrode, the cooling effect of the lower graphite electrode depends on the cooling effect of the upper graphite electrode. In other words, the reduction rate of the graphite electrode basic unit is determined by how much the upper graphite electrode is cooled in the longitudinal direction. By the way, it is sometimes said that the upper part of the graphite electrode, for example, if only the upper end is in a black state without red heat, the lower part connected below it. It is said that the wear of the graphite electrode on the outer circumference and the tip is substantially suppressed.
For example, in the upper graphite electrode 10% of its length
It is said that when the degree remains black and the others are red-heated, the ratio of the electrode unit consumption is reduced to 12% or more in the lower graphite electrode due to the suppression of oxidation consumption.

この点、上部の黒鉛電極の外周面に直接冷却液を吹付
けて冷却する際に、上記の例の如く、上向きに傾斜させ
て冷却液を吹付けると、黒鉛電極の長さ方向にわたって
広範囲に冷却できる。つまり、冷却液を直接付ける上部
の黒鉛電極の10%以上の部分が赤熱せずに黒色状態に保
持できるために、電極原単位は大巾に低減できる。
In this respect, when the cooling liquid is sprayed directly on the outer peripheral surface of the upper graphite electrode to cool it, if the cooling liquid is sprayed with an upward inclination as in the above example, the graphite electrode is spread over a wide area in the longitudinal direction. Can be cooled. In other words, 10% or more of the upper graphite electrode, to which the cooling liquid is directly applied, can be maintained in a black state without red heat, so that the electrode unit can be greatly reduced.

また、以上の如く、黒鉛電極外周面に冷却液を吹付け
て外周面に冷却液フィルムを形成する場合、冷却液11は
水平レベルL−Lに対して上向きに傾斜させて(傾斜角
θ=10〜35゜)噴射し、冷却液11はループさせて黒鉛電
極10の外周面10aに接触させる。このように冷却液11を
吹付けると、冷却液11を無駄なく黒鉛電極外周面10aに
吹付けることができ、アーク電気炉の上蓋15が水分の含
浸によりもろくなるマグネシア系耐火物から構成されて
いても、ほとんど上蓋15に冷却液11がかぶることなく、
操業上支障がない。また、上蓋15が水分に対して耐久性
を持ちアルミナ系耐火物から成る場合でも、冷却液11を
上向きに無駄なく吹付けると、冷却液11を下向きに吹付
ける場合に比べて上蓋15の寿命に1.5〜2.0倍程度更にそ
れ以上まで向上する。
Further, as described above, when the cooling liquid is sprayed on the outer peripheral surface of the graphite electrode to form the cooling liquid film on the outer peripheral surface, the cooling liquid 11 is inclined upward with respect to the horizontal level L-L (inclination angle θ = (10 to 35 °), and the cooling liquid 11 is looped and brought into contact with the outer peripheral surface 10a of the graphite electrode 10. When the cooling liquid 11 is sprayed in this way, the cooling liquid 11 can be sprayed onto the outer peripheral surface 10a of the graphite electrode without waste, and the upper lid 15 of the electric arc furnace is composed of a magnesia-based refractory material that becomes brittle due to water impregnation. However, almost without cooling liquid 11 covering the top lid 15,
There are no operational problems. Even if the upper lid 15 is durable against moisture and is made of an alumina refractory, spraying the cooling liquid 11 upward without waste will make the life of the upper lid 15 longer than that of spraying the cooling liquid 11 downward. It will be improved by 1.5 to 2.0 times or more.

また、第1図に示す如く、冷却液11を上向きに傾斜さ
せて吹付ける冷却管16には、吹付けノズルを設けること
もできるが、通常は、少なくとも1つの噴射孔16aを上
向きに傾斜角θ=10〜35゜の条件で傾斜させて設けるこ
とができる。この冷却管16には一部に切欠き部が形成さ
れている。更に、冷却時には、冷却管16は黒鉛電極10を
把持する電極ホルダの直下に配置することもできるが、
上蓋15の表面に配置することもできる。
Further, as shown in FIG. 1, a cooling nozzle 16 may be provided in the cooling pipe 16 for spraying the cooling liquid 11 while inclining it upward, but normally at least one injection hole 16a has an upward inclination angle. It can be provided with an inclination under the condition of θ = 10 to 35 °. The cooling pipe 16 is partially formed with a notch. Further, at the time of cooling, the cooling pipe 16 can be arranged directly below the electrode holder that holds the graphite electrode 10,
It can also be arranged on the surface of the upper lid 15.

また、以上の通りに、冷却管16を用いて冷却するとき
に黒鉛電極10の外周面10aと吹付けノズルの先端ノズル
や噴射孔16aまでの距離は5〜20cm程度離間するのが好
ましく、ノズルや噴射孔16aは冷却液11が水平レベルL
−Lに対する傾斜角θ10〜35゜の範囲で噴射されるよう
構成し、更に、冷却液11は圧力0.5〜3kg/cm2で吹付け量
0.8〜6.0/分で噴射するのが好ましい。
Further, as described above, it is preferable that the distance between the outer peripheral surface 10a of the graphite electrode 10 and the tip nozzle of the spray nozzle or the injection hole 16a is about 5 to 20 cm when cooling using the cooling pipe 16. The cooling liquid 11 is at the horizontal level L
It is configured to inject at an inclination angle of 10 to 35 ° with respect to -L, and the cooling liquid 11 is sprayed at a pressure of 0.5 to 3 kg / cm 2.
It is preferable to inject at 0.8 to 6.0 / min.

このような好適条件であると、アーク電気炉の寸法
や、デメンション、容量がある程度変化しても、現在実
用化されているアーク電気炉であれば、冷却液11は無駄
なく黒鉛電極10の外周面10aを良好に冷却でき、電極ホ
ルダや上蓋の上にあまり飛散せず、寿命が大巾に向上で
きる。
Under such preferable conditions, even if the dimensions, dimensions, and capacity of the arc electric furnace are changed to some extent, if the arc electric furnace is currently put into practical use, the cooling liquid 11 does not waste the outer circumference of the graphite electrode 10. The surface 10a can be cooled well, it does not scatter on the electrode holder or the upper lid so much, and the life can be greatly improved.

すなわち、上向きに傾斜させて冷却液を吹付けるとき
に、吹付けノズルの傾斜角θ(第1図参照)を10〜35゜
の範囲にするのは、上記の理由のほかに、仮りに吹付け
角0゜として、吹付けノズルから水平レベルL−Lと平
行に冷却液11を噴射させると、冷却液11の量を大巾に増
加させない限りは、黒鉛電極10を局部的にしか冷却でき
ず、せいぜい長さの5%程度しか黒色程度に保持できな
い。また、吹付け時に、冷却液11の相当部分が電極ホル
ダ側に飛散し、電極ホルダそのものを傷めやすく、この
点からも下限は10゜にするのが好ましい。また、傾斜角
θを35゜以上傾斜させると、冷却液11が拡がって、その
一部が電気炉の上蓋にかかり、上蓋そのものの損耗を早
めて好ましくない。
That is, in addition to the above reason, the reason why the inclination angle θ (see FIG. 1) of the spray nozzle is set in the range of 10 to 35 ° when the cooling liquid is sprayed with the spray tilted upward is tentatively. When the spray angle is 0 ° and the cooling liquid 11 is sprayed from the spray nozzle in parallel with the horizontal level L-L, the graphite electrode 10 can be cooled only locally unless the amount of the cooling liquid 11 is greatly increased. At most, only about 5% of the length can be kept black. Further, during spraying, a considerable portion of the cooling liquid 11 is scattered to the electrode holder side, and the electrode holder itself is easily damaged. From this point as well, the lower limit is preferably 10 °. Further, if the inclination angle θ is inclined at 35 ° or more, the cooling liquid 11 spreads and a part of it spreads on the upper lid of the electric furnace, which is not preferable because the upper lid itself is prematurely worn.

