JPH0992458A - Method for melting and smelting metal in electric steelmaking furnace - Google Patents

Method for melting and smelting metal in electric steelmaking furnace

Info

Publication number
JPH0992458A
JPH0992458A JP27190795A JP27190795A JPH0992458A JP H0992458 A JPH0992458 A JP H0992458A JP 27190795 A JP27190795 A JP 27190795A JP 27190795 A JP27190795 A JP 27190795A JP H0992458 A JPH0992458 A JP H0992458A
Authority
JP
Japan
Prior art keywords
graphite electrode
cooling liquid
cooling
furnace
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27190795A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Sakurai
文良 櫻井
Norio Nagai
紀雄 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP27190795A priority Critical patent/JPH0992458A/en
Priority to KR1019960042424A priority patent/KR970016508A/en
Priority to US08/721,221 priority patent/US5795539A/en
Priority to CA002186538A priority patent/CA2186538C/en
Publication of JPH0992458A publication Critical patent/JPH0992458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To cool graphite electrodes by spraying of a coolant without generating hydrogen gas or the like through aquatic reactions inside an electric-arc furnace by greatly reducing original electrode units through the minimizing of the oxidation wear of the graphite electrodes. SOLUTION: A metal is arc melted and smelted in an electric steelmaking furnace by passing current to a line of graphite electrodes which comprises graphite electrodes 1 connected to one another via nipples. In this case, above the furnace lid of the electric steelmaking furnace, the line of graphite electrodes is cooled by spraying of a coolant 2 while the coolant 2, ejected toward the outer peripheries of the line of graphite electrodes, is inclined downwards by an inclination angle of more than 35 deg. but not more than 60 deg. to a horizontal level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気製鋼炉における金属
の溶解および精錬方法に係り、詳しくは、ア−ク電気炉
などの電気製鋼炉において、ニップルを介して順次に接
続される黒鉛電極に電流を通電して製鋼等金属の溶解・
精錬する際に、ア−ク電気炉の炉蓋より上方において、
黒鉛電極の外周面に対し、冷却水等の冷却液を連続的に
吹付けて冷却する一方、この冷却液は、所定の傾斜角を
とって下向きに傾斜させて噴射させ、これに併せて、冷
却液の噴射量を適正範囲内に保ち、溶解および精錬時の
黒鉛電極の酸化消耗を最小限におさえて電極原単位を大
巾に低減し、ア−ク電気炉内で水性反応による水素ガス
などを発生させることなく、更に、シャモットなどの安
価な耐火物から成る炉蓋であっても耐用年数を損なうこ
とがない金属の溶解および精錬方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and refining metals in an electric steelmaking furnace. More specifically, in an electric steelmaking furnace such as an arc electric furnace, graphite electrodes sequentially connected through nipples are used. Applying electric current to melt metal such as steelmaking
When refining, above the furnace lid of the arc electric furnace,
On the outer peripheral surface of the graphite electrode, while cooling liquid such as cooling water is continuously sprayed and cooled, this cooling liquid is jetted by inclining downward at a predetermined inclination angle, and in addition, The injection amount of the cooling liquid is kept within an appropriate range, the electrode consumption rate is greatly reduced by minimizing the oxidation consumption of the graphite electrode during melting and refining, and the hydrogen gas generated by the aqueous reaction in the arc electric furnace. The present invention relates to a metal melting and refining method that does not cause a deterioration in service life even with a furnace lid made of an inexpensive refractory material such as chamotte.

【0002】[0002]

【従来の技術】従来から、製鋼などの電気ア−ク炉によ
る金属の溶解および精錬においては、電気エネルギのコ
ストの低下に併せて、黒鉛電極の先端部ならびに外周面
の酸化消耗を抑制し、これによって電極原単位を低下さ
せることが望まれている。この酸化消耗抑制の手段とし
て黒鉛電極を冷却することが提案実施され、冷却法の一
つとして、順次に接続される黒鉛電極においてその上部
の黒鉛電極は内部を冷却水により冷却する構造の水冷式
非消耗電極が提案されている。すなわち、非消耗電極は
内部が水冷されているが、この電極は、下端にニップル
を介して接続される黒鉛電極の冷却にとどまって、精錬
操業時には上部の非消耗電極を冷却することによって下
端の黒鉛電極を冷却し、黒鉛電極のみを消耗して精錬す
る方法である。
2. Description of the Related Art Conventionally, in the melting and refining of metals in an electric arc furnace such as steelmaking, in addition to the reduction in the cost of electric energy, the consumption of oxidation at the tip and outer peripheral surface of the graphite electrode is suppressed, Therefore, it is desired to reduce the electrode unit consumption. Cooling of the graphite electrode has been proposed and implemented as a means of suppressing this oxidative consumption.As one of the cooling methods, the graphite electrodes in the upper part of the sequentially connected graphite electrodes are cooled by cooling water. Non-consumable electrodes have been proposed. That is, the inside of the non-consumable electrode is water-cooled, but this electrode is limited to cooling the graphite electrode connected to the lower end through a nipple, and the upper non-consumable electrode is cooled by cooling the upper non-consumable electrode during refining operation. This is a method of refining by consuming only the graphite electrode by cooling the graphite electrode.

【0003】例えば、米国特許4.416.014号、
4.417.344号ならびに4.451.926号の
各明細書に記載される水冷式非消耗電極は、アルミニウ
ム製の中空円筒から構成し、この中空円筒内に冷却水を
導入し、この冷却水によって、中空円筒の壁面や、非消
耗電極の下端に接続される黒鉛電極を冷却する。
For example, US Pat. No. 4,416,014,
The water-cooled non-consumable electrode described in each specification of No. 4.417.344 and No. 4.451.926 is composed of a hollow cylinder made of aluminum, and cooling water is introduced into this hollow cylinder to cool this Water cools the wall surface of the hollow cylinder and the graphite electrode connected to the lower end of the non-consumable electrode.

【0004】また、特開昭60−501879号ならび
に特開昭60−501880号の各明細書に記載される
水冷式非消耗電極は、黒鉛製の管状体から構成し、この
管状体の中心孔内に冷却水を導入し、この冷却水によっ
て、管状体の壁面や、それに接続される黒鉛電極を冷却
する。
Further, the water-cooled non-consumable electrodes described in JP-A-60-501879 and JP-A-60-501880 are composed of a graphite tubular body, and the central hole of the tubular body is formed. Cooling water is introduced into the inside, and the wall surface of the tubular body and the graphite electrode connected thereto are cooled by this cooling water.

【0005】このように非消耗電極によって冷却する
と、下部に接続される黒鉛電極が冷却され、黒鉛電極の
酸化消耗がある程度おさえられる。
When the non-consumable electrode is used for cooling in this way, the graphite electrode connected to the lower part is cooled, and the graphite electrode is prevented from being oxidized and consumed to some extent.

【0006】しかしながら、下端に接続される黒鉛電極
を非消耗電極によって冷却すると云っても、冷却に関与
するところは、接続される黒鉛電極と非消耗電極との接
続端面に限られ、冷却効率がきわめて低い。更に、黒鉛
そのものの熱伝導率は100℃内外をこえると低下し、
精錬に関与している下部の黒鉛電極まで冷却することは
むづかしい。
However, even if the graphite electrode connected to the lower end is cooled by the non-consumable electrode, what is involved in cooling is limited to the connecting end face between the graphite electrode and the non-consumable electrode, and the cooling efficiency is high. Extremely low. Furthermore, the thermal conductivity of graphite itself decreases when it exceeds 100 ° C,
It is difficult to cool the lower graphite electrode that is involved in refining.

【0007】また、黒鉛電極を非消耗電極から取り外す
ときには、ア−ク電気炉からオフラインに移して使用済
の黒鉛電極をニップルから外し、必要なときには、ニッ
プルも非消耗電極から取り外す。
Further, when the graphite electrode is removed from the non-consumable electrode, it is moved off-line from the arc electric furnace to remove the used graphite electrode from the nipple, and when necessary, the nipple is also removed from the non-consumable electrode.

【0008】また、新しい黒鉛電極を接続するときに
は、非消耗電極にニップルを取付け、このニップルに新
しい黒鉛電極を取付けることになる。
When a new graphite electrode is connected, a nipple is attached to the non-consumable electrode and a new graphite electrode is attached to this nipple.

【0009】従って、水冷式非消耗電極によって下部に
接続される黒鉛電極を冷却するときには、黒鉛電極を交
換のために、オフラインに移送し、そこで重筋労働の取
外しや接続作業を行なう必要があって、作業がきわめて
はん雑化する。黒鉛電極の取外しならびに接続がくり返
されると、黒鉛電極、非消耗電極、ニップル等のねじ山
が変形、つぶれ、破損し、接続不良、電気抵抗の増加等
が起こり、操業上に支障がある。
Therefore, when cooling the graphite electrode connected to the lower portion by the water-cooled non-consumable electrode, it is necessary to transfer the graphite electrode offline for replacement, where heavy-duty labor is disconnected and connection work is performed. Therefore, the work becomes extremely complicated. If the graphite electrode is repeatedly removed and connected, the threads of the graphite electrode, the non-consumable electrode, the nipple, etc. may be deformed, crushed or damaged, resulting in poor connection or increase in electrical resistance, thus hindering the operation.

【0010】このところから、実公昭59−23357
号公報には、ニップルを介して接続される黒鉛電極を冷
却するために、水冷式非消耗電極を用いることなく、ア
−ク電気炉の炉蓋から上方に突出する黒鉛電極の表面に
対して冷却水を吹付けて冷却する冷却装置が記載されて
いる。
From this point, it is found that
In the publication, in order to cool the graphite electrode connected through the nipple, without using a water-cooled non-consumable electrode, the graphite electrode surface protruding upward from the furnace lid of the arc electric furnace is used. A cooling device for spraying and cooling cooling water is described.

【0011】この冷却装置は、図4に示す通り、炉蓋1
1に黒鉛電極列が昇降自在に挿通されている。黒鉛電極
列は、上部の黒鉛電極12の下部にはニップルを介して
黒鉛電極が接続され、黒鉛電極12がニップルを介して
順次に接続されている。一つの黒鉛電極列において、下
部の黒鉛電極がア−ク電気炉内にあって、ア−ク電気炉
内の黒鉛電極が製鋼時の精錬に関与する。炉蓋11の上
方において、上部の黒鉛電極12は電極ホルダ13によ
って把持され、電極ホルダ13の下面には、上部の黒鉛
電極12の外周を包囲する環状冷却管14が設けられ、
環状冷却管14から下向きに複数本の縦パイプ15が突
出され、各縦パイプ15の内面には黒鉛電極表面に指向
するノズル16が設けられている。従って、環状冷却管
14に供給された冷却水は各縦パイプ15に沿って下降
し、内面の各ノズル16から冷却水が上部の黒鉛電極1
2の外周面に吹付けられて冷却される。
As shown in FIG. 4, this cooling device has a furnace lid 1
A graphite electrode array is vertically inserted through the column 1. In the graphite electrode array, a graphite electrode is connected to the lower portion of the upper graphite electrode 12 via a nipple, and the graphite electrodes 12 are sequentially connected via the nipple. In one graphite electrode array, the lower graphite electrode is in the arc electric furnace, and the graphite electrode in the arc electric furnace is involved in refining during steelmaking. Above the furnace lid 11, the upper graphite electrode 12 is held by the electrode holder 13, and on the lower surface of the electrode holder 13, an annular cooling pipe 14 that surrounds the outer periphery of the upper graphite electrode 12 is provided.
A plurality of vertical pipes 15 are projected downward from the annular cooling pipe 14, and a nozzle 16 directed to the surface of the graphite electrode is provided on the inner surface of each vertical pipe 15. Therefore, the cooling water supplied to the annular cooling pipe 14 descends along each vertical pipe 15, and the cooling water is supplied from each nozzle 16 on the inner surface to the upper graphite electrode 1.
The outer peripheral surface of 2 is sprayed and cooled.

【0012】しかし、図4に示す冷却装置は、各ノズル
16から冷却水が水平レベル若しくはそれと平行な方向
に指向して噴射される。このため、冷却水が黒鉛電極1
2の外周面に衝突したときに相当量のものが反射されて
飛散し、この飛散した冷却水が多く、電極ホルダ13や
炉蓋11の汚染、破損が激しく、実用に供すること、と
くに、炉蓋は高価なハイアルミナ質耐火物からつくられ
ている例は少なく、ほとんどがシャモットなどの耐火物
でつくられ、汚染、損耗がはげしい。
However, in the cooling device shown in FIG. 4, the cooling water is jetted from each nozzle 16 in a horizontal level or in a direction parallel to the horizontal level. For this reason, the cooling water is used for the graphite electrode 1.
When colliding with the outer peripheral surface of 2, a considerable amount of light is reflected and scattered, and the scattered cooling water is large, and the electrode holder 13 and the furnace lid 11 are severely contaminated and damaged. The lid is rarely made of expensive high-alumina refractory, and most of it is made of chamotte or other refractory, which is susceptible to contamination and wear.

【0013】また、衝突した冷却水16は、ほとんど反
射され、黒鉛電極に沿って下降することがほとんどな
い。このため、冷却される黒鉛電極は、冷却水が衝突す
るのみに限られ、冷却水の使用量を異常に大きくしない
と、下部の黒鉛電極まで冷却できず、きわめて不経済で
ある。
The colliding cooling water 16 is almost reflected and hardly descends along the graphite electrode. Therefore, the graphite electrode to be cooled is limited only to the collision of the cooling water, and unless the amount of the cooling water used is abnormally increased, the graphite electrode in the lower part cannot be cooled, which is extremely uneconomical.

【0014】なお、冷却水使用量の増加は、飛散した冷
却水のア−ク電気炉内に入りやすく、これが炉内反応に
影響を与え、なかでも、水素ぜい性などをきらう鋼種の
製鋼には、炉内での水性反応によって発生する水素ガス
が溶鋼中に入り易いため、使用できない。
It should be noted that an increase in the amount of the cooling water used tends to enter the scattered electric water in the arc electric furnace, which affects the reaction in the furnace, and among them, the steelmaking of steel types that are difficult to produce, such as hydrogen embrittlement. In this case, hydrogen gas generated by an aqueous reaction in the furnace easily enters the molten steel and cannot be used.

【0015】また、冷却管14から多数の縦パイプ15
が下向きに突出し、しかも、この突出長さがきわめて長
い。このために、電極交換のときに冷却装置を取外す場
合に、この長い縦パイプ15が障害になり、取扱いがき
わめてめんどうである。
Further, from the cooling pipe 14 to the many vertical pipes 15
Projects downward, and the projecting length is extremely long. For this reason, this long vertical pipe 15 becomes an obstacle when the cooling device is removed during electrode replacement, and handling is extremely troublesome.

【0016】また、冷却管14によって電磁力がシ−ル
ドされるため、黒鉛電極12に流れる電流の相当部分が
遮断され、操業に大きな支障が生じる。
Further, since the electromagnetic force is shielded by the cooling pipe 14, a considerable part of the current flowing through the graphite electrode 12 is cut off, which seriously hinders the operation.

【0017】また、上記の通り、黒鉛電極に冷却水など
の冷却液を吹付ける場合、更に、次の通りの問題があ
る。
Further, as described above, when the cooling liquid such as the cooling water is sprayed on the graphite electrode, there are the following problems.

【0018】すなわち、黒鉛電極に吹付けた冷却液の一
部は飛散し、それがどうしてもア−ク電気炉の一部に入
る。この冷却水がア−ク電気炉炉内の高温条件下におか
れると、水性ガス反応によって水素が発生する。この水
素が溶鋼中に入ると、精錬する鋼種によっては水素ぜい
性をひき起こすことが当初から懸念されていた。このた
め、じん性などが強く要求される鋼種の製鋼には、黒鉛
電極に冷却液を吹付ける操業は行なわれていないし、上
記の通り、実公昭59−23357号公報に示す冷却装
置が提案されているのにも拘らず、この冷却装置も使用
されていない。
That is, a part of the cooling liquid sprayed on the graphite electrode is scattered, and it inevitably enters a part of the arc electric furnace. When this cooling water is placed under high temperature conditions in the arc electric furnace, hydrogen is generated by the water gas reaction. It has been a concern from the beginning that when this hydrogen enters molten steel, it causes hydrogen embrittlement depending on the type of steel to be refined. For this reason, the operation of spraying the cooling liquid on the graphite electrode has not been carried out for steel making of steel grades that are required to have a high toughness, and as described above, the cooling device shown in Japanese Utility Model Publication No. 59-23357 has been proposed. However, this cooling device is not used.

【0019】また、主として酸化消耗防止ならびに電力
原単位の低減の上から冷却液を吹付け、黒鉛電極を冷却
することが好ましいと云っても、黒鉛電極の冷却が過剰
になると、その過冷却の分だけ電力がかかり、かえって
電力原単位が上昇し、大巾なコストアップになって好ま
しくない。
Although it is preferable to spray the cooling liquid to cool the graphite electrode mainly from the viewpoint of preventing oxidation and consumption and reducing the power consumption rate, if the graphite electrode is excessively cooled, the supercooling of the graphite electrode is prevented. Electric power is consumed by that amount, and instead, the power consumption rate rises, which greatly increases the cost, which is not preferable.

【0020】[0020]

【発明が解決しようとする課題】本発明は上記欠点の解
決を目的とし、具体的には、ア−ク電気炉などの電気製
鋼炉において、ニップルを介して順次に接続される黒鉛
電極に冷却液を吹付けつつ、この黒鉛電極に電流を通電
して金属を溶解・精錬する際に、ア−ク電気炉などの炉
蓋より上方において、水平レベルより下向きに所定の傾
斜角で傾斜させて冷却液を黒鉛電極の外周に噴射して吹
付ける一方、冷却液の吹付量若しくは噴射量を所定の範
囲内にとどめて、精錬ならびに溶解に関与するア−ク電
気炉内の黒鉛電極をも効果的に冷却し、ア−ク電気炉の
炉蓋より上方や、ア−ク電気炉内の黒鉛電極の酸化消耗
をおさえ、ア−ク電気炉内に侵入する冷却液の水性ガス
反応によって水素ガスをほとんど発生することなく、交
流電力又は直流電力による高電力操業でも現行設備のま
まで容易に実現できる金属の溶解および精錬方法を提案
する。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks. Specifically, in an electric steelmaking furnace such as an arc electric furnace, cooling is performed on graphite electrodes that are sequentially connected through nipples. When a current is applied to this graphite electrode to melt and refine the metal while spraying the liquid, it is tilted downward from the horizontal level at a predetermined tilt angle above the furnace lid of the arc electric furnace. While spraying and spraying the cooling liquid on the outer periphery of the graphite electrode, the spraying amount or spraying amount of the cooling liquid is kept within a predetermined range, and the graphite electrode in the arc electric furnace involved in refining and melting is also effective. Of the graphite gas in the arc electric furnace is suppressed by the water gas reaction of the cooling liquid entering the arc electric furnace. AC power or DC power with almost no Suggest dissolution and refining method of the metal that can be easily realized while current facilities at high power operation by.

【0021】[0021]

【課題を解決するための手段】すなわち、本発明方法は
ニップルを介して黒鉛電極が順次に接続される黒鉛電極
列に通電して、電気製鋼炉中において金属をア−ク溶解
して精錬する際に、この電気製鋼炉の炉蓋より上部にお
いて、黒鉛電極列の黒鉛電極の外周に向け水平レベルに
対し35°をこえて60°以下の傾斜角をもって下向き
に傾斜させて冷却液を噴射して吹付け、黒鉛電極列を冷
却することを特徴とする。
That is, according to the method of the present invention, a graphite electrode array in which graphite electrodes are sequentially connected through a nipple is energized to arc-melt and refine a metal in an electric steelmaking furnace. At this time, above the furnace lid of this electric steelmaking furnace, the cooling liquid was jetted toward the outer periphery of the graphite electrode of the graphite electrode array by inclining downward with an inclination angle of more than 35 ° and 60 ° or less with respect to the horizontal level. And spraying the graphite electrode array to cool it.

【0022】換言すると、本発明方法は、ニップルを介
して順次に接続された黒鉛電極の外周面に、冷却液を吹
付けて冷却する際に、冷却液は、水平レベルに対して所
定の傾斜角をとって下向きに傾斜させて吹付ける。従っ
て、冷却液のほとんど大部分が黒鉛電極の外周面に接触
するとともに、外周面に沿って下降し、この外周面に沿
って下降する冷却液は、黒鉛電極の外周面と常に接触し
ており、ア−ク電気炉内の黒鉛電極の外周面や、先端ま
で冷却される。
In other words, according to the method of the present invention, when the cooling liquid is sprayed and cooled on the outer peripheral surface of the graphite electrodes sequentially connected through the nipple, the cooling liquid has a predetermined inclination with respect to the horizontal level. Take an angle and incline downward and spray. Therefore, most of the cooling liquid comes into contact with the outer peripheral surface of the graphite electrode and descends along the outer peripheral surface, and the cooling liquid descending along the outer peripheral surface is always in contact with the outer peripheral surface of the graphite electrode. The graphite electrode in the arc electric furnace is cooled to the outer peripheral surface and the tip.

【0023】また、ア−ク電気炉内においても、侵入し
た冷却液は常に黒鉛電極の外周面に沿って流れかつ接触
している。このため、侵入した冷却液は下降の間にほと
んど蒸発飛散し、水性ガス反応が生じるおそれがない。
Also in the arc electric furnace, the invading cooling liquid always flows along and contacts the outer peripheral surface of the graphite electrode. Therefore, the invading cooling liquid is almost evaporated and scattered during the descent, and there is no possibility that the water-gas reaction occurs.

【0024】また、冷却液の中に耐酸化剤を含有させる
と、冷却液が黒鉛電極外周面に沿って下降する際に、そ
の中に含まれる耐酸化剤が付着し、この付着によって形
成された耐酸化剤皮膜によって黒鉛電極の酸化消耗の効
果的に防止できる。
Further, when the cooling liquid contains an oxidation resistant agent, when the cooling liquid descends along the outer peripheral surface of the graphite electrode, the oxidation resistant agent contained therein adheres, and is formed by this adhesion. The oxidation resistant coating effectively prevents the graphite electrode from being consumed by oxidation.

【0025】更に、冷却液の吹付量は適正範囲にとどま
っている。このため、一部の冷却液がア−ク電気炉内に
入っても、ほとんどが途中で気化し、炉内で水性ガス反
応が起こることもなく、水素ガスも発生しない。そのと
ころから、このように精錬すると、溶鋼中に水素などの
混入がなく、水素ぜい性を問題視する鋼種でも容易に精
錬できる。
Further, the spray amount of the cooling liquid remains within the proper range. For this reason, even if a part of the cooling liquid enters the arc electric furnace, most of it is vaporized in the middle, no water-gas reaction occurs in the furnace, and no hydrogen gas is generated. From that point, when refining in this way, hydrogen and the like are not mixed in the molten steel, and it is possible to easily refine even the steel type having a problem of hydrogen embrittlement.

【0026】そこで、これら手段たる構成ならびにその
作用について、図面によって具体的に説明すると、次の
通りである。
The structure and operation of these means will be described below in detail with reference to the drawings.

【0027】なお、図1は、本発明方法で、黒鉛電極に
冷却液を吹付けて冷却しながら、金属精錬する際の一例
を正面から示す説明図である。
FIG. 1 is a front view showing an example of refining a metal while spraying a cooling liquid on a graphite electrode to cool the graphite electrode by the method of the present invention.

【0028】図2は、図1において一部を拡大して示す
説明図である。
FIG. 2 is an explanatory view showing a part of FIG. 1 in an enlarged manner.

【0029】図3は図2の冷却管の一部を拡大して示す
説明図である。
FIG. 3 is an explanatory view showing a part of the cooling pipe of FIG. 2 in an enlarged manner.

【0030】まず、図1、図2ならびに図3において符
号1は、ニップルを介して順次に接続される黒鉛電極に
おいて炉蓋より上方にある黒鉛電極を示す。黒鉛電極1
の上部は電極ホルダ(図示せず)によって把持され、こ
の黒鉛電極1の下端にはニップルを介して黒鉛電極が順
次に接続され、下部の黒鉛電極はア−ク電気炉(図示せ
ず)の中に挿通され、電気炉内では黒鉛電極によりア−
ク加熱され、製鋼などの精錬が行なわれる。
First, reference numeral 1 in FIGS. 1, 2 and 3 indicates graphite electrodes which are located above the furnace lid in the graphite electrodes which are sequentially connected through the nipple. Graphite electrode 1
The upper part of the graphite electrode 1 is gripped by an electrode holder (not shown), the graphite electrodes are sequentially connected to the lower end of the graphite electrode 1 through a nipple, and the lower graphite electrode is of an arc electric furnace (not shown). It is inserted into the electric furnace, and the graphite electrode
It is heated and refined such as steelmaking.

【0031】また、ア−ク電気炉において、3相交流電
力により加熱する場合には、そのセンタ−を中心とする
所定半径の円サ−クル上に間隔をおいて3相の電力に対
応して、黒鉛電極1がニップルを介して順次に接続され
る黒鉛電極列が3本配置される。
In the case of heating with three-phase AC power in an arc electric furnace, three-phase power is provided at intervals on a circle circle having a predetermined radius with its center as the center. Thus, three graphite electrode rows are arranged in which the graphite electrodes 1 are sequentially connected via the nipple.

【0032】なお、交流電力によって加熱する代りに、
直流電力によって加熱する場合には、1本の黒鉛電極列
が配置され、この黒鉛電極列は、黒鉛電極1がニップル
を介して順次に接続され、直流電力による通電加熱によ
ると、大電流を流し、大量の精錬ができる。
Instead of heating with AC power,
In the case of heating with direct current power, one graphite electrode array is arranged, and in this graphite electrode array, the graphite electrodes 1 are sequentially connected through the nipple, and according to the energization heating with direct current power, a large current flows. , A large amount of refining can be done.

【0033】次に、黒鉛電極列のうちで、炉蓋より上方
の黒鉛電極1の外周面に、例えば冷却水の如き冷却液2
を連続的に下向きに35°をこえ60°以下の傾斜角を
とって傾斜させて噴射して吹付ける一方、冷却液2の吹
付量は0.8〜35リットル/分の範囲に保つ。
Next, in the graphite electrode array, a cooling liquid 2 such as cooling water is formed on the outer peripheral surface of the graphite electrode 1 above the furnace lid.
Is continuously sprayed downward at an inclination angle of more than 35 [deg.] And not more than 60 [deg.] To spray and spray, while the spray amount of the cooling liquid 2 is maintained in the range of 0.8 to 35 liters / minute.

【0034】すなわち、冷却液2は上記の通り下向きに
所定の傾斜角をとって吹付ける一方、黒鉛電極1の直
径、つまり、太さに応じて冷却液2の量をコントロ−ル
するのが好ましい。ちなみにその適量範囲を示すと、1
本の黒鉛電極1の直径(インチ)が16″、18″、2
0″、22″、24″、26″、28″、30″の場合
には、それぞれ冷却液量(リットル/分)が6〜9、8
〜12、10〜14、12〜17、15〜20、17〜
24、20〜28、23〜32程度が好ましく、この範
囲であると、従来例(消耗電極で冷却した場合)に較べ
て、電極原単位(kg/t)は14〜19%減少し、電
力原単位(kwh/t)は3〜5%減少する。
That is, while the cooling liquid 2 is sprayed downward at a predetermined inclination angle as described above, the amount of the cooling liquid 2 is controlled according to the diameter of the graphite electrode 1, that is, the thickness. preferable. By the way, the appropriate range is 1
The diameter (inch) of the graphite electrode 1 is 16 ″, 18 ″, 2
In case of 0 ″, 22 ″, 24 ″, 26 ″, 28 ″, 30 ″, the cooling liquid amount (liter / min) is 6 to 9 and 8 respectively.
~ 12, 10-14, 12-17, 15-20, 17-
24, 20 to 28, 23 to 32 are preferable, and in this range, the electrode unit unit (kg / t) is reduced by 14 to 19% as compared with the conventional example (when cooled by a consumable electrode), and the power consumption is reduced. The basic unit (kwh / t) is reduced by 3 to 5%.

【0035】冷却液は、上記の条件のもとであれば、何
れの方法によっても吹付けることができるが、次の通り
に冷却管3を用いて、冷却液を吹付けることができる。
The cooling liquid can be sprayed by any method under the above conditions, but the cooling liquid can be sprayed using the cooling pipe 3 as follows.

【0036】冷却液を吹付けるべき黒鉛電極1の外周に
冷却管3を配置し、この冷却管3内に冷却液を送って、
冷却液を冷却管3の内周面の吹付ノズル4から下向きに
傾斜させて噴射し、吹付ける。冷却管3は、黒鉛電極1
の上部を把持する電極ホルダ(図示せず)とア−ク電気
炉の炉蓋(図示せず)との間にする。
A cooling pipe 3 is arranged around the graphite electrode 1 to be sprayed with the cooling liquid, and the cooling liquid is sent into the cooling pipe 3,
The cooling liquid is sprayed by inclining downward from the spray nozzle 4 on the inner peripheral surface of the cooling pipe 3 and spraying it. The cooling tube 3 is a graphite electrode 1
Between the electrode holder (not shown) that holds the upper part of the plate and the furnace lid (not shown) of the arc electric furnace.

【0037】また、冷却管3の内周面の各吹付ノズル4
は半径方向に黒鉛電極1の中心に向って指向させ、各吹
付ノズル4の先端ノズル部4aは、図3に示す通り斜め
下向きに35°をこえて60°以下の傾斜角θをとって
傾斜させる。このように吹付ノズル4を取付けると、連
続的に供給される冷却液2は、冷却管3の各吹付ノズル
4から、斜め下向きに噴射されると、冷却液2は、黒鉛
電極1の外周面に沿って流れ、この冷却液2が黒鉛電極
列の各黒鉛電極1の外周面に沿って下向きに下降する間
に、黒鉛電極1を順次に冷却して精錬に関与する下部の
黒鉛電極1の先端まで冷却し、ア−ク電気炉内に冷却液
が入っても、冷却液は内部の熱により気化され、水性反
応などが起こる余地がない。
Further, each spray nozzle 4 on the inner peripheral surface of the cooling pipe 3
Is directed in the radial direction toward the center of the graphite electrode 1, and the tip nozzle portion 4a of each spray nozzle 4 is inclined obliquely downward at an inclination angle θ of less than 60 ° and more than 35 ° as shown in FIG. Let When the spray nozzle 4 is attached in this manner, the cooling liquid 2 that is continuously supplied is jetted obliquely downward from each of the spray nozzles 4 of the cooling pipe 3, and the cooling liquid 2 becomes the outer peripheral surface of the graphite electrode 1. Of the lower graphite electrode 1 involved in refining while sequentially cooling the graphite electrode 1 while the cooling liquid 2 descends downward along the outer peripheral surface of each graphite electrode 1 of the graphite electrode array. Even when the cooling liquid is cooled to the tip and enters the arc electric furnace, the cooling liquid is vaporized by the internal heat and there is no room for an aqueous reaction.

【0038】このように下向きに傾斜させて0.8〜3
5リットル/分の冷却液を吹付けて冷却すると、冷却液
2はほとんど飛散することなく、ほとんどの冷却液2は
黒鉛電極群の各黒鉛電極1の外周面上を流れて、ア−ク
電気炉内に入り、下部の黒鉛電極の先端まで冷却する。
In this way, by tilting downward, 0.8 to 3
When a cooling liquid of 5 liters / minute is sprayed and cooled, the cooling liquid 2 hardly scatters, most of the cooling liquid 2 flows on the outer peripheral surface of each graphite electrode 1 of the graphite electrode group, and the arc electric Enter the furnace and cool to the tip of the lower graphite electrode.

【0039】この場合、下向きの傾斜角θが35°以下
になると、黒鉛電極1の外周面に衝突し反射される割合
が多くなる。このため、噴射圧力を適正に調節しない
と、冷却液中で反射される量が多くなり、反射された冷
却水は落下した炉蓋などを汚し、耐久力を大巾に劣化さ
せる。
In this case, when the downward inclination angle θ is 35 ° or less, the ratio of collision and reflection on the outer peripheral surface of the graphite electrode 1 increases. For this reason, if the injection pressure is not properly adjusted, the amount reflected in the cooling liquid increases, and the reflected cooling water stains the dropped furnace lid and the like, and greatly deteriorates the durability.

【0040】また、下向きの傾斜角θが60°内外をこ
えると、冷却液の下降速度が速くなり、一部の遊離した
冷却液には炉内で水性ガス反応がおこり、水素ガスが生
じるほか、局部的に爆発が起こって好ましくない。更
に、傾斜角が仮りに70°内外にすると、後記の実施例
にも示す通り、電極原単位は10〜20%も高くなり、
この面からも好ましくない。
If the downward inclination angle θ exceeds 60 ° or more, the descending speed of the cooling liquid becomes faster, and a part of the released cooling liquid undergoes a water gas reaction in the furnace to generate hydrogen gas. , Explosion occurs locally, which is not preferable. Furthermore, if the inclination angle is set to be 70 ° or less, the electrode unit unit is increased by 10 to 20%, as shown in Examples below.
This is also not preferable.

【0041】更に、冷却液の流量が0.8リットル/
分、なかでも6リットル/分以下になると、傾斜角θが
上記範囲内にあっても、冷却液の流量が不十分で所定の
効果が達成できない。
Further, the flow rate of the cooling liquid is 0.8 liter /
If the flow rate is 6 liters / minute or less, the predetermined effect cannot be achieved because the flow rate of the cooling liquid is insufficient even if the inclination angle θ is within the above range.

【0042】これに対し、冷却液の流量が35リットル
/分をこえると、黒鉛電極列全体の冷却が過剰となり、
かえって、過冷却分の加熱に余分の電力がかかり、電力
原単位が上昇して好ましくない。また、余剰の冷却液に
よって炉蓋が破損され、耐久力が大巾に低下する。
On the other hand, when the flow rate of the cooling liquid exceeds 35 liters / minute, the entire graphite electrode array is excessively cooled,
On the contrary, extra power is required to heat the supercooled portion, and the power consumption rate increases, which is not preferable. Further, the excess cooling liquid damages the furnace lid, and the durability is greatly reduced.

【0043】なお、上記のところでは、複数個のノズル
から冷却液を吹出す例を示したが、上記の条件のもとで
あれば、一つのノズルから冷却液を吹出すこともでき、
この場合には、冷却装置そのものの構造をコンパクトに
できる。
In the above description, an example in which the cooling liquid is blown out from a plurality of nozzles is shown, but under the above conditions, the cooling liquid can be blown out from one nozzle,
In this case, the structure of the cooling device itself can be made compact.

【0044】[0044]

【実施例】【Example】

実施例1.まず、表1に示す通りの各種直径の黒鉛電極
をニップルを介して接続し、この黒鉛電極列のうちで炉
蓋より上部の黒鉛電極の上端を電極ホルダで把持し、図
1、図2ならびに図3に示す如く、冷却管3の吹付けノ
ズル4から冷却液2を下向きに傾斜角θをとって傾斜さ
せて吹付けて、製鋼用のア−ク電気炉でスクラップ材を
溶融してア−ク精錬を行なった。この冷却液として水道
水を用い、この冷却水を連続的に供給し、各吹付けノズ
ル4から黒鉛電極1の外周面に向けて噴射した。
Embodiment 1 FIG. First, graphite electrodes having various diameters as shown in Table 1 were connected via a nipple, and the upper end of the graphite electrode above the furnace lid in this graphite electrode array was held by an electrode holder. As shown in FIG. 3, the cooling liquid 2 is sprayed downward from the spray nozzle 4 of the cooling pipe 3 with an inclination angle θ, and the scrap material is melted in an arc electric furnace for steelmaking. -Ku refined. Tap water was used as this cooling liquid, and this cooling water was continuously supplied and sprayed from each spray nozzle 4 toward the outer peripheral surface of the graphite electrode 1.

【0045】この際の冷却水の噴射条件は、表1に示す
通りであって、主として電極原単位の面から改善効果を
調べた。
The injection conditions of the cooling water at this time are as shown in Table 1, and the improvement effect was examined mainly in terms of the electrode unit.

【0046】[0046]

【表1】 [Table 1]

【0047】表1において、最適水量は以下の通りであ
る。
In Table 1, the optimum amount of water is as follows.

【0048】冷却液を冷却水とした場合を含めて、冷却
水の水量は黒鉛電極の直径との関連で決める必要があ
り、このところから、上記の通りに、最適冷却水量を求
めた。
The amount of cooling water, including the case where the cooling liquid is cooling water, must be determined in relation to the diameter of the graphite electrode. From this, the optimum amount of cooling water was obtained as described above.

【0049】この最適冷却水量の範囲内で、黒鉛電極の
直径との関連で、水量を定めて実験を行なった。
An experiment was conducted by setting the amount of water in relation to the diameter of the graphite electrode within the range of this optimum amount of cooling water.

【0050】表1のところから明らかなように、噴射
用、つまり、傾斜角θを60°以上にとると、各電極直
径に対応する最適水量の範囲内であっても、電気炉操業
で重要な電極原単位が大きくなっていた。
As is clear from Table 1, for injection, that is, when the inclination angle θ is 60 ° or more, it is important in the operation of the electric furnace even within the range of the optimum amount of water corresponding to each electrode diameter. The basic unit of electrode was large.

【0051】また、更に、同様な実験を一つの吹付ノズ
ルによっても行なったところ、表1に示すところと同等
の結果が得られた。
Further, when the same experiment was conducted with one spray nozzle, the same results as shown in Table 1 were obtained.

【0052】[0052]

【発明の効果】以上詳しく説明した通り、本発明方法
は、ニップルを介して黒鉛電極が順次に接続される黒鉛
電極列に通電して、電気製鋼炉中において金属をア−ク
溶解して精錬する際に、電気製鋼炉の炉蓋より上部にお
いて、黒鉛電極列の黒鉛電極の外周に向け水平レベルに
対し35°をこえて60°以下の傾斜角をもって下向き
に傾斜させて冷却液を噴射して吹付け、黒鉛電極列を冷
却する。
As described in detail above, according to the method of the present invention, a graphite electrode array in which graphite electrodes are sequentially connected through a nipple is energized to arc-melt and refine a metal in an electric steelmaking furnace. At the upper part of the furnace lid of the electric steelmaking furnace, the cooling liquid is jetted downward toward the outer periphery of the graphite electrode of the graphite electrode array with an inclination angle of more than 35 ° and 60 ° or less with respect to the horizontal level. To cool the graphite electrode array.

【0053】更に、冷却液の吹付量は、冷却すべき黒鉛
電極の直径に関連して、0.8〜35リットル/分の範
囲内で、最適吹付量を求め、この最適吹付量の冷却液を
吹付ける。
Further, regarding the spray amount of the cooling liquid, the optimum spray amount is determined within the range of 0.8 to 35 liters / min in relation to the diameter of the graphite electrode to be cooled, and the cooling liquid of this optimum spray amount is obtained. To spray.

【0054】このように冷却液を吹付けつつ、金属を溶
解、精錬すると、溶解および精錬時の黒鉛電極の酸化消
耗は最小限におさえられ電極原単位を大巾に低減し、ア
−ク電気炉内でで水性反応による水素ガスなどを発生さ
せることなく、更に、シャモットなどの安価な耐火物か
ら成る炉蓋であっても耐用年数を損なうことがない。
When the metal is melted and refined while the cooling liquid is sprayed in this way, the oxidation consumption of the graphite electrode during the melting and refining is suppressed to a minimum and the electrode unit consumption is greatly reduced. No hydrogen gas is generated in the furnace due to aqueous reaction, and even a furnace lid made of an inexpensive refractory such as chamotte does not impair the service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で黒鉛電極に冷却液を吹付けて冷却
しながら、金属精錬する際の一例を正面から示す説明図
である。
FIG. 1 is an explanatory view showing an example from the front when refining a metal while spraying a cooling liquid on a graphite electrode to cool it by the method of the present invention.

【図2】図1において一部を拡大して示す説明図であ
る。
FIG. 2 is an explanatory view showing a part of FIG. 1 in an enlarged manner.

【図3】図2の冷却管の一部を拡大して示す説明図であ
る。
FIG. 3 is an explanatory view showing a part of the cooling pipe of FIG. 2 in an enlarged manner.

【図4】従来例の冷却装置の説明図である。FIG. 4 is an explanatory diagram of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 黒鉛電極 2 冷却液 3 冷却管 4 吹付ノズル θ 傾斜角 1 Graphite electrode 2 Cooling liquid 3 Cooling pipe 4 Spray nozzle θ Inclination angle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニップルを介して黒鉛電極が順次に接続
される黒鉛電極列に通電して、電気製鋼炉中において金
属をア−ク溶解して精錬する際に、この電気製鋼炉の炉
蓋より上部において、前記黒鉛電極列の黒鉛電極の外周
に向け水平レベルに対し35°をこえて60°以下の傾
斜角をもって下向きに傾斜させて冷却液を噴射して吹付
け、前記黒鉛電極列を冷却することを特徴とする電気製
鋼炉における金属の溶解・精錬方法。
1. A furnace lid of an electric steelmaking furnace, when electric current is applied to a graphite electrode row in which graphite electrodes are sequentially connected through a nipple to arc melt and refine a metal in the electric steelmaking furnace. In the upper part, a cooling liquid is jetted and sprayed by inclining downward at an inclination angle of more than 35 ° and 60 ° or less with respect to the horizontal level toward the outer periphery of the graphite electrode array of the graphite electrode array, A method for melting and refining a metal in an electric steelmaking furnace characterized by cooling.
【請求項2】 前記冷却液として水を噴射することを特
徴とする請求項1記載の電気製鋼炉における金属の溶解
・精錬方法。
2. The method for melting and refining a metal in an electric steelmaking furnace according to claim 1, wherein water is injected as the cooling liquid.
【請求項3】 前記冷却液として、耐酸化剤を含み残余
が実質的に水から成る冷却液を噴射することを特徴とす
る請求項1または2記載の電気製鋼炉における金属の溶
解・精錬方法。
3. The method for melting and refining a metal in an electric steelmaking furnace according to claim 1, wherein the cooling liquid is a cooling liquid containing an antioxidant and the balance being substantially water. .
【請求項4】 前記冷却液の吹付量を0.8〜35リッ
トル/分にすることを特徴とする請求項1、2または3
記載の電気製鋼炉における金属の溶解・精錬方法。
4. The spraying amount of the cooling liquid is set to 0.8 to 35 liters / minute.
A method for melting and refining a metal in an electric steelmaking furnace as described.
JP27190795A 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace Pending JPH0992458A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27190795A JPH0992458A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace
KR1019960042424A KR970016508A (en) 1995-09-26 1996-09-25 Graphite electrode cooling method used for melting and refining metal in electric arc furnace and ladle
US08/721,221 US5795539A (en) 1995-09-26 1996-09-26 Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
CA002186538A CA2186538C (en) 1995-09-26 1996-09-26 Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27190795A JPH0992458A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace

Publications (1)

Publication Number Publication Date
JPH0992458A true JPH0992458A (en) 1997-04-04

Family

ID=17506553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27190795A Pending JPH0992458A (en) 1995-09-26 1995-09-26 Method for melting and smelting metal in electric steelmaking furnace

Country Status (1)

Country Link
JP (1) JPH0992458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024021A (en) * 2002-09-12 2004-03-20 주식회사 포스코 Apparatus for reducing amount of electrode used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024021A (en) * 2002-09-12 2004-03-20 주식회사 포스코 Apparatus for reducing amount of electrode used

Similar Documents

Publication Publication Date Title
KR920000524B1 (en) Melting furnace and method for melting metal
EP0493476B1 (en) Top submerged injection with a shrouded lance
CN103958994A (en) Fluid cooled lances for top submerged injection
JPH0795474B2 (en) Method for melting and refining metals such as electric arc steelmaking and electrode cooling device used therefor
CN105612263A (en) Top submerged injection lance for enhanced submerged combustion
JPS58113309A (en) Steel producer
US5795539A (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
JPH0992458A (en) Method for melting and smelting metal in electric steelmaking furnace
JP2824955B2 (en) Electric furnace oxygen injection equipment
JPH0992459A (en) Method for melting and smelting metal in electric steelmaking furnace
JP2704395B2 (en) Method of cooling graphite electrode for electric arc refining and cooling device for graphite electrode
JPH0992462A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992461A (en) Method for melting and smelting metal in electric steelmaking furnace
JPH0992460A (en) Method for melting and smelting metal in electric steelmaking furnace
EP0827365A2 (en) Method for cooling graphite electrodes used for metal melting and refining in an electric arc furnace and a ladle
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
JPH1072615A (en) Method for refining molten metal in ladle and apparatus therefor
EP1315841A1 (en) Process for the metallurgical treatment of molten steel in a converter with oxygen top blown
JP2020105552A (en) Water-cooled lance for refining, and decarburization blowing method
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP2002086251A (en) Method for continuously casting alloy
JPH0824068B2 (en) Metal melting and refining method and electrode cooling device used therefor
EP1113083A2 (en) Method for controlling flux concentration in guide tubes
JPH1072616A (en) Method for refining molten metal in ladle and apparatus therefor
RU2817361C2 (en) Burner with display device, electric furnace equipped with said burner, and method of producing molten cast iron using said electric furnace