JP2002086251A - Method for continuously casting alloy - Google Patents

Method for continuously casting alloy

Info

Publication number
JP2002086251A
JP2002086251A JP2000277609A JP2000277609A JP2002086251A JP 2002086251 A JP2002086251 A JP 2002086251A JP 2000277609 A JP2000277609 A JP 2000277609A JP 2000277609 A JP2000277609 A JP 2000277609A JP 2002086251 A JP2002086251 A JP 2002086251A
Authority
JP
Japan
Prior art keywords
alloy
continuous casting
melted
alloy component
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000277609A
Other languages
Japanese (ja)
Inventor
Noriyuki Nomoto
詞之 野本
慶平 ▲冬▼
Kiyouhei Fuyu
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000277609A priority Critical patent/JP2002086251A/en
Publication of JP2002086251A publication Critical patent/JP2002086251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for continuously casting copper alloy, etc., at a high productivity and a low cost with which the additional composition having high melting point is fully melted into an alloy at high concentration and can uniformly diffuse it. SOLUTION: A wire rod 29 having additional alloy composition is continuously melted or semi-melted by arc-discharge, and the molten or semi-molten material 31 is added into the flow of the molten metal 34 of the base alloy component to melt the additional alloy component into the molten metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合金の連続鋳造方法
に関し、特に添加合金成分の添加方法に特徴のある、銅
合金等の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of an alloy, and more particularly to a continuous casting method of a copper alloy or the like, which is characterized by a method of adding an additional alloy component.

【0002】[0002]

【従来の技術】図7は従来一般的に用いられる銅合金等
の連続鋳造装置を示す。連続鋳造装置は、連続溶解炉
1、移送樋2、保持炉3、鋳造樋4、タンディッシュ
5、下降管6、鋳型7、シャワー9、水槽10、ピンチ
ロール11、及びフライングソー12から成る。連続溶
解炉1で熔解(以下、溶解)された合金成分は、移送樋
2を通って保持炉3に貯留され、鋳造樋4を通ってタン
ディッシュ5に注がれ、下降管6を通って鋳型7に注が
れ、連続的に鋳塊8が形成される。鋳塊8は、シャワー
9と水槽10で冷却され、ピンチロール11で断面寸法
を調整し、フライングソー12で所要の長さに切断され
る。
2. Description of the Related Art FIG. 7 shows a conventional continuous casting apparatus of a copper alloy or the like generally used. The continuous casting apparatus includes a continuous melting furnace 1, a transfer gutter 2, a holding furnace 3, a casting gutter 4, a tundish 5, a downcomer 6, a mold 7, a shower 9, a water tank 10, a pinch roll 11, and a flying saw 12. The alloy component melted (hereinafter, melted) in the continuous melting furnace 1 is stored in the holding furnace 3 through the transfer gutter 2, poured into the tundish 5 through the casting gutter 4, and passed through the downcomer 6. It is poured into a mold 7 and an ingot 8 is continuously formed. The ingot 8 is cooled by a shower 9 and a water bath 10, the cross-sectional dimension is adjusted by a pinch roll 11, and cut into a required length by a flying saw 12.

【0003】銅合金等の連続鋳造装置は、設備を効率的
に利用するため、同種の合金だけでなく種々の合金の鋳
造に使用される。鋳造する合金に共通の基本構成元素以
外の元素を溶解炉や保持炉で添加すると、そこに残留
し、その後に鋳造される合金を汚染することになる。こ
の汚染を避けるため、添加金属は保持炉よりさらに下流
の鋳造樋やタンディッシュで添加するのが一般的であ
る。
[0003] A continuous casting apparatus such as a copper alloy is used for casting not only the same kind of alloy but also various alloys in order to use the equipment efficiently. If elements other than the basic constituent elements common to the alloy to be cast are added in a melting furnace or a holding furnace, they remain there and contaminate the subsequently cast alloy. To avoid this contamination, the added metal is generally added in a casting gutter or tundish further downstream from the holding furnace.

【0004】ただし、融点の高い金属を高濃度に添加す
る場合には、るつぼ式の溶解炉の中で合金成分を添加
し、半連続鋳造を行なうのが一般的である。
[0004] However, when a metal having a high melting point is added in a high concentration, it is common to add an alloy component in a crucible type melting furnace and perform semi-continuous casting.

【0005】図8は従来一般的に用いられる半連続鋳造
装置を示す。半連続鋳造装置は、るつぼ式溶解炉19、
鋳造樋4、タンディッシュ5、下降管6、鋳型7、シャ
ワー9、水槽10から成る。るつぼ式溶解炉19で溶解
された合金成分は、鋳造樋4を通ってタンディッシュ5
に注がれ、下降管6を通って鋳型7に注がれ、鋳塊8が
形成される。鋳塊8はシャワー9と水槽10で冷却さ
れ、固化する。
FIG. 8 shows a conventional semi-continuous casting apparatus generally used. The semi-continuous casting apparatus includes a crucible type melting furnace 19,
It comprises a casting gutter 4, a tundish 5, a downcomer 6, a mold 7, a shower 9, and a water tank 10. The alloy component melted in the crucible type melting furnace 19 passes through the casting trough 4 and the tundish 5
To the mold 7 through the downcomer 6 to form an ingot 8. The ingot 8 is cooled by the shower 9 and the water bath 10 and solidified.

【0006】[0006]

【発明が解決しようとする課題】しかし、溶解炉で合金
成分を添加する半連続鋳造では、1バッチの鋳造毎に鋳
造を中断するか、複数の溶解炉を切り替えて使うか、い
ずれかを必要とし、生産能率の低下あるいは設備コスト
の増大が避けられない。また、鋳造合金品種の切り替え
の際には、溶解炉のスラグ落としの作業や、洗浄のため
の溶解が必要である。
However, in semi-continuous casting in which an alloy component is added in a melting furnace, it is necessary to either interrupt the casting after each batch of casting or to switch between and use a plurality of melting furnaces. As a result, a reduction in production efficiency or an increase in equipment costs is inevitable. In addition, when the type of the cast alloy is changed, it is necessary to remove the slag of the melting furnace and to perform melting for cleaning.

【0007】保持炉よりさらに下流の鋳造樋やタンディ
ッシュで添加する連続鋳造法では、融点の高い添加成分
を高い濃度で合金中に完全に溶解し、均一に拡散させる
ことは極めて困難である。
[0007] In the continuous casting method in which the additive is added in a casting gutter or a tundish further downstream from the holding furnace, it is extremely difficult to completely dissolve the added component having a high melting point in the alloy at a high concentration and uniformly diffuse it.

【0008】本発明の目的は、融点の高い添加成分を高
い濃度で合金中に完全に溶解し、均一に拡散させること
ができる、銅合金等の連続鋳造方法を提供することにあ
る。
[0008] It is an object of the present invention to provide a continuous casting method for a copper alloy or the like, in which an additive having a high melting point can be completely dissolved in an alloy at a high concentration and diffused uniformly.

【0009】また本発明の目的は、融点の高い合金成分
が高濃度に添加された銅合金等の、生産能率が高く、設
備コストが安い、連続鋳造方法を提供することにある。
Another object of the present invention is to provide a continuous casting method having a high production efficiency and a low equipment cost, such as a copper alloy to which an alloy component having a high melting point is added at a high concentration.

【0010】[0010]

【課題を解決するための手段】本発明では、上記目的を
達成するため、基本合金成分と添加合金成分から成る溶
湯を連続鋳造する、銅合金等の連続鋳造方法において、
添加合金成分から成る線材をアーク放電により連続的に
熔融(以下、溶融)又は半溶融し、溶融又は半溶融され
た添加合金成分を、基本合金成分の流動する溶湯に添加
し、添加合金成分が溶解された溶湯を得ることを特徴と
する。
According to the present invention, there is provided a continuous casting method of a copper alloy or the like for continuously casting a molten metal comprising a basic alloy component and an additional alloy component.
The wire composed of the additive alloy component is continuously melted (hereinafter, melted) or semi-molten by arc discharge, and the molten or semi-molten additive alloy component is added to the flowing molten metal of the basic alloy component. It is characterized by obtaining a molten melt.

【0011】代表的な線材はワイヤである。線材は添加
合金成分のみで構成されてもよく、また添加合金成分を
含む母合金の線材でもよい。線材は被覆されていてもよ
く、まためっきが施されていてもよい。
A typical wire is a wire. The wire may be composed only of the additive alloy component, or may be a master alloy wire containing the additive alloy component. The wire may be coated or plated.

【0012】ワイヤ等の線材の供給には、供給速度を制
御するため、ワイヤフィーダ等を用いてもよい。ワイヤ
等の線材は、アーク放電による溶融又は半溶融の前に余
熱されてもよい。
For supplying a wire such as a wire, a wire feeder or the like may be used to control the supply speed. A wire such as a wire may be preheated before melting or semi-molten by arc discharge.

【0013】本発明は銅合金(基本合金成分が銅)の連
続鋳造に特に有用である。添加合金成分は、アーク放電
により連続的に溶融又は半溶融できるワイヤ等の線材を
構成できれば、任意のものでよい。本発明は、連続鋳造
装置を用いた連続鋳造に特に有用であるが、半連続鋳造
装置を用いた鋳造にも適用は可能である。
The present invention is particularly useful for continuous casting of a copper alloy (the basic alloying component is copper). The additive alloy component may be any as long as it can form a wire such as a wire that can be continuously melted or semi-melted by arc discharge. The present invention is particularly useful for continuous casting using a continuous casting apparatus, but is also applicable to casting using a semi-continuous casting apparatus.

【0014】アーク放電により溶融又は半溶融された合
金添加成分は、保持炉よりも下流で溶湯に添加するのが
好ましい。添加成分が均一に拡散するように、添加後の
溶湯は充分攪拌されることが好ましい。
[0014] The alloy additive component melted or semi-molten by arc discharge is preferably added to the molten metal downstream of the holding furnace. It is preferable that the molten metal after addition is sufficiently stirred so that the additional components are uniformly diffused.

【0015】本発明でアーク放電に用いる装置は、ワイ
ヤ等の線材自体を電極とする消耗電極タイプ、非消耗電
極を用いるタイプ、いずれでもよい。また、直流、交流
いずれを用いるものでもよい。通常のように、放電部に
はアルゴン等の不活性ガスを供給し、アークプラズマを
発生させる。電気的容量は、線材の供給速度、比熱、融
解の潜熱、装置の効率等で決定される。単独のプラズマ
トーチを用いても、また小容量のトーチを直列もしくは
並列、または直列・並列に設けた複トーチ方式でもよ
い。長時間連続運転が必要な場合、複トーチ方式が好ま
しい。
The apparatus used for arc discharge in the present invention may be either a consumable electrode type using a wire such as a wire itself as an electrode, or a type using a non-consumable electrode. Further, either a direct current or an alternating current may be used. As usual, an inert gas such as argon is supplied to the discharge unit to generate arc plasma. The electric capacity is determined by the supply speed of the wire, the specific heat, the latent heat of melting, the efficiency of the apparatus, and the like. A single plasma torch may be used, or a small torch may be provided in series or in parallel, or a double torch system provided in series / parallel. When long-time continuous operation is required, the double torch method is preferable.

【0016】溶融又は半溶融された添加合金成分が添加
される部位での溶湯の表面は、酸化を防止するため、ア
ルゴン等の不活性ガスまたは還元性ガスで覆うことが好
ましい。
The surface of the molten metal at the site where the molten or semi-molten additive alloy component is added is preferably covered with an inert gas such as argon or a reducing gas to prevent oxidation.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態を述
べる。図1は、本発明の実施に用いる合金連続鋳造装置
を示す。図1に示す合金連続鋳造装置は、アークプラズ
マ溶解装置13と攪拌機14を除き、図7に示す合金連
続鋳造装置と同じ構成をもつ。鋳造樋4の保持炉3に近
い位置4aに、アークプラズマ溶解装置13で溶解した
銅含有鉄を添加することにより、鉄を含む銅合金を連続
鋳造する。鋳造樋4の、これより下流に、攪拌機14を
設け、溶湯を均一に撹拌する。
Embodiments of the present invention will be described below. FIG. 1 shows an alloy continuous casting apparatus used for carrying out the present invention. The alloy continuous casting apparatus shown in FIG. 1 has the same configuration as the alloy continuous casting apparatus shown in FIG. 7 except for the arc plasma melting device 13 and the stirrer 14. A copper alloy containing iron is continuously cast by adding the copper-containing iron melted by the arc plasma melting device 13 to a position 4a of the casting gutter 4 close to the holding furnace 3. A stirrer 14 is provided downstream of the casting gutter 4 to stir the molten metal uniformly.

【0018】図2はアークプラズマ溶解装置の一例を示
す。アークプラズマ溶解装置は、プラズマトーチ22、
直流電源26、添加金属のワイヤ29、ワイヤフィーダ
30、銅板25、冷却水配管36から成る。プラズマト
ーチ22は、カソード23、アノード24a、補助電極
24b、プラズマガス27、シールドガス28から成
る。アークプラズマ溶解装置は、鋳造樋32(図1の鋳
造樋4)上部の樋蓋33の上に設けられている。
FIG. 2 shows an example of an arc plasma melting apparatus. The arc plasma melting device includes a plasma torch 22,
It comprises a DC power supply 26, an additive metal wire 29, a wire feeder 30, a copper plate 25, and a cooling water pipe 36. The plasma torch 22 includes a cathode 23, an anode 24a, an auxiliary electrode 24b, a plasma gas 27, and a shield gas 28. The arc plasma melting apparatus is provided on a gutter lid 33 above the casting gutter 32 (the casting gutter 4 in FIG. 1).

【0019】アークプラズマ21を発生させるためのプ
ラズマトーチ22は、中心部のカソード23と、それを
囲む補助電極24b及びアノード24aから成る。アノ
ード24aは樋蓋33の上に設けられた銅板25に連結
されている。カソード23は直流電源26のマイナス側
に、アノード24aは銅板25とともに直流電源26の
プラス側にそれぞれ接続され、さらに補助電極24bは
抵抗26aを介して電源26のプラス側に接続されてい
る。カソード23と補助電極24bの間にはプラズマガ
ス27が、補助電極24bとアノード24aの間にはシ
ールドガス28が、それぞれ流される。プラズマトーチ
22の先端にアークプラズマ21が生ずる。添加金属の
ワイヤ29はワイヤフィーダ30からアークプラズマ2
1の中へ供給され、溶解されて滴31となる。添加成分
の滴31は、鋳造樋32の中を流れる溶湯34の中に落
ちる。溶湯34は、酸化防止のため被覆ガス35で覆わ
れている。銅板25は冷却水配管36により冷却され
る。
The plasma torch 22 for generating the arc plasma 21 comprises a central cathode 23, an auxiliary electrode 24b and an anode 24a surrounding it. The anode 24a is connected to a copper plate 25 provided on the gutter lid 33. The cathode 23 is connected to the negative side of the DC power supply 26, the anode 24a is connected to the positive side of the DC power supply 26 together with the copper plate 25, and the auxiliary electrode 24b is connected to the positive side of the power supply 26 via the resistor 26a. A plasma gas 27 flows between the cathode 23 and the auxiliary electrode 24b, and a shield gas 28 flows between the auxiliary electrode 24b and the anode 24a. Arc plasma 21 is generated at the tip of plasma torch 22. The wire 29 of the added metal is supplied from the wire feeder 30 to the arc plasma 2.
1 and dissolved into droplets 31. Drops 31 of the additive fall into a melt 34 flowing in a casting gutter 32. The molten metal 34 is covered with a coating gas 35 to prevent oxidation. The copper plate 25 is cooled by a cooling water pipe 36.

【0020】図3はアークプラズマ溶解装置の他の例を
示す。プラズマトーチ42を除き、符号は図2と共通で
あるが、この装置には銅板25と補助電極24bはな
い。プラズマトーチ42は、中心部のカソード23と、
それを囲むアノード24aから成り、カソード23とア
ノード24aの間にプラズマガス27が流される。アノ
ード24aは水冷されている。その他は図2の装置と同
じである。
FIG. 3 shows another example of the arc plasma melting apparatus. The reference numerals are the same as those in FIG. 2 except for the plasma torch 42, but this apparatus does not include the copper plate 25 and the auxiliary electrode 24b. The plasma torch 42 includes a central cathode 23,
A plasma gas 27 flows between the cathode 23 and the anode 24a. The anode 24a is water-cooled. Others are the same as the apparatus of FIG.

【0021】図4はアークプラズマ溶解装置の別の例を
示す。プラズマトーチ52とその各部を除き、符号は図
2と共通である。この装置では、添加金属のワイヤ29
はプラズマトーチ52の中心部に給電部53と一体に挿
入され、それらが水冷ジャケット54で囲まれている。
添加金属のワイヤ29と水冷ジャケット54の間にプラ
ズマガス27が流される。プラズマトーチ52の給電部
53は直流電源26のマイナス側に接続されている。樋
蓋33の上に設けられた、アノードとなる銅板25が、
直流電源26のプラス側に接続されている。プラズマト
ーチ52の先端に、銅板25との間にアークプラズマ2
1が生ずる。銅板25は冷却水配管36により冷却され
る。その他は図2の装置と同じである。
FIG. 4 shows another example of the arc plasma melting apparatus. The reference numerals are the same as those in FIG. In this device, an additional metal wire 29 is used.
Are inserted into the center of the plasma torch 52 integrally with the power supply unit 53, and they are surrounded by a water cooling jacket 54.
The plasma gas 27 flows between the wire 29 of the additional metal and the water cooling jacket 54. The power supply 53 of the plasma torch 52 is connected to the negative side of the DC power supply 26. The copper plate 25 serving as an anode provided on the gutter lid 33 is
It is connected to the positive side of DC power supply 26. At the tip of the plasma torch 52, between the copper plate 25 and the arc plasma 2
1 results. The copper plate 25 is cooled by a cooling water pipe 36. Others are the same as the apparatus of FIG.

【0022】[0022]

【実施例】以下に本発明の実施例を、比較例とともに示
す。 [実施例1]図1に示す連続鋳造装置において鋳造樋4
の上に設置するアークプラズマ溶解装置13として図2
に示す装置を用いた。この連続鋳造装置により、2.2
重量%の鉄を含む銅合金を連続鋳造した。銅被覆純鉄ワ
イヤをワイヤフィーダで毎分2.2kgの供給速度でア
ークプラズマ溶解装置に供給した。出力100kwのプ
ラズマトーチを5台準備し、このうち1台を順次休止
し、4台を常時作動させて、約20時間連続運転した。
被覆ガスとしてアルゴンガスを用いた。
EXAMPLES Examples of the present invention will be described below together with comparative examples. [Embodiment 1] In the continuous casting apparatus shown in FIG.
2 as an arc plasma melting device 13 installed on
Was used. With this continuous casting apparatus, 2.2
A copper alloy containing iron by weight was continuously cast. The copper-coated pure iron wire was supplied to the arc plasma melting apparatus at a supply rate of 2.2 kg / min using a wire feeder. Five plasma torches with an output of 100 kW were prepared, one of which was sequentially stopped, and four were constantly operated, and operated continuously for about 20 hours.
Argon gas was used as a coating gas.

【0023】鋳塊の外観は良好で、異常が見られなかっ
た。鋳塊のマクロ組織およびミクロ組織を観察したとこ
ろ、鉄の不溶解残や粗大な析出は見られなかった。保持
炉への鉄の逆流も見られなかった。
The appearance of the ingot was good and no abnormality was observed. When the macrostructure and microstructure of the ingot were observed, no insoluble residue of iron or coarse precipitation was found. No backflow of iron into the holding furnace was observed.

【0024】図5は鋳塊の長手方向の鉄の濃度変化を測
定した結果を示す。横軸は、鋳塊の長手方向の位置を鋳
造開始からの時間に換算した値(3時間まで)で示す。
鉄濃度が安定するまで、添加開始から約30分要してい
る。鉄添加終了後、鋳造樋内の鉄濃度が10ppm以下
に下がるまで約1時間を要した。鉄含有銅合金を120
トン鋳造したとき、鋳造前後に発生する成分不良竿は約
12トンであった。
FIG. 5 shows the results of measuring the change in iron concentration in the longitudinal direction of the ingot. The horizontal axis shows the position of the ingot in the longitudinal direction as a value converted to the time from the start of casting (up to 3 hours).
It takes about 30 minutes from the start of the addition until the iron concentration is stabilized. After the addition of iron, it took about one hour for the iron concentration in the casting gutter to drop to 10 ppm or less. 120 iron-containing copper alloy
When the ton casting was performed, the rod with a defective component generated before and after the casting was about 12 tons.

【0025】[実施例2]実施例1と同じ装置を用い
て、2.5重量%のニッケルを含む銅合金を鋳造した。
ただし、プラズマトーチは出力100kwのもの3台を
準備し、このうち1台を順次休止し、2台を常時作動さ
せた。50重量%のニッケルを含む銅・ニッケル合金ワ
イヤを、ワイヤフィーダで毎分2.5kgの供給速度で
アークプラズマ溶解装置に供給した。溶解前にワイヤは
ジュール熱予熱した。
Example 2 Using the same apparatus as in Example 1, a copper alloy containing 2.5% by weight of nickel was cast.
However, three plasma torches having an output of 100 kW were prepared, one of which was sequentially stopped, and two were constantly operated. A copper / nickel alloy wire containing 50% by weight of nickel was supplied to an arc plasma melting apparatus by a wire feeder at a supply rate of 2.5 kg / min. The wire was preheated with Joule heat before melting.

【0026】約20時間連続鋳造した鋳塊の外観は良好
で、異常は見られなかった。鋳塊のマクロ組織およびミ
クロ組織を観察したところ、組織は均一で、異常は認め
られなかった。保持炉へのニッケルの逆流も見られなか
った。
The appearance of the ingot continuously cast for about 20 hours was good, and no abnormality was observed. When the macro structure and micro structure of the ingot were observed, the structure was uniform and no abnormality was observed. No backflow of nickel into the holding furnace was observed.

【0027】図6は鋳塊の長手方向のニッケル濃度の変
化を測定した結果を示す。横軸は、鋳塊の長手方向の位
置を鋳造開始からの時間に換算した値(3時間まで)で
示す。鉄濃度が安定するまで、添加開始から約30分要
している。ニッケル添加終了後、鋳造樋内のニッケル濃
度が10ppm以下に下がるまで約1時間を要した。鉄
含有銅合金を120トン鋳造したとき、鋳造の前後に発
生する成分不良竿は約12トンであった。
FIG. 6 shows the result of measuring the change in the nickel concentration in the longitudinal direction of the ingot. The horizontal axis shows the position of the ingot in the longitudinal direction as a value converted to the time from the start of casting (up to 3 hours). It takes about 30 minutes from the start of the addition until the iron concentration is stabilized. After the nickel addition, it took about one hour for the nickel concentration in the casting gutter to drop to 10 ppm or less. When 120 tons of an iron-containing copper alloy was cast, about 12 tons of poor component rods were generated before and after casting.

【0028】[比較例1]図8に示す半連続鋳造装置を
用い、るつぼ式溶解炉19で脱酸素銅を約5トン溶解
後、電解鉄を添加して、2.2重量%の鉄を含む銅合金
を鋳造した。鋳塊の外観は良好で、異常が見られなかっ
た。鋳塊のマクロ組織及びミクロ組織を観察したとこ
ろ、鉄の不溶解残や粗大な析出は見られなかった。しか
し、合金1kgあたりの鋳造費用は、実施例1による鋳
造の約5倍であった。
Comparative Example 1 Using a semi-continuous casting apparatus as shown in FIG. 8, about 5 tons of deoxidized copper was melted in a crucible-type melting furnace 19, and then electrolytic iron was added to produce 2.2% by weight of iron. Copper alloy containing was cast. The appearance of the ingot was good and no abnormality was observed. Observation of the macro structure and micro structure of the ingot revealed no insoluble residue or coarse precipitation of iron. However, the cost of casting per kg of alloy was about 5 times that of casting according to Example 1.

【0029】[比較例2]図7に示す連続鋳造装置を用
い、容量約5トンの連続溶解炉1で脱酸素銅を3時間に
120トン溶解する間に、保持炉3の溶湯に電解鉄の線
材を連続的に添加し、溶解させて、2.2重量%の鉄を
含む銅合金を連続鋳造した。鋳塊のマクロ組織およびミ
クロ組織を観察したところ、鉄の不溶解残滓や粗大な析
出が見られた。
Comparative Example 2 Electrolytic iron was added to the molten metal of the holding furnace 3 while using the continuous casting apparatus shown in FIG. Was continuously added and melted, and a copper alloy containing 2.2% by weight of iron was continuously cast. When the macrostructure and microstructure of the ingot were observed, insoluble residues of iron and coarse precipitation were observed.

【0030】[0030]

【発明の効果】本発明の連続鋳造方法によると、融点の
高い添加成分を高濃度で合金中に完全に溶解し、均一に
拡散させることが可能である。銅合金に特に有用であ
る。
According to the continuous casting method of the present invention, an additive having a high melting point can be completely dissolved in an alloy at a high concentration, and can be uniformly diffused. Particularly useful for copper alloys.

【0031】また本発明によると、融点の高い合金成分
を高い濃度で含む銅合金等を、半連続鋳造によらずに、
高い生産能率、安い設備コストで連続鋳造できる。
Further, according to the present invention, a copper alloy or the like containing a high concentration of an alloy component having a high melting point can be obtained without using semi-continuous casting.
Continuous casting is possible with high production efficiency and low equipment cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる連続鋳造装置の説明図FIG. 1 is an explanatory view of a continuous casting apparatus used in the present invention.

【図2】本発明に用いるアークプラズマ溶解装置の説明
FIG. 2 is an explanatory view of an arc plasma melting apparatus used in the present invention.

【図3】本発明に用いるアークプラズマ溶解装置の説明
FIG. 3 is an explanatory view of an arc plasma melting apparatus used in the present invention.

【図4】本発明に用いるアークプラズマ溶解装置の説明
FIG. 4 is an explanatory view of an arc plasma melting apparatus used in the present invention.

【図5】鋳塊の長手方向の鉄濃度の変化を示すグラフFIG. 5 is a graph showing a change in iron concentration in a longitudinal direction of an ingot.

【図6】鋳塊の長手方向のニッケル濃度の変化を示すグ
ラフ
FIG. 6 is a graph showing a change in nickel concentration in a longitudinal direction of an ingot.

【図7】従来の一般的な連続鋳造装置の説明図FIG. 7 is an explanatory view of a conventional general continuous casting apparatus.

【図8】一般的に用いられる半連続鋳造装置の説明図FIG. 8 is an explanatory view of a generally used semi-continuous casting apparatus.

【符号の説明】[Explanation of symbols]

1 連続溶解炉 2 移送樋 3 保持炉 4 鋳造樋 4a 位置(アークプラズマ溶解装置の) 5 タンディッシュ 6 下降管 7 鋳型 8 鋳塊 9 シャワー 10 水槽 11 ピンチロール 12 フライングソー 13 アークプラズマ溶解装置 14 攪拌機 19 るつぼ式溶解炉 21 アークプラズマ 22 プラズマトーチ 23 カソード 24a アノード 24b 補助電極 25 銅板 26 直流電源 26a 抵抗 27 プラズマガス 28 シールドガス 29 添加金属のワイヤ 30 ワイヤフィーダ 31 滴(添加成分の) 32 鋳造樋 33 樋蓋 34 溶湯 35 被覆ガス 36 冷却水配管 42 プラズマトーチ 52 プラズマトーチ 53 給電部 54 水冷ジャケット DESCRIPTION OF SYMBOLS 1 Continuous melting furnace 2 Transfer trough 3 Holding furnace 4 Casting trough 4a Position (of arc plasma melting apparatus) 5 Tundish 6 Downcomer 7 Mold 8 Ingot 9 Shower 10 Water tank 11 Pinch roll 12 Flying saw 13 Arc plasma melting apparatus 14 Stirrer DESCRIPTION OF SYMBOLS 19 Crucible melting furnace 21 Arc plasma 22 Plasma torch 23 Cathode 24a Anode 24b Auxiliary electrode 25 Copper plate 26 DC power supply 26a Resistance 27 Plasma gas 28 Shield gas 29 Wire of added metal 30 Wire feeder 31 Drop (additional component) 32 Casting gutter 33 Gutter lid 34 Molten metal 35 Coating gas 36 Cooling water pipe 42 Plasma torch 52 Plasma torch 53 Power supply unit 54 Water cooling jacket

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 1/02 503 C22C 1/02 503B (72)発明者 佐々木 元 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 Fターム(参考) 4E004 MB14 NC07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 1/02 503 C22C 1/02 503B (72) Inventor Hajime Sasaki 5 Hidaka-cho, Hitachi City, Ibaraki Prefecture 1-chome F-term in Hitachi Cable, Ltd. Research Institute of Technology 4E004 MB14 NC07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基本合金成分と添加合金成分から
成る溶湯を連続鋳造する、合金の連続鋳造方法におい
て、 前記添加合金成分から成る線材をアーク放電により連続
的に溶融または半溶融し、 溶融または半溶融された前記添加合金成分を、前記基本
合金成分の流動する溶湯に添加して、前記添加合金成分
が溶解された溶湯を得ることを特徴とする、合金の連続
鋳造方法。
1. A continuous casting method for an alloy, comprising continuously casting a molten metal comprising a basic alloy component and an additive alloy component, wherein the wire comprising the additive alloy component is continuously melted or semi-melted by arc discharge. A continuous casting method for an alloy, characterized by adding the molten additive alloy component to a flowing molten metal of the basic alloy component to obtain a molten metal in which the additive alloy component is melted.
【請求項2】 前記溶融又は半溶融された前記添
加合金成分が、保持炉よりも下流で前記基本合金成分の
溶湯に添加される、請求項1の合金の連続鋳造方法。
2. The continuous casting method for an alloy according to claim 1, wherein the molten or semi-molten additive alloy component is added to a molten metal of the basic alloy component downstream of a holding furnace.
【請求項3】 前記基本合金成分が銅である、請
求項1または2の合金の連続鋳造方法。
3. The continuous casting method for an alloy according to claim 1, wherein said base alloy component is copper.
JP2000277609A 2000-09-13 2000-09-13 Method for continuously casting alloy Pending JP2002086251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000277609A JP2002086251A (en) 2000-09-13 2000-09-13 Method for continuously casting alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000277609A JP2002086251A (en) 2000-09-13 2000-09-13 Method for continuously casting alloy

Publications (1)

Publication Number Publication Date
JP2002086251A true JP2002086251A (en) 2002-03-26

Family

ID=18762911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000277609A Pending JP2002086251A (en) 2000-09-13 2000-09-13 Method for continuously casting alloy

Country Status (1)

Country Link
JP (1) JP2002086251A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451143C (en) * 2006-12-30 2009-01-14 武汉重工铸锻有限责任公司 Process of smelting copper alloy by steel ladle refining furance
WO2009069782A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Method of regulating composition of molten metal during continuous casting and apparatus therefor
WO2009069781A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy products and equipment therefor
CN103143689A (en) * 2013-03-19 2013-06-12 宝鸡高新开发区宝冶环保工程研究所 Plasma wire continuous casting process
US11053569B2 (en) 2015-04-13 2021-07-06 Hitachi Metals, Ltd. Alloying-element additive and method of manufacturing copper alloy
CN115533113A (en) * 2022-09-19 2022-12-30 陕西斯瑞铜合金创新中心有限公司 Rapid preparation method of high-conductivity copper chromium zirconium part with nanoscale chromium phase
JP7494990B2 (en) 2020-03-23 2024-06-04 株式会社プロテリアル Method for manufacturing copper alloy material and alloying element additive material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451143C (en) * 2006-12-30 2009-01-14 武汉重工铸锻有限责任公司 Process of smelting copper alloy by steel ladle refining furance
WO2009069782A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Method of regulating composition of molten metal during continuous casting and apparatus therefor
WO2009069781A1 (en) 2007-11-30 2009-06-04 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy products and equipment therefor
US8176966B2 (en) 2007-11-30 2012-05-15 The Furukawa Electric Co., Ltd. Process and equipment for producing copper alloy material
US8201614B2 (en) 2007-11-30 2012-06-19 The Furukawa Electric Co., Ltd. Method and an apparatus of controlling chemical composition of a molten metal during continuous casting
CN103143689A (en) * 2013-03-19 2013-06-12 宝鸡高新开发区宝冶环保工程研究所 Plasma wire continuous casting process
US11053569B2 (en) 2015-04-13 2021-07-06 Hitachi Metals, Ltd. Alloying-element additive and method of manufacturing copper alloy
JP7494990B2 (en) 2020-03-23 2024-06-04 株式会社プロテリアル Method for manufacturing copper alloy material and alloying element additive material
CN115533113A (en) * 2022-09-19 2022-12-30 陕西斯瑞铜合金创新中心有限公司 Rapid preparation method of high-conductivity copper chromium zirconium part with nanoscale chromium phase
CN115533113B (en) * 2022-09-19 2024-06-11 陕西斯瑞铜合金创新中心有限公司 Rapid preparation method of high-conductivity copper-chromium-zirconium part with nanoscale chromium phase

Similar Documents

Publication Publication Date Title
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
UA93651C2 (en) Electroslag system for refinement or producing of metal and method for refinement and method for producing of metal
JP4243192B2 (en) Method for producing an alloy ingot
JP2006341268A (en) Apparatus and method for continuously manufacturing copper alloy
JP2001293552A (en) Casting system and method adding powder into casting nucleation
JP4762409B2 (en) Articles nucleated and cast from clean metal
JP3539706B2 (en) Chill mold and metal remelting method using the same
US6853672B2 (en) Method for producing metal blocks or bars by melting off electrodes and device for carrying out this method
JP2002086251A (en) Method for continuously casting alloy
KR100628591B1 (en) Casting systems and methods with auxiliary cooling onto a liquidus portion of a casting
US4450007A (en) Process for electroslag remelting of manganese-base alloys
CN108660320A (en) A kind of low-aluminium high titanium-type high temperature alloy electroslag remelting process
RU2487181C1 (en) Method for electroslag remelting of metal-containing wastes
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
SE430573B (en) DEVICE FOR SUPPLYING MOLD STEEL TO A GOOD UNDER POSITION
US6913066B2 (en) Method and device for producing ingots or strands of metal by melting electrodes in an electroconductive slag bath
RU62847U1 (en) DEVICE FOR FEEDING, MIXING AND HEATING LIQUID STEEL IN CONTINUOUS CASTING
RU2425157C2 (en) Procedure for ingot vacuum-arc melting
US20050034840A1 (en) Method and apparatus for stirring and treating continuous and semi continuous metal casting
RU2244029C2 (en) Method of production of ingots
US3656535A (en) Consumable electrode melting using a centrifugal cast electrode
RU2039101C1 (en) Method for electroslag ferrotitanium smelting
RU1524298C (en) Method of continuous casting of bimetal ingots from aluminium alloys
Ryabtsev et al. Research of possibility for using electroslag technology in production of quality pure copper ingots from various scrap
RU2154683C1 (en) Method of production of ingots by vacuum arc autocrucible melting