更に、冷却液11は通常得られる水道水などをそのまま
用い、冷却水とすることもできるが、この冷却液11の中
に例えばリン酸カルシウムの如き耐酸化剤を混合して吹
付けることもできる。このように耐酸化剤を混入する
と、吹付けのときに冷却液中の耐酸化剤が上部黒鉛電極
10の外周面に凝固付着し耐酸化皮膜を形成し、その外周
面からの酸化消耗を一層効果的に防止できる。このよう
に外周面に耐酸化剤が付着した上部黒鉛電極を下部黒鉛
電極として用いたときには、外周面からの酸化消耗が一
層効果的におさえられ、電極原単位は一層向上する。な
お、このような効果を達成するのには耐酸化剤を1〜15
wt%程度添加するのが好ましい。
Further, although tap water or the like which is usually obtained can be used as the cooling liquid 11 as it is, the cooling liquid 11 can also be sprayed by mixing an anti-oxidizing agent such as calcium phosphate in the cooling liquid 11. If the antioxidant is mixed in this way, the antioxidant in the cooling liquid will be absorbed by the upper graphite electrode during spraying.
The outer peripheral surface of 10 is solidified and adhered to form an oxidation resistant film, so that oxidation consumption from the outer peripheral surface can be prevented more effectively. Thus, when the upper graphite electrode having the antioxidizing agent attached to the outer peripheral surface is used as the lower graphite electrode, the oxidation consumption from the outer peripheral surface is more effectively suppressed, and the electrode unit consumption is further improved. In order to achieve such an effect, it is necessary to add an antioxidant to 1 to 15
It is preferable to add about wt%.

また、上向きに傾斜させて冷却液を吹付ける場合、吹
付けノズルの先端ノズルは黒鉛電極10の外周面10aに平
均して冷却液11が当たるよう構成するのが好ましい。こ
の好適例としては、先端ノズルは冷却液11が先拡がりな
扇形をなすよう、吹付けられる形状に構成し、更に、吹
付けノズルの一部にはフィルタを設けて冷却液11中のゴ
ミなどの異物を除去できるようにするのが好ましい。更
に、第1図に示す如く、冷却液11を上向きに傾斜させて
吹付けるときにも、上記のところと同様に、各噴射孔16
aは冷却液11が黒鉛電極外周面10aに平均して当たるよう
構成するか又は配置するのが好ましい。
Further, when the cooling liquid is sprayed with an upward inclination, it is preferable that the tip nozzle of the spray nozzle is configured so that the cooling liquid 11 hits the outer peripheral surface 10a of the graphite electrode 10 on average. As a preferable example of this, the tip nozzle is configured to be sprayed so that the cooling liquid 11 has a fan-shaped shape that spreads out. Furthermore, a filter is provided in a part of the spraying nozzle to remove dust in the cooling liquid 11. It is preferable that the foreign matter can be removed. Further, as shown in FIG. 1, even when the cooling liquid 11 is sprayed while inclining upward, as in the above case, each injection hole 16
It is preferable that a is configured or arranged such that the cooling liquid 11 hits the graphite electrode outer peripheral surface 10a on average.

また、冷却管16は切欠き部を中心として対称的に構成
しているが、この切欠き部はどの部分に設けることもで
きる。
Further, the cooling pipe 16 is configured symmetrically with the notch as the center, but the notch can be provided at any part.

実施例1 冷却液11を下向きにループさせて黒鉛電極外周面10a
に吹付けて冷却し、従来例に比較してその改善効果を求
めたところ、第1表に示す通りであった。
Example 1 A cooling liquid 11 was looped downward to form a graphite electrode outer peripheral surface 10a.
When it was sprayed on and cooled, and the improvement effect was obtained as compared with the conventional example, it was as shown in Table 1.

この場合、試験番号1ならびに3はマグネシア系耐火
物から成る上蓋を用いたが、試験番号2はアルミナ系耐
火物から成る上蓋を用いた。
In this case, Test Nos. 1 and 3 used an upper lid made of a magnesia-based refractory, while Test No. 2 used an upper lid made of an alumina-based refractory.

また、この操業では通常の通り単位チャージが約2時
間程度で行なって、この操業であると、アルミナ耐火物
の上蓋でもその寿命が150チャージ程度であったが、試
験番号2の場合には150チャージから600チャージまで45
0チャージ程度の如く大巾にのびた。
Also, in this operation, the unit charge was performed in about 2 hours as usual, and in this operation, the life of the upper lid of the alumina refractory was about 150 charges. 45 from charge to 600 charge
It spread like a 0 charge.

<発明の効果> 以上詳しく説明した通り、本発明は、ニップルを介し
て順次に接続された黒鉛電極の外周面に、冷却液を直接
吹付けて冷却して、金属を溶解、精錬する方法におい
て、この冷却液を水平レベルに対して10〜35゜の上向き
の傾斜角をもって噴射し、それをループさせて黒鉛電極
の外周面上に吹付ける。従って、冷却液は噴射エネルギ
を大巾に失なった状態で黒鉛電極の外周面に当たり、周
囲に飛散せずに外周面に沿って下降し、この冷却液フィ
ルムによって黒鉛電極の外周面はほとんど全長にわたっ
て冷却される。冷却液はループして黒鉛電極に接触し、
冷却液は外部に飛散することなく冷却液フィルムやが形
成できる。このため、電極ホルダや上蓋が破損、損耗す
ることなく、上蓋がマグネシア系耐火物であっても、寿
命が向上する。
<Effects of the Invention> As described in detail above, the present invention provides a method for melting and refining a metal by directly spraying a cooling liquid to cool the outer peripheral surface of graphite electrodes sequentially connected through a nipple. This cooling liquid is jetted at an upward inclination angle of 10 to 35 ° with respect to the horizontal level, which is looped and sprayed onto the outer peripheral surface of the graphite electrode. Therefore, the cooling liquid hits the outer peripheral surface of the graphite electrode in a state where the jet energy is largely lost, and descends along the outer peripheral surface without being scattered to the surroundings. Is cooled over. The cooling fluid loops and contacts the graphite electrode,
The cooling liquid can form a cooling liquid film or the like without being scattered to the outside. Therefore, the electrode holder and the upper lid are not damaged or worn, and the life is improved even if the upper lid is a magnesia refractory material.

また、このように冷却液を直接吹付けて冷却しつつ、
精錬すると、製鋼のほか金属精錬一般において大巾に黒
鉛電極の原単位を低減できる。
Also, while cooling by directly spraying the cooling liquid in this way,
Refining can greatly reduce the unit consumption of graphite electrodes in general metal refining as well as steelmaking.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一例を示す説明図、第2図は従来
例に係る冷却装置の斜視図である。 符号1……炉蓋 2……黒鉛電極 3……電極ホルダ 4……環状冷却管 5……縦パイプ 6……ノズル 7……黒鉛電極 10a……黒鉛電極の外周面 11……冷却液 15……炉蓋 16……冷却管 16a……噴射孔
FIG. 1 is an explanatory view showing an example of the method of the present invention, and FIG. 2 is a perspective view of a cooling device according to a conventional example. Reference numeral 1 ... furnace lid 2 ... graphite electrode 3 ... electrode holder 4 ... annular cooling pipe 5 ... vertical pipe 6 ... nozzle 7 ... graphite electrode 10a ... graphite electrode outer peripheral surface 11 ... cooling liquid 15 …… Furnace cover 16 …… Cooling pipe 16a …… Injection hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ニップルを介して順次に接続された黒鉛電
極の外周面に、冷却液を吹付けて冷却して、金属を溶
解、精錬する際に、前記冷却液を水平レベルに対して10
〜35゜上向きの傾斜角をとって噴射しこの噴射された前
記冷却液をループさせて前記黒鉛電極の外周面に吹付け
ることを特徴とする金属の溶解・精錬法。
1. When melting and refining a metal by spraying and cooling a cooling liquid on the outer peripheral surface of graphite electrodes sequentially connected through a nipple, the cooling liquid is kept at a horizontal level of 10%.
A method for melting and refining a metal, characterized in that the sprayed liquid is sprayed at an upward inclination angle of ˜35 °, and the sprayed cooling liquid is looped and sprayed onto the outer peripheral surface of the graphite electrode.
【請求項2】アーク電気炉の炉蓋と黒鉛電極の上端部を
把持する電極ホルダとの間に、この黒鉛電極の外周を包
囲しかつ冷却液が流動する環状の冷却管を配置し、この
環状冷却管の前記黒鉛電極の外周面に対向する内周面か
ら前記冷却液を吹付ける金属の溶解・精錬時に供する電
極冷却装置において、前記環状冷却管の少なくとも1ケ
所を切欠いて切欠き部を構成し、前記環状冷却管の前記
内周面に、水平レベルに対して上向きに10〜35゜傾斜し
かつ前記黒鉛電極の中心軸方向に指向して前記冷却液を
噴射する少なくとも1つの噴射孔を設けて成ることを特
徴とする金属の溶解・精錬時に供する電極冷却装置。
2. An annular cooling pipe which surrounds the outer periphery of the graphite electrode and through which a cooling liquid flows is disposed between the furnace lid of the arc electric furnace and an electrode holder which holds the upper end of the graphite electrode. In an electrode cooling device used for melting and refining a metal sprayed with the cooling liquid from an inner peripheral surface of the annular cooling tube facing the outer peripheral surface of the graphite electrode, at least one location of the annular cooling tube is cut out to form a notch. At least one injection hole configured to inject the cooling liquid in the inner peripheral surface of the annular cooling pipe, inclining upward by 10 to 35 ° with respect to a horizontal level, and directing in the central axis direction of the graphite electrode. An electrode cooling device provided at the time of melting and refining a metal, characterized by being provided with.
JP62157169A 1987-06-24 1987-06-24 Metal melting and refining method and electrode cooling device used therefor Expired - Fee Related JPH0824068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157169A JPH0824068B2 (en) 1987-06-24 1987-06-24 Metal melting and refining method and electrode cooling device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157169A JPH0824068B2 (en) 1987-06-24 1987-06-24 Metal melting and refining method and electrode cooling device used therefor

Publications (3)

Publication Number Publication Date
JPH012294A JPH012294A (en) 1989-01-06
JPS642294A JPS642294A (en) 1989-01-06
JPH0824068B2 true JPH0824068B2 (en) 1996-03-06

Family

ID=15643696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157169A Expired - Fee Related JPH0824068B2 (en) 1987-06-24 1987-06-24 Metal melting and refining method and electrode cooling device used therefor

Country Status (1)

Country Link
JP (1) JPH0824068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221780A (en) * 1990-01-25 1991-09-30 Nikko:Kk Hearth penetration electrode device of dc arc furnace
CN108424993B (en) * 2018-05-14 2023-07-25 马鞍山钢铁股份有限公司 Device for reducing consumption of smelting electrode and use and manufacturing method thereof
CN114369699A (en) * 2021-12-31 2022-04-19 江苏博际喷雾系统股份有限公司 Steam-water atomization type electrode spraying device for electric arc furnace steelmaking

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021838Y2 (en) * 1987-05-13 1990-01-17

Also Published As

Publication number Publication date
JPS642294A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
JPH0795474B2 (en) Method for melting and refining metals such as electric arc steelmaking and electrode cooling device used therefor
EP0240998B1 (en) Melting furnace and method for melting metal
RU2000111547A (en) METHOD FOR MELTING FINE-GRAIN RECEIVED BY DIRECT IRON REDUCTION IN AN ELECTRIC ARC FURNACE
RU2002125939A (en) METHOD AND DEVICE FOR PRODUCING A MELTED IRON
JPS58113309A (en) Steel producer
JPH0824068B2 (en) Metal melting and refining method and electrode cooling device used therefor
JP2704395B2 (en) Method of cooling graphite electrode for electric arc refining and cooling device for graphite electrode
US4423512A (en) Plasma melting furnace
US5795539A (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
KR200173273Y1 (en) Device for cooling electrode of electric furnace
JPH012294A (en) Metal melting and refining method and electrode cooling device used therefor
JPH09506994A (en) Bottom electrode of metallurgical container
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
CA1302081C (en) Consumable lance
JPH0992461A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992458A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992462A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992460A (en) Method for melting and smelting metal in electric steelmaking furnace
US4775982A (en) Crucible for electric arc furnace
JP2718093B2 (en) Electric furnace with tuyere
EP0827365A2 (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JP3596639B2 (en) Method of cooling ceiling of electric arc furnace
JPH07234080A (en) Structure of metal electrode for dc arc generator
JPH0992459A (en) Method for melting and smelting metal in electric steelmaking furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees