JP3721872B2 - Ladle for refining molten steel - Google Patents

Ladle for refining molten steel Download PDF

Info

Publication number
JP3721872B2
JP3721872B2 JP21808899A JP21808899A JP3721872B2 JP 3721872 B2 JP3721872 B2 JP 3721872B2 JP 21808899 A JP21808899 A JP 21808899A JP 21808899 A JP21808899 A JP 21808899A JP 3721872 B2 JP3721872 B2 JP 3721872B2
Authority
JP
Japan
Prior art keywords
ladle
plug
molten steel
refining
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21808899A
Other languages
Japanese (ja)
Other versions
JP2001040411A (en
Inventor
大輔 高橋
治志 奥田
公治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21808899A priority Critical patent/JP3721872B2/en
Publication of JP2001040411A publication Critical patent/JP2001040411A/en
Application granted granted Critical
Publication of JP3721872B2 publication Critical patent/JP3721872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
本発明は転炉などで精錬された溶鋼をさらに脱硫などの目的で二次精錬するのに適した精錬用取鍋に係り、特に底部にガス吹き込み用のポーラスプラグ(以下単にプラグという)を有し、上部には通電加熱用電極を備えた精錬用取鍋に関する。
【従来の技術】
転炉で精錬された溶鋼は連続鋳造機などの造塊設備に送られるが、その前にS等の不純物を低減させ、あるいは合金成分の微調整などを図るためにいわゆる二次精錬に供されることが多い。特に、近年では耐HIC鋼、高張力鋼等においてS含有量が9ppm以下のいわゆるシングルppmオーダーの極低硫鋼が要求されるケースが増大しているので上記二次精錬に供される鋼の比率が高まっている。
【0002】
かかる二次精錬用の設備として精錬用取鍋が広く利用されている。その一つとして図1に示すような円筒状の形状をした取鍋の底部にガス吹き込み用のプラグを有し、かつ、上部には二次精錬中の溶鋼の温度低下を補償するための通電加熱設備を有するものがある。このタイプの精錬用取鍋では、精錬用取鍋内に溶鋼を装入するとともにその上に溶融状態のフラックスを配し、溶鋼を底部から吹き込まれるガスによって撹拌するとともに、電極をフラックス中に浸漬・通電してジュール熱によって発熱させ、溶鋼の温度低下を補償、あるいはさらに積極的に加熱しながら脱硫などの精錬を行うようになっている。この通電加熱型精錬取鍋においては、ガスによる撹拌が極力強力に行われるとともに通電による加熱が制御された状態で行われる必要がある。
【0003】
通常、この型の通電加熱型精錬取鍋においてはプラグは1本であり、単にガス吹き込み量を増大せしめると、溶鋼のスプラッシュが激しくなり、精錬取鍋の水冷蓋に地金付着や通電不良等のため操業困難に陥るという問題がある。また、精錬時間が比較的長いという問題がある。かかる問題を解決する手段として、通電加熱設備を有していないものあるが、特昭63-168253号公報、あるいは実開平2-16738号公報に開示された複数のプラグを用いるという手段が考えられる。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの手段を利用し、プラグ1本当たりのガス吹き込み量を削減しても、ガス吹き込みによって取鍋中を上昇した溶鋼流が上面中心部で衝突して溶鋼表面中心部が大きく盛り上がって波打ち、そのため、その上に存在する溶融フラックス層が乱され、そこを流れる電流が不安定になり、制御困難になる。また、上記溶鋼流の衝突のため費やされるエネルギーロスが大きく、溶鋼の混合のために利用されるエネルギーがプラグ1本の場合に比して大きくなりがたい。これらの問題のため、上記手段はそのままでは採用しがたい。
【0005】
本発明は、従来の通電加熱型精錬取鍋における問題点を解決することを目的としてなされたもので、溶鋼表面層の乱れを最小限に押さえながら、溶鋼の混合攪拌力を従来にくらべて格段に強化でき、したがって、脱硫などに要する取鍋精錬時間を大幅に短縮すること、あるいは脱硫限度などの精錬到達限度を格段に向上することのできる通電加熱型精錬取鍋を提案することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために、通電加熱型精錬取鍋のプラグの配置条件について検討を行い、複数のプラグを取鍋底の中心に対して非対称に配置することの有利性に着目して本発明を完成した。具体的には、本発明に係る溶鋼の精錬用取鍋は、底部にガス吹き込み用のプラグ、上部に取鍋底部側壁と同心円上に3本の通電加熱用電極を備えた精錬用取鍋であって、前記プラグは前記精錬用取鍋の底部を2分割した一方に偏在させて複数配置され、かつ、前記プラグが配置される取鍋底部側壁の内径(D)と該取鍋底部側壁と同心である前記プラグが配置される直径(d)との関係が、
d/D=0.50〜0.80
を満足し、さらに、前記プラグが配置される直径(d)と電極の中心を通る円の直径(A)との関係が、
d>1.5A
を満足するものである。
【0007】
また、上記発明を実施するに当たっては、プラグは転炉からの受鋼の際の湯当たり部を外した位置に設置されていることとを好適とし、さらにプラグは2個配置されていることを好適とする。なお、この場合において上記2個のプラグは中心角30〜150°の扇形領域内に配置するのが好ましい。
【0008】
【発明の実施の形態】
以下、図面にしたがい本発明に係る精錬用取鍋について具体的に説明する。図1は本発明に係る通電加熱型精錬取鍋の側断面図である。ここに示すように、本発明の通電加熱型精錬取鍋は、耐火物がライニングされた円筒状の取鍋側壁1Aとその底部に填め込まれた円盤状の取鍋底Bからなる取鍋本体1と該本体1の上部を覆う水冷蓋2を貫通してその中心領域に取鍋底部側壁と同心円上に配置され、本体内に上下自在に調整できる黒鉛製の3本の電極5A、5B、5Cおよび前記取鍋底1Bを貫通して複数個(この場合2個)填め込まれたポーラスプラグ3A、3Bよりなる。前記電極5A、5B、5Cは受鋼した溶鋼M上に浮遊する溶融フラックスF内に深さ自在に浸漬され、給電装置(図示しない)によって通電されフラックスFをジュール熱によって加熱する。また、ポーラスプラグ3A、3Bはガス配管4A、4Bに接続され、溶鋼M内に底部からアルゴンなどの不活性ガスを送り込み溶鋼Mを攪拌するようになっている。
【0009】
図2は、本発明のポーラスプラグ3の取鍋底における配置を取鍋側壁1A、電極5A,5B,5Cとの関係において示した説明図である。本発明においてプラグ3は複数個配置されるが、それらは取鍋底1Bを2分割した半円の一方(何れにとるかは自由であるが、この場合は斜線を施した部分にとってある)に偏在させて配置される。これによりプラグプラグ3から吹き込まれるガスにより上昇する溶鋼流が、鋼浴上面中心部において衝突して盛り上がってフラックスFの存在状態を不安定にすることが避けられる。したがって電極5からフラックスFを通って流れる電流による加熱が円滑に行われ制御不能になることはない。
【0010】
プラグ3は、また、取鍋側壁1Aの底部の内周との同心円である11および12で仕切られた範囲内に複数配置される。上記同心円の内側境界11の直径は、取鍋底部の側壁の内径をDとしたとき、
d/D≧0.50・・・(1)
によって定められ、一方、同心円の外側境界12の直径は、
d/D≦0.80・・・(2)
により定められる。これによりプラグ3から吹き込まれるガスにより上昇する溶鋼流が鋼浴上面に達したとき、取鍋側壁1Aに沿って下降する流れと取鍋本体1の比較的中心側を通って下降する流れに分岐し、溶鋼の攪拌が好適に行われるようになる。
【0011】
さらに、プラグ3の存在位置は、電極5の中心を通る円の直径Aとの関係において、
d>1.5A・・・(3)
を満足する必要がある。プラグから吹き込まれるガスによって上昇する溶鋼流が直接電極に当たり電極を異常に損耗したりあるいは溶鋼が電極黒鉛により加炭されるのを防止するためである。
【0012】
したがって、プラグ3の取鍋底1Aにおける設置位置は、取鍋底1Bを2分割した半円の一方であってかつ上記(1)〜(3)式の条件を満足する範囲となる。かかる位置にプラグを配置することによって、後に実施例で示されるように、強力でしかも溶融フラックス層の安定を乱さない攪拌流を得ることができる。
【0013】
なお、上記場合において、複数プラグ3は、取鍋側壁1Aの内周との同一同心円上に配するのが一般的であるが、必ずしもそのようにする必要はなく、上記内側境界と外側境界によって仕切られた領域内で一方をやや内側に他方をやや外側に配することも可能である。また、プラグ間の距離を均一にとる必要もない。さらに複数のプラグにガスを供給するガス配管はそれぞれ独立とし、各プラグから噴出するガス量を独立に制御することもできる。これにより取鍋内の攪拌状態をより好ましい方向に制御できる。
【0014】
上記の基本的な条件に加えて、プラグの配置位置は取鍋底部のいわゆる湯当たり部13、すなわち転炉から溶鋼を受鋼する際溶鋼が直接当たる範囲、を外して設置することが好ましい。この湯当たり部の位置(範囲)操業条件によって異なり必ずしも一定ではないが、例えばプラグを2本配置する場合について説明すると、図3に示すように第1のプラグ3Aを取鍋吊り手6を結ぶ線を基準に転炉出鋼口側からほぼ1/6D離れた線上に配置し、第2のプラグ3Bは、取鍋吊り手6を結ぶ線の中心からほぼ1/4Dだけ離れた位置に置くのがよい。取鍋側壁1Aの外周に対して同心円上の位置に2本のプラグを配する場合、前記第1のプラグの配置位置を基準にすると第2のプラグの配置位置はほぼ30〜150°の扇形の範囲に内に収めるのがよい。
【0015】
【実施例1】
図3に示す諸元を有する通電加熱型精錬取鍋を用い、1本のプラグ当たり0.0026Nm3/min/t-steelのアルゴンガスを吹込みながら脱硫を目的とした取鍋精錬を多数行った。対象鋼はAlキルド鋼であった。脱硫剤はCaO:50%、Al2O3:30%、SiO2:8%、MgO:12%(重量比)の組成を有するものを22.0kg/t-steel用いた。なお、比較例(従来法)として、プラグ1本を備えた通電加熱型精錬取鍋を用いた。脱硫剤は本発明例と同じであり、ガス吹き込み量は本発明に比べ少量であった。
【0016】
本発明装置を用いて処理前S濃度(重量比)が30ppmの鋼を処理した場合、図4に示す▲1▼の曲線にしたがい脱硫が進行した。これに対し比較例では▲2▼の曲線にしたがって進行した。これらの曲線から処理前S濃度が30ppmの鋼を60分間処理した場合の到達S濃度を比較すると、従来法では10ppmであったのに対し本発明装置を用いた場合には6ppmとなった。また、S濃度を10ppmに低下させるのに要する処理時間は従来法では60分を要したが、本発明装置を用いた場合には33分であった。
【0017】
図5は、種々の処理前S濃度を有する鋼を上記と同じ条件により60分間処理した場合の処理前S濃度と処理後S濃度の関係図である。ここに示すように本発明装置を用いた場合には、約80%の脱硫率が達成された。これに対し、従来例では脱硫率は約65%にとどまった。
【0018】
なお、本発明例では従来例に比してガス吹き込み量が多かったが、電極直下での溶鋼の盛り上がりあるいはフラックス層の乱れはなく、通電加熱を円滑に行うことができた。また、スプラッシュの発生やそれに伴う水冷蓋への地金付も認められなかった。
【0019】
【実施例2】
実施例1と同一の通電加熱型精錬取鍋を用い、極低脱硫鋼を得る目的でAlキルド鋼に対して取鍋精錬を行った。操業条件はアルゴンガス吹き込み量を1本のプラグ当たり0.0033Nm3/min/t-steelと増量し、脱硫剤使用量をは27.0kg/t-steelとした。その結果、30分処理後の平均脱硫率は88%に達し、処理前S濃度が30ppmの鋼を30分処理後において3ppmのS濃度とすることができた。この場合においても通電加熱を妨げる電極直下でのフラックス層の乱れやスプラッシュの発生などは認められなかった。
【0020】
【発明の効果】
本発明により通電加熱型精錬取鍋を用いることにより、電極直下のスラグ層の乱れを生ずることなく極めて強力な溶鋼攪拌を行い得る。それにより、通電加熱を円滑に制御しながら、脱硫等の二次精錬処理を速やかに行うことができ脱硫時間の短縮や限度の切り下げを達成することができる。
【図面の簡単な説明】
【図1】 本発明に係る通電加熱型精錬取鍋の側断面図である。
【図2】 ポーラスプラグの取鍋底における配置を取鍋側壁、電極との関係において示した説明図である。
【図3】 実施例において用いた通電加熱型精錬取鍋の諸元を示す配置図である。
【図4】 本発明装置を用いた場合の脱硫処理時間と鋼中S濃度ととの関係図である。
【図5】 本発明装置を用いた場合の処理前S濃度と処理後S濃度の関係図である。
【符号の説明】
1:取鍋本体
1A:取鍋側壁
1B:取鍋底
2:水冷蓋
3A,3B:ポーラスプラグ
4A,4B:ガス配管
5A,5B,5C:加熱電極
6:吊り手
11:同心円の内側境界
12:同心円の外側境界
13:湯当たり部
M:溶鋼
F:溶融フラックス
D:取鍋側壁の内径
d:プラグが配置される同心円の直径
A:電極の中心を通る円の直径
[0001]
The present invention relates to a refining ladle suitable for secondary refining of molten steel refined in a converter or the like for the purpose of further desulfurization, and in particular, has a porous plug (hereinafter simply referred to as a plug) for gas injection at the bottom. And an upper part relates to a ladle for refining provided with an electrode for electric heating.
[Prior art]
Molten steel smelted in the converter is sent to an ingot making facility such as a continuous casting machine, but before that, it is used for so-called secondary smelting to reduce impurities such as S or to fine-tune alloy components. Often. In particular, the number of so-called single ppm ultra-low sulfur steels with S content of 9 ppm or less is increasing in recent years in HIC-resistant steel, high-tensile steel, etc. The ratio is increasing.
[0002]
As a secondary refining facility, a refining ladle is widely used. As one of them, there is a plug for gas injection at the bottom of a ladle having a cylindrical shape as shown in FIG. 1, and the upper part is energized to compensate for the temperature drop of the molten steel during secondary refining. Some have heating equipment. In this type of smelting ladle, molten steel is charged into the smelting ladle, a molten flux is placed on the ladle, the molten steel is stirred by the gas blown from the bottom, and the electrode is immersed in the flux.・ Electricity is generated by Joule heat to compensate for temperature drop of molten steel, or refining such as desulfurization is performed while heating more actively. In this energization heating type smelting ladle, it is necessary to perform stirring with gas as strongly as possible and to perform heating with energization controlled.
[0003]
Normally, this type of current heating type smelting ladle has only one plug, and simply increasing the amount of gas blown increases the splash of molten steel, causing adhesion of metal to the water-cooled lid of the smelting ladle and poor conduction. For this reason, there is a problem that it becomes difficult to operate. There is also a problem that the refining time is relatively long. As means for solving such a problem, there may not have electrical heating equipment, the means of using a plurality of plugs disclosed in Japanese Open Sho 63-168253 discloses or real Hei 2-16738, JP- Conceivable.
[0004]
[Problems to be solved by the invention]
However, even if these means are used and the amount of gas blown per plug is reduced, the molten steel flow that has risen in the ladle due to gas blowing collides with the center of the upper surface, and the center of the molten steel rises greatly. As a result, the molten flux layer existing thereon is disturbed, and the current flowing therethrough becomes unstable and difficult to control. Moreover, the energy loss consumed for the collision of the molten steel flow is large, and the energy used for mixing molten steel is less likely to be larger than in the case of a single plug. Because of these problems, it is difficult to adopt the above means as it is.
[0005]
The present invention was made for the purpose of solving the problems in the conventional energization heating type refining ladle. The mixing stirring force of the molten steel is significantly lower than that of the conventional one while minimizing the disturbance of the surface layer of the molten steel. Therefore, it is intended to propose an electric heating type smelting ladle that can greatly reduce the ladle refining time required for desulfurization, etc., or can significantly improve the refining limit such as desulfurization limit. To do.
[0006]
[Means for Solving the Problems]
The present inventors have, in order to solve the above problems, performs studied arrangement condition of the plug of electrically heating type refining ladle, advantageously of placing asymmetrically multiple plug with respect to the center of the ladle bottom This invention was completed paying attention to. Specifically, a ladle for refining molten steel according to the present invention is a refining ladle provided with a plug for gas injection at the bottom , and three current heating electrodes concentrically with the ladle bottom side wall at the top. there are, the plug is more disposed to unevenly distributed on one of the two divided bottom of ladle for the refining, and the inner diameter of the ladle bottom side wall the plug is disposed and (D) and said mounting pan bottom sidewall The relationship with the diameter (d) at which the plugs that are concentric are arranged is:
d / D = 0.50-0.80
And the relationship between the diameter (d) where the plug is disposed and the diameter (A) of a circle passing through the center of the electrode is
d> 1.5A
Is satisfied.
[0007]
In carrying out the above invention, it is preferable that the plug is installed at a position where the hot water contact portion is removed when receiving steel from the converter, and that two plugs are arranged. It is preferable. In this case, the two plugs are preferably arranged in a sector region having a central angle of 30 to 150 °.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the ladle for refining according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a cross-sectional side view of an electrically heated refining ladle according to the present invention. As shown here, electrically heating type refining ladle of the present invention, the ladle body with refractory consists disk-shaped preparative pan bottom 1 B which is fitted at its bottom a cylindrical ladle sidewalls 1A lined 1 and three electrodes 5A, 5B made of graphite that are arranged concentrically with a ladle bottom side wall through a water-cooled lid 2 that covers the top of the main body 1 and that can be adjusted vertically within the main body. 5C and the ladle (2 in this case) a plurality of bottom 1B through inlaid porous plug 3A, made of 3B. The electrodes 5A, 5B, and 5C are immersed in a molten flux F floating on the molten steel M that has received steel, and are energized by a power supply device (not shown) to heat the flux F by Joule heat. The porous plugs 3A and 3B are connected to the gas pipes 4A and 4B, and an inert gas such as argon is fed into the molten steel M from the bottom to stir the molten steel M.
[0009]
FIG. 2 is an explanatory diagram showing the arrangement of the porous plug 3 of the present invention at the bottom of the ladle in relation to the ladle side wall 1A and the electrodes 5A, 5B, 5C. In the present invention, a plurality of plugs 3 are arranged, but they are unevenly distributed in one of the half circles obtained by dividing the ladle bottom 1B into two (whichever is free, but in this case, the hatched portion). Arranged. As a result, it is possible to avoid the molten steel flow rising by the gas blown from the plug plug 3 from colliding at the center portion of the upper surface of the steel bath and rising and destabilizing the presence state of the flux F. Therefore, the heating by the current flowing from the electrode 5 through the flux F is performed smoothly and does not become uncontrollable.
[0010]
A plurality of plugs 3 are arranged in a range partitioned by 11 and 12 which are concentric circles with the inner periphery of the bottom of ladle side wall 1A. The diameter of the concentric circle of the inner boundary 11, when the inner diameter of the side wall of the ladle bottom and is D,
d / D ≧ 0.50 (1)
While the diameter of the outer boundary 12 of the concentric circle is
d / D ≦ 0.80 (2)
Determined by. As a result, when the molten steel flow rising by the gas blown from the plug 3 reaches the upper surface of the steel bath, it branches into a flow descending along the ladle side wall 1A and a flow descending through the relatively central side of the ladle body 1. And stirring of molten steel comes to be performed suitably.
[0011]
Further, the position of the plug 3 is related to the diameter A of a circle passing through the center of the electrode 5.
d> 1.5A (3)
Need to be satisfied. This is to prevent the molten steel flow rising by the gas blown from the plug from directly contacting the electrode and abnormally damaging the electrode, or preventing the molten steel from being carburized by the electrode graphite.
[0012]
Therefore, the installation position of the plug 3 on the ladle bottom 1A is one of the semicircles obtained by dividing the ladle bottom 1B into two, and is in a range that satisfies the conditions of the above expressions (1) to (3). By disposing the plug at such a position, as will be shown later in Examples, it is possible to obtain a stirring flow that is strong and does not disturb the stability of the molten flux layer.
[0013]
In the above case, the plurality of plugs 3 are generally arranged on the same concentric circle with the inner periphery of the ladle side wall 1A, but it is not always necessary to do so, and the inner boundary and the outer boundary. It is also possible to arrange one side slightly inside and the other side slightly outside in the partitioned area. Further, it is not necessary to make the distance between the plugs uniform. Furthermore, gas pipes for supplying gas to the plurality of plugs can be independent, and the amount of gas ejected from each plug can be controlled independently. Thereby, the stirring state in the ladle can be controlled in a more preferable direction.
[0014]
In addition to the above basic conditions, it is preferable that the plug is disposed at a position where a so-called hot water contact portion 13 at the bottom of the ladle, that is, a range where the molten steel directly hits when receiving the molten steel from the converter, is removed. The position (range) of the hot water contact portion varies depending on the operating conditions and is not necessarily constant. However, for example, a case where two plugs are arranged will be described. As shown in FIG. The second plug 3B is placed at a position approximately 1 / 4D away from the center of the line connecting the ladle hangers 6 with respect to the line. It is good. When two plugs are arranged concentrically with respect to the outer periphery of the ladle side wall 1A, the arrangement position of the second plug is approximately 30 to 150 ° with respect to the arrangement position of the first plug. It is better to be within the range.
[0015]
[Example 1]
Using an electric heating type smelting ladle having the specifications shown in FIG. 3, many ladle smelting for desulfurization was performed while blowing argon gas of 0.0026 Nm 3 / min / t-steel per plug. . The target steel was Al killed steel. A desulfurization agent having a composition of CaO: 50%, Al 2 O 3 : 30%, SiO 2 : 8%, MgO: 12% (weight ratio) was used at 22.0 kg / t-steel. As a comparative example (conventional method), an electrically heated refining ladle provided with one plug was used. The desulfurizing agent was the same as in the present invention example, and the amount of gas blown was smaller than that of the present invention .
[0016]
When steel with a pre-treatment S concentration (weight ratio) of 30 ppm was treated using the apparatus of the present invention, desulfurization proceeded according to the curve of (1) shown in FIG. On the other hand, in the comparative example, it progressed according to the curve of (2). From these curves, when the steel concentration of 30 ppm before treatment was treated for 60 minutes, the reached S concentration was compared to 10 ppm in the conventional method, but 6 ppm when using the apparatus of the present invention. Further, the processing time required to reduce the S concentration to 10 ppm required 60 minutes in the conventional method, but was 33 minutes when the apparatus of the present invention was used.
[0017]
FIG. 5 is a relationship diagram between the pre-treatment S concentration and the post-treatment S concentration when steel having various pre-treatment S concentrations is treated for 60 minutes under the same conditions as described above. As shown here, when the apparatus of the present invention was used, a desulfurization rate of about 80% was achieved. On the other hand, in the conventional example, the desulfurization rate was only about 65%.
[0018]
In the present invention example, the amount of gas blown was larger than that in the conventional example, but there was no swell of the molten steel directly below the electrode or disturbance of the flux layer, and the current heating could be performed smoothly. In addition, the occurrence of splash and the accompanying bullion to the water-cooled lid were not observed.
[0019]
[Example 2]
Using the same energization heating type refining ladle as in Example 1, ladle refining was performed on Al killed steel for the purpose of obtaining ultra-low desulfurized steel. The operating conditions were such that the argon gas blowing rate was increased to 0.0033 Nm 3 / min / t-steel per plug, and the desulfurization agent usage was 27.0 kg / t-steel. As a result, the average desulfurization rate after 30 minutes treatment reached 88%, and the S concentration before treatment of 30 ppm was able to reach 3 ppm S concentration after 30 minutes treatment. In this case as well, no disturbance of the flux layer or occurrence of splash was observed directly under the electrode that hinders the electric heating.
[0020]
【The invention's effect】
By using the current heating type smelting ladle according to the present invention, extremely strong molten steel stirring can be performed without causing disturbance of the slag layer directly under the electrode. Thereby, the secondary refining process such as desulfurization can be quickly performed while smoothly controlling the energization heating, and the desulfurization time can be shortened and the limit can be reduced.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an electrically heated refining ladle according to the present invention.
FIG. 2 is an explanatory view showing the arrangement of the porous plug at the bottom of the ladle in relation to the ladle side wall and the electrode.
FIG. 3 is a layout view showing the specifications of the energization heating type smelting ladle used in the examples.
FIG. 4 is a relationship diagram between a desulfurization treatment time and an S concentration in steel when the apparatus of the present invention is used.
FIG. 5 is a relationship diagram between the pre-treatment S concentration and the post-treatment S concentration when the apparatus of the present invention is used.
[Explanation of symbols]
1: Ladle body 1A: Ladle side wall 1B: Ladle bottom 2: Water-cooled lids 3A, 3B: Porous plugs 4A, 4B: Gas piping 5A, 5B, 5C: Heating electrode 6: Suspension 11: Concentric inner boundary 12: Concentric outer boundary 13: Hot water contact portion M: Molten steel F: Molten flux D: Inner diameter of ladle side wall d: Diameter of concentric circle where plug is arranged A: Diameter of circle passing through center of electrode

Claims (3)

底部にガス吹き込み用のプラグ、上部に取鍋底部側壁と同心円上に3本の通電加熱用電極を備えた精錬用取鍋であって、
前記プラグは前記精錬用取鍋の底部を2分割した一方に偏在させて複数配置され、かつ、
前記プラグが配置される取鍋底部側壁の内径(D)と該取鍋底部側壁と同心である前記プラグが配置される直径(d)との関係が、
d/D=0.50〜0.80
を満足し、さらに、前記プラグが配置される直径(d)と電極の中心を通る円の直径(A)との関係が、
d>1.5A
を満足することを特徴とする溶鋼の精錬用取鍋。
A refining ladle having a plug for gas blowing at the bottom , and three current heating electrodes concentrically with the ladle bottom side wall at the top ,
A plurality of the plugs are arranged in a unevenly distributed manner on one side of the bottom of the smelting ladle divided into two parts, and
Relationship between the diameter of said plug plug is an inner diameter (D) and said mounting pan bottom side wall and concentric ladle bottom side wall disposed is disposed (d) is,
d / D = 0.50-0.80
And the relationship between the diameter (d) where the plug is disposed and the diameter (A) of a circle passing through the center of the electrode is
d> 1.5A
A ladle for refining molten steel characterized by satisfying
プラグは受鋼の際の湯当たり部を外した位置に設置されていることを特徴とする請求項1記載の溶鋼の精錬用取鍋。      The ladle for refining molten steel according to claim 1, wherein the plug is installed at a position from which a hot water contact portion is removed during steel receiving. プラグは2個配置されていることを特徴とする請求項1または2記載の溶鋼の精錬用取鍋。      The ladle for refining molten steel according to claim 1 or 2, wherein two plugs are arranged.
JP21808899A 1999-07-30 1999-07-30 Ladle for refining molten steel Expired - Fee Related JP3721872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21808899A JP3721872B2 (en) 1999-07-30 1999-07-30 Ladle for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21808899A JP3721872B2 (en) 1999-07-30 1999-07-30 Ladle for refining molten steel

Publications (2)

Publication Number Publication Date
JP2001040411A JP2001040411A (en) 2001-02-13
JP3721872B2 true JP3721872B2 (en) 2005-11-30

Family

ID=16714458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21808899A Expired - Fee Related JP3721872B2 (en) 1999-07-30 1999-07-30 Ladle for refining molten steel

Country Status (1)

Country Link
JP (1) JP3721872B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453751B2 (en) * 2008-09-19 2014-03-26 Jfeスチール株式会社 Ladle for refining molten steel and method for refining molten steel
KR101190392B1 (en) 2010-12-02 2012-10-11 주식회사 포스코 Operating Method for Bottom Bubbling Molten Steel
JP6822304B2 (en) * 2017-04-28 2021-01-27 日本製鉄株式会社 Ladle refining method for molten steel
JP7118599B2 (en) * 2017-04-28 2022-08-16 日本製鉄株式会社 Ladle refining method for molten steel
CN109423536B (en) * 2017-08-25 2021-04-13 宝山钢铁股份有限公司 Smelting method of ultra-low carbon 13Cr stainless steel
JP7067279B2 (en) * 2018-06-04 2022-05-16 日本製鉄株式会社 Ladle refining method for molten steel
JP7047605B2 (en) * 2018-06-04 2022-04-05 日本製鉄株式会社 Ladle refining method for molten steel
JP7067280B2 (en) * 2018-06-04 2022-05-16 日本製鉄株式会社 Ladle refining method for molten steel
JP7047606B2 (en) * 2018-06-04 2022-04-05 日本製鉄株式会社 Ladle refining method for molten steel
JP7139876B2 (en) * 2018-10-25 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
JP7139877B2 (en) * 2018-10-26 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
JP7139878B2 (en) * 2018-10-26 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
CN110523966A (en) * 2019-09-25 2019-12-03 张家港广大特材股份有限公司 A kind of double porous cores of ladle
JP7323803B2 (en) * 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel
JP7323802B2 (en) * 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel

Also Published As

Publication number Publication date
JP2001040411A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP3721872B2 (en) Ladle for refining molten steel
EP0240998B1 (en) Melting furnace and method for melting metal
KR100214927B1 (en) Vacuum refining method of molten metal
US20210190427A1 (en) Electric furnace and method for melting and reducing iron oxide-containing iron raw material
JP6458531B2 (en) Stirring method in arc type bottom blowing electric furnace
US4918282A (en) Method and apparatus for heating molten steel utilizing a plasma arc torch
US4168156A (en) Method of and electric furnace for processing nonferrous molten slags
US4032704A (en) Method and apparatus for treating a metal melt
EP0232961B1 (en) Method and apparatus for heating molten steel utilizing a plasma arc torch
JPH07504029A (en) Tilting device for a DC arc furnace and method for emptying this furnace
US5738823A (en) Meltdown apparatus
JP7067280B2 (en) Ladle refining method for molten steel
JP2018178209A (en) Tilting type refining apparatus and tilting slag discharging method
JP7139878B2 (en) Ladle refining method for molten steel
JP7139879B2 (en) Ladle refining method for molten steel
JP7139877B2 (en) Ladle refining method for molten steel
RU2828265C2 (en) Electric furnace and method of steel production
JP3043326B1 (en) Ladle refining apparatus and ladle refining method using the same
JPH09165613A (en) Scrap melting method
JPH1072616A (en) Method for refining molten metal in ladle and apparatus therefor
JP2538879B2 (en) Method for refining molten metal
JP7067279B2 (en) Ladle refining method for molten steel
EP4303327A1 (en) Electric furnace and steelmaking method
JPH0478690B2 (en)
JP3720984B2 (en) Highly efficient vacuum refining method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees