JP3043326B1 - Ladle refining apparatus and ladle refining method using the same - Google Patents
Ladle refining apparatus and ladle refining method using the sameInfo
- Publication number
- JP3043326B1 JP3043326B1 JP10362818A JP36281898A JP3043326B1 JP 3043326 B1 JP3043326 B1 JP 3043326B1 JP 10362818 A JP10362818 A JP 10362818A JP 36281898 A JP36281898 A JP 36281898A JP 3043326 B1 JP3043326 B1 JP 3043326B1
- Authority
- JP
- Japan
- Prior art keywords
- ladle
- vacuum
- molten steel
- refining
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
- F27D2003/161—Introducing a fluid jet or current into the charge through a porous element
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【要約】
【課題】 槽内地金付着を抑制し、溶鋼攪拌,スラグ改
質,脱ガスを効率良く行う取鍋精錬装置とそれを用いた
取鍋精錬方法を提供する。
【解決手段】 真空・減圧槽2を取鍋1の上部に直接連
接して、取鍋内に不活性ガスによる攪拌ガス6を吹き込
むことにより溶鋼の精錬を行う装置において、真空・減
圧槽胴部内径を取鍋上端部の内径以下且つ、取鍋内に吹
き込む攪拌ガス6によって生じる溶鋼湯面盛り上がり部
分7の投射断面径D以上とする。The present invention provides a ladle refining apparatus and a ladle refining method using the same, which efficiently suppress molten metal in the tank and stir molten steel, reform slag, and degas efficiently. SOLUTION: In a device for refining molten steel by directly connecting a vacuum / decompression tank 2 to an upper part of a ladle 1 and blowing a stirring gas 6 with an inert gas into the ladle, a vacuum / decompression tank body is provided. The inner diameter is set to be equal to or smaller than the inner diameter of the upper end of the ladle and equal to or larger than the projected sectional diameter D of the molten steel surface rising portion 7 generated by the stirring gas 6 blown into the ladle.
Description
【0001】[0001]
【発明の属する技術分野】本発明は溶鋼の二次精錬工程
である取鍋精錬装置および取鍋精錬方法に関わるもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ladle refining apparatus and a ladle refining method as a secondary refining process for molten steel.
【0002】[0002]
【従来の技術】近年、鋼材に対する品質要求はその利用
技術の高度化、多様化とともに厳しさを増し、高純度鋼
製造へのニーズは益々高まっている。このような高純度
鋼製造の要求に対して製鋼工程では溶銑予備処理あるい
は二次精錬設備の拡充をはかってきた。特に二次精錬設
備としては溶鋼の脱ガス、脱介在物処理を目的として,
RH,DH等の真空精錬設備、LFに代表されるアーク
加熱スラグ精錬設備等が一般的であり、軸受鋼等の高清
浄度鋼の製造に際しては必要に応じてLFとRH等を併
用して処理するプロセスも一般的に行われている。2. Description of the Related Art In recent years, the quality requirements for steel materials have become increasingly severe with the sophistication and diversification of their utilization techniques, and the need for high-purity steel production has been increasing. In response to such demands for the production of high-purity steel, the steelmaking process has attempted to expand the hot metal pretreatment or secondary refining equipment. In particular, as a secondary refining facility, for the purpose of degassing molten steel and removing inclusions,
Vacuum refining equipment such as RH and DH, and arc heating slag refining equipment such as LF are generally used. When producing high cleanliness steel such as bearing steel, LF and RH are used together as necessary. The process of processing is also common.
【0003】しかしながら、RH真空精錬設備のように
取鍋内溶鋼に浸漬管を挿入し、該浸漬管から真空槽内に
溶鋼を吸引して真空精錬処理を行う設備では、取鍋内溶
鋼の攪拌力が小さく、浸漬管の外側の溶鋼表面に存在す
るスラグの攪拌が不十分なために十分なスラグ改質を行
うことができず、酸化度の高いスラグにより溶鋼が再酸
化されること、更に真空槽内に付着した地金中の酸化鉄
が真空槽内溶鋼と反応し溶鋼が再酸化されること等の理
由から脱介在物精錬能力に限界があった。また、スラグ
による再酸化による溶鋼清浄度悪化を避けるために、L
F設備等を併用しスラグの酸化度を低減する方法が一般
に行われているが、この方法については処理工程時間の
延長およびそれに伴う熱損失・耐火物損耗等のコスト増
加が課題であった。[0003] However, in a facility such as an RH vacuum refining facility in which an immersion pipe is inserted into molten steel in a ladle and the molten steel is sucked into the vacuum tank from the immersion pipe to perform vacuum refining treatment, stirring of the molten steel in the ladle is performed. The slag existing on the surface of the molten steel outside the immersion tube is insufficiently agitated and the slag cannot be sufficiently reformed, and the molten steel is reoxidized by the highly oxidized slag. There was a limit to the refining capacity of inclusions because iron oxide in the metal adhered in the vacuum tank reacted with the molten steel in the vacuum tank and the molten steel was re-oxidized. Further, in order to avoid deterioration of the cleanliness of molten steel due to reoxidation by slag, L
Generally, a method of reducing the degree of oxidation of slag by using an F facility or the like is commonly used. However, this method has a problem in that the processing time is prolonged and the cost increases such as heat loss and refractory wear.
【0004】このような観点から従来の技術として取鍋
内の溶鋼表面を直接減圧し、真空下でスラグと溶鋼の反
応を効率的に行う方法として、VOD法、VAD法、S
S−VOD法等が開発されてきた。取鍋内の溶鋼表面を
直接減圧するための手段として、取鍋全体が収容できる
減圧容器内に取鍋を収容して取鍋全体を減圧する方法
と、取鍋そのものを下部減圧槽として利用し、取鍋の上
部に上部減圧槽を密着させて取鍋内溶鋼表面を減圧する
方法とがある。いずれの方法も、設備が複雑であるこ
と、さらにその構造上の制約から溶鋼またはスラグの飛
散を回避するため攪拌ガスを大量に流せないという問題
があり、生産性・設備費・メンテナンスの面から広く普
及するに至っていないのが現状である。[0004] From such a viewpoint, as a conventional technique, as a method of directly reducing the pressure of the molten steel surface in a ladle and efficiently reacting the slag and the molten steel under vacuum, VOD method, VAD method, S
The S-VOD method and the like have been developed. As a means to directly depressurize the molten steel surface in the ladle, a method of storing the ladle in a decompression container that can accommodate the entire ladle and depressurizing the entire ladle, and using the ladle itself as a lower decompression tank There is a method in which an upper decompression tank is brought into close contact with the upper part of the ladle to depressurize the molten steel surface in the ladle. Both methods have the problem that the equipment is complicated, and because of its structural constraints, it is not possible to flow a large amount of agitation gas to avoid scattering of molten steel or slag, and from the viewpoint of productivity, equipment cost, and maintenance. At present, it is not widely used.
【0005】このような観点から、取鍋全体が収容でき
る真空・減圧容器内に取鍋を収容して取鍋全体を減圧す
る方法を改良した発明として、真空槽内に十分なフリー
ボードを有する内設管を設置し、真空処理時の溶鋼飛散
・スラグフォーミングに対応でき、処理時間を短縮する
方法が特開平9−111331号公報に開示されてい
る。しかし、この方法は真空容器が上下に分割され、真
空槽の内径は取鍋上端部の外径より大きく、取鍋全体を
真空槽内部に装入して精錬を行う方式であり、内設管下
端部を取鍋上端部に密着または取鍋内スラグおよび溶鋼
に浸漬させる構造であるため、真空下での精錬時、溶鋼
飛散地金による内設管の着脱不能あるいは取鍋内に浸漬
させる場合は地金による溶鋼汚染が懸念される。また処
理時間が延長となった場合の溶鋼温度確保という点から
も問題がある。[0005] From such a viewpoint, as an invention in which the ladle is accommodated in a vacuum / decompression vessel capable of accommodating the entire ladle and the entire ladle is depressurized, a sufficient free board is provided in a vacuum tank. Japanese Patent Application Laid-Open No. Hei 9-111331 discloses a method in which an internal pipe is installed to cope with scattering of molten steel and slag forming during vacuum processing, and to shorten the processing time. However, in this method, the vacuum vessel is divided into upper and lower parts, the inner diameter of the vacuum tank is larger than the outer diameter of the upper end of the ladle, and the entire ladle is charged into the vacuum tank for refining. When the lower end is in close contact with the upper end of the ladle or immersed in the slag and molten steel in the ladle, when refining under vacuum, when the internal pipe cannot be attached or detached by the molten metal scattered metal or when immersed in the ladle There is concern about molten steel contamination by metal. There is also a problem from the viewpoint of securing the molten steel temperature when the processing time is extended.
【0006】取鍋そのものを下部減圧槽として利用し、
取鍋の上部に上部減圧槽を密着させて取鍋内溶鋼表面を
減圧する方法として、「材料とプロセス Vol.3,
No.1,1990 p250」(社団法人日本鉄鋼協
会発行)においては、取鍋上部に中蓋を設け、取鍋底か
らの吹き込みガスによって溶鋼表面に発生するスプラッ
シュが直接取鍋と上部減圧槽との密着部(取鍋シール部
分)に飛散するのを防止すると共に、取鍋上部には遮蔽
版を設け、スプラッシュが前記中蓋の上部を飛び越して
取鍋シール部分に飛散するのを防止している。しかし、
この方法では、溶鋼飛散地金によって中蓋の着脱が不能
になる問題があり、また遮蔽板にも溶鋼が付着するため
に遮蔽板そのものの耐火物コストが問題となる。更に毎
回の真空処理毎に中蓋と遮蔽板を着脱するため、作業性
が悪くなるという問題もあった。[0006] The ladle itself is used as a lower vacuum tank,
As a method of depressurizing the molten steel surface in the ladle by closely contacting the upper decompression tank with the upper part of the ladle, "Materials and Process Vol.
No. 1, 1990 p250 "(issued by the Iron and Steel Institute of Japan), an inner lid is provided at the upper part of the ladle, and the splash generated on the molten steel surface by the gas blown from the bottom of the ladle directly contacts the ladle and the upper decompression tank. In addition to preventing splashing to the (ladle sealing portion), a shielding plate is provided at the upper portion of the ladle to prevent splash from jumping over the upper portion of the inner lid and scattering to the ladle sealing portion. But,
In this method, there is a problem that the inner cover cannot be attached or detached due to the molten steel splattered metal, and since the molten steel also adheres to the shield plate, there is a problem of the refractory cost of the shield plate itself. Furthermore, since the inner lid and the shielding plate are attached and detached every time vacuum processing is performed, there is a problem that workability is deteriorated.
【0007】[0007]
【発明が解決しようとする課題】本発明は、前記従来法
の問題点を容易に解決できる取鍋精錬装置およびそれを
用いた取鍋精錬方法を提供するものである。すなわち本
発明は、従来の取鍋精錬方法で課題となっていた溶鋼飛
散による地金付着を抑制することによる操業障害、溶鋼
汚染を抜本的に改善しつつ、溶鋼攪拌、スラグ改質、脱
ガスを効率良く行うことにより、高清浄度鋼の効率的な
製造を可能とし、さらに大幅に熱裕度を改善できる取鍋
精錬装置および取鍋精錬方法である。SUMMARY OF THE INVENTION The present invention provides a ladle refining apparatus and a ladle refining method using the same, which can easily solve the problems of the conventional method. In other words, the present invention is a method for refining ladle refining, which is a problem in the conventional ladle refining method. And a ladle refining apparatus and a ladle refining method capable of efficiently producing high-cleanliness steel and further improving the heat allowance.
【0008】[0008]
【課題を解決するための手段】本発明は、下方に取鍋内
溶鋼4に浸漬させる浸漬管を有しない真空・減圧槽2を
取鍋1の上部に直接連接して槽内を減圧し、取鍋内に不
活性ガスを吹き込むことにより取鍋内溶鋼を攪拌し、取
鍋内溶鋼の精錬を行うための装置であって、取鍋上部と
真空・減圧槽は密着させシール構造とし、真空・減圧槽
は胴部を有し、該胴部の内径が取鍋上端部の内径より小
さく、取鍋内に吹き込む攪拌ガスによって生じる取鍋内
溶鋼湯面の盛り上がり部7の投射断面径以上であり、真
空・減圧槽2の頂部までの高さが、取鍋内溶鋼湯面から
5m以上であることを特徴とする真空・減圧精錬装置で
ある。According to the present invention, a vacuum / decompression tank 2 having no dipping tube for dipping the molten steel 4 in the ladle below is directly connected to the upper part of the ladle 1 to reduce the pressure in the tank. A device for refining the molten steel in the ladle by stirring the molten steel in the ladle by blowing inert gas into the ladle.
The vacuum and decompression tanks are in close contact with each other to form a sealed structure.
Has a body portion, the inner diameter of the body portion is smaller than the inner diameter of the ladle upper end, Ri projected cross-sectional diameter or on der the raised part 7 of the ladle the molten steel surface caused by the stirring gas blown into the ladle, true
The height to the top of the empty / decompression tank 2 is from the molten steel surface in the ladle
Der Rukoto least 5m is a vacuum-reduced pressure refining apparatus according to claim.
【0009】さらに真空・減圧槽2下端に円筒部9を設
け、該円筒部は取鍋内溶鋼の盛り上がり部投射断面径以
上の内径を有し、且つ取鍋上端内径以下の外径を有し、
該円筒部の下端位置が取鍋1上端より下方かつ取鍋内溶
鋼に浸漬しないことを特徴とする真空・減圧装置であ
る。Further, a cylindrical portion 9 is provided at the lower end of the vacuum / decompression tank 2, and the cylindrical portion has a diameter equal to or less than the projected cross-sectional diameter of the raised portion of the molten steel in the ladle.
Having an upper inner diameter, and having an outer diameter equal to or less than the ladle upper end inner diameter,
A vacuum / decompression device characterized in that the lower end position of the cylindrical portion is lower than the upper end of the ladle 1 and is not immersed in the molten steel in the ladle.
【0010】また本発明は真空・減圧槽2内にその下端
から燃料および酸素ガスを燃焼させて火炎を噴出するバ
ーナー10を設置し、溶鋼4の加熱および真空・減圧槽
内の保温を行うことができる真空・減圧装置である。さ
らに該加熱バーナー10の下端から噴出させる火炎によ
り該真空・減圧槽内壁の温度を連続使用中の状態におい
て1000℃以上に常時保持することを特徴とする上記
真空・減圧装置を用いる精錬方法である。In the present invention, a burner 10 which burns fuel and oxygen gas from the lower end of the vacuum / decompression tank 2 to blow out a flame is installed in the vacuum / decompression tank 2 to heat the molten steel 4 and keep the temperature in the vacuum / decompression tank. It is a vacuum / decompression device that can perform Further, there is provided a refining method using the vacuum / decompression device, wherein the temperature of the inner wall of the vacuum / decompression tank is constantly maintained at 1000 ° C. or more in a state of continuous use by a flame ejected from the lower end of the heating burner 10. .
【0011】次に本発明は該真空精錬装置を適用するに
当たり、取鍋内溶鋼湯面上のスラグ量を下記の条件を満
足するように精錬することを特徴とする取鍋精錬方法で
ある。 0.010≦H/h≦0.025 H;取鍋内スラグ厚み、h;取鍋内溶鋼バス深さ さらに溶鋼中にAlを添加し、酸素ガスを供給すること
で添加したAlを燃焼させ、溶鋼昇温を行うに際し、真
空・減圧槽内の圧力を760Torr〜500Torrとするこ
とを特徴とする取鍋精錬方法である。Next, the present invention is a ladle refining method characterized by refining the amount of slag on the molten steel surface in the ladle so as to satisfy the following conditions when applying the vacuum refining apparatus. 0.010 ≦ H / h ≦ 0.025 H: Slag thickness in the ladle, h: Molten steel bath depth in the ladle Further, Al is added to the molten steel, and the added Al is burned by supplying oxygen gas. A ladle refining method characterized in that the pressure in a vacuum / decompression tank is set to 760 Torr to 500 Torr when raising the temperature of molten steel.
【0012】[0012]
【発明の実施の形態】以下図面に基づいて実施例を詳細
説明する。図1は本発明の取鍋精錬装置の具体例であ
る。該装置は取鍋1および真空・減圧槽2から構成さ
れ、取鍋は底部に攪拌ガス吹き込み装置3を備えてあ
る。本発明においては取鍋内溶鋼4の攪拌方法について
はこの限りではない。真空・減圧槽胴部の内径は、取鍋
上端部内径よりも小さく取鍋内の溶鋼湯面盛り上がり部
7の投射断面径D以上とした構造とする。ここで溶鋼湯
面盛り上り部の投射断面径は、取鍋底部より攪拌ガス吹
き込みを行う場合は以下の式で表すことができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below in detail with reference to the drawings. FIG. 1 shows a specific example of the ladle refining apparatus of the present invention. The apparatus comprises a ladle 1 and a vacuum / decompression tank 2, and the ladle is provided with a stirring gas blowing device 3 at the bottom. In the present invention, the method of stirring the molten steel 4 in the ladle is not limited to this. The inner diameter of the body of the vacuum / decompression tank is smaller than the inner diameter of the upper end of the ladle, and is set to be equal to or larger than the projected cross-sectional diameter D of the molten steel surface rising portion 7 in the ladle. Here, the projected sectional diameter of the raised portion of the molten steel surface can be represented by the following equation when stirring gas is blown from the bottom of the ladle.
【0013】D=d+2htan12° D;湯面盛り上り部投射断面直径d;ガス吹き込みプラ
グ直径h;取鍋内溶鋼バス深さ 取鍋上部と真空・減圧槽は密着させ、目的の真空度が保
持出来るようなシール構造を施す。取鍋底部より攪拌ガ
ス6を吹き込み、真空・減圧槽内を常圧または真空状態
で溶鋼を攪拌する。高真空下では溶鋼湯面が盛り上が
り、溶鋼及びスラグ5の飛散が生じるが、本発明の装置
では真空・減圧槽胴部内径が取鍋上端部内径よりも小さ
いため、従来VODで課題であった取鍋と真空・減圧槽
シール部への溶鋼及びスラグ飛散による悪影響を最小限
とすることが可能である。スプラッシュによる溶鋼及び
スラグの飛散は、溶鋼湯面盛り上がり部7からまず上方
に向かって飛散し、次いで下方に向きを変えて取鍋シー
ル部に到達する。本発明では取鍋の上部に取鍋上端部内
径よりも小さい内径の真空・減圧槽胴部が存在するた
め、上方に飛び上がった飛沫は該真空・減圧槽胴部内面
に衝突し、そのまま取鍋内の溶鋼表面に落下する。その
ために飛沫が取鍋シール部まで到達しないのである。ま
た、遮蔽板を用いた場合スプラッシュの大部分は遮蔽板
に衝突し、そのうちの一部が遮蔽板表面で凝固して付着
し地金となるが、本発明においては遮蔽板を用いないた
め、この現象がなく、また、内径の小さい真空・減圧槽
形状の場合、内面温度を高温に保つことが容易であるこ
とから、真空・減圧槽胴部に衝突したスプラッシュが凝
固し地金として成長する速度も極めて小さく歩留りロス
が小さい。真空・減圧槽胴部を絞った形状により排気容
積が小さいため真空到達までの初期排気時間を短くする
ことができる。更に遮蔽版設置等の煩雑な作業・コスト
悪化が無い。ここで、真空・減圧槽胴部の内径を溶鋼湯
面盛り上り部の投射断面径以上とした理由は、溶鋼及び
スラグ飛散が主として溶鋼湯面盛り上り部より生じるた
めである。D = d + 2htan12 ° D; diameter of the projected section of the molten metal rising part d; diameter of the gas blowing plug h; depth of the molten steel bath in the ladle The upper part of the ladle and the vacuum / decompression tank are brought into close contact with each other to maintain the desired degree of vacuum. Provide a seal structure as possible. Stirring gas 6 is blown from the bottom of the ladle to stir the molten steel in the vacuum / decompression tank at normal pressure or vacuum. Under the high vacuum, the molten steel surface rises and the molten steel and the slag 5 are scattered. However, in the apparatus of the present invention, since the inside diameter of the body of the vacuum / decompression tank is smaller than the inside diameter of the ladle, the conventional VOD has been a problem. It is possible to minimize the adverse effects of molten steel and slag scattering on the ladle and the seal of the vacuum / decompression tank. The splash of the molten steel and slag due to the splash first scatters upward from the swelling portion 7 of the molten steel surface, then turns downward and reaches the ladle seal portion. In the present invention, since the vacuum / decompression tank body having an inner diameter smaller than the inner diameter of the ladle upper end part is present at the upper part of the ladle, the splash that has jumped upward collides with the inner surface of the vacuum / decompression tank body, and the ladle is left as it is. Falls on the molten steel surface inside. Therefore, the splash does not reach the ladle seal. In addition, when using the shield plate, most of the splash collides with the shield plate, and a part of the solidifies on the shield plate surface and adheres to the metal, but since the shield plate is not used in the present invention, In the absence of this phenomenon, and in the case of a vacuum / decompression tank having a small inner diameter, it is easy to keep the inner surface temperature high, so that the splash colliding with the body of the vacuum / decompression tank solidifies and grows as a base metal. The speed is also very small and the yield loss is small. Since the evacuation volume is small due to the narrowed shape of the vacuum / decompression tank body, the initial evacuation time until reaching vacuum can be shortened. Furthermore, there is no complicated work and cost reduction such as installation of a shield plate. Here, the reason why the inner diameter of the body of the vacuum / decompression tank is set to be equal to or larger than the projected sectional diameter of the raised portion of the molten steel surface is that molten steel and slag are mainly scattered from the raised portion of the molten steel surface.
【0014】更に図2には請求項1に記載する発明の真
空・減圧槽下部に、下端位置が取鍋上端より下方かつ取
鍋内溶鋼4及びスラグ5に浸漬しない円筒部9を設けた
例を示す。この円筒部9は取鍋内溶鋼の盛り上がり部7
投射断面径以上の内径を有し、且つ取鍋上端内径以下の
外径を有しており、耐火物を用いて製造、あるいは芯金
の表面を耐火物で被覆して製造する。この円筒部9を有
する場合、図1に示す方式に対して更に取鍋と真空・減
圧槽シール部への溶鋼及びスラグ飛散の悪影響を少なく
することができ、取鍋フリーボード容積の低減による生
産性(t/CH)の向上や、溶鋼内の吹き込みガス量増
大による更なる精錬効率の向上を図ることができる。こ
こで円筒部9をスラグ5または溶鋼4に浸漬させない理
由としては、この円筒部下端は取鍋上端部以下であれば
十分な効果を発揮でき、一方、浸漬させることにより耐
火物コストの悪化を招くためである。また清浄鋼製造の
観点からも、取鍋内溶鋼表面のスラグ全体を攪拌しスラ
グ5と溶鋼4の十分な反応によるスラグ改質が起こるこ
とが望ましく、浸漬方式では浸漬管外部の攪拌力が小さ
くスラグ改質が不十分となるため、非浸漬方式が有利で
ある。Further, FIG. 2 shows an example in which a cylindrical portion 9 having a lower end position below the upper end of the ladle and not immersed in the molten steel 4 and the slag 5 in the ladle is provided below the vacuum / decompression tank according to the first aspect of the present invention. Is shown. This cylindrical portion 9 is a raised portion 7 of molten steel in a ladle.
It has an inner diameter greater than or equal to the cross-sectional diameter of the projection and an outer diameter less than or equal to the inner diameter of the upper end of the ladle, and is manufactured using a refractory or by coating the surface of a core metal with the refractory. When the cylindrical portion 9 is provided, the adverse effects of molten steel and slag scattering on the ladle and the seal portion of the vacuum / decompression tank can be further reduced as compared with the system shown in FIG. (T / CH), and the refining efficiency can be further improved by increasing the amount of gas blown into the molten steel. Here, the reason why the cylindrical portion 9 is not immersed in the slag 5 or the molten steel 4 is that if the lower end of the cylindrical portion is not more than the upper end of the ladle, a sufficient effect can be exhibited. It is to invite. Also, from the viewpoint of producing clean steel, it is desirable that the entire slag on the surface of the molten steel in the ladle be stirred and slag reforming occurs by a sufficient reaction between the slag 5 and the molten steel 4. In the immersion method, the stirring force outside the immersion tube is small. The non-immersion method is advantageous because the slag reforming becomes insufficient.
【0015】取鍋1と真空・減圧槽との間のシール方法
としては本発明においては特に限定しないが、取鍋フリ
ーボード高さが不十分であった場合やシール部分への取
鍋内溶鋼又はスラグの流出が発生する場合等の耐熱性を
考慮して、好ましくは石綿或いは金属Al等、耐熱性に
優れたシール材を用いる。ゴム系シール材を使用する場
合には取鍋側に石綿等を使用した二重シールとする等の
耐熱処理を講ずることが望ましい。また、シール位置は
取鍋上端とは限定しておらず、シール位置を取鍋の外側
で取鍋上端から若干下げた位置とし、溶鋼からの輻射熱
をシール部材が直接受けることを回避する構造としても
良く、このような構造も本発明に含まれる。The method of sealing between the ladle 1 and the vacuum / decompression tank is not particularly limited in the present invention. Alternatively, in consideration of heat resistance in a case where slag flows out, a sealing material having excellent heat resistance such as asbestos or metal Al is preferably used. When a rubber-based sealing material is used, it is desirable to take heat treatment such as a double seal using asbestos or the like on the ladle side. In addition, the sealing position is not limited to the upper end of the ladle, the sealing position is set to a position slightly lower than the upper end of the ladle outside the ladle, as a structure to avoid that the seal member directly receives radiant heat from molten steel Such a structure is also included in the present invention.
【0016】真空・減圧槽2は真空処理中の溶鋼及びス
ラグ飛散に対して十分な高さを持つことが望ましく、本
発明では真空・減圧槽高さを5m以上と規定している。
真空・減圧槽高さが5mよりも低い場合には、真空・減
圧槽天蓋への地金付着や真空・減圧槽胴部の閉塞、排気
ダクトへの地金進入が発生し、著しい生産効率の悪化と
設備維持コストの増大をもたらす。真空・減圧槽高さの
上限については特に規定しないが、過度に高い場合には
排気容積の増大による初期排気時間の増加をもたらすた
め注意が必要である。It is desirable that the vacuum / decompression tank 2 has a sufficient height against the scatter of molten steel and slag during the vacuum treatment. In the present invention, the height of the vacuum / decompression tank is specified to be 5 m or more.
If the height of the vacuum / decompression tank is lower than 5 m, metal sticks to the canopy of the vacuum / decompression tank, blocks the body of the vacuum / decompression tank, and intrudes into the exhaust duct. Deterioration and increase in equipment maintenance costs. The upper limit of the height of the vacuum / decompression tank is not particularly specified, but care must be taken if the height is excessively high, because the increase in the exhaust volume will increase the initial evacuation time.
【0017】図3は真空・減圧槽内に燃料ガスと酸素ガ
スを噴出し、燃焼させる加熱バーナー10を配置した例
を示す。該加熱バーナー10により真空・減圧槽内耐火
物を処理中及び非処理中に加熱し、槽内耐火物温度を常
時高温状態で保持することにより槽内耐火物への地金付
着をより一層抑制し、地金付着による溶鋼汚染や異鋼種
連続処理における制約の回避、地金除去のための生産性
の低下を避けることができる。ここで十分な地金付着防
止効果を得るためには、槽内壁耐火物温度を常時100
0℃以上とすることが必要である。また、該加熱バーナ
ーで真空・減圧槽内を処理中及び非処理中の常時高温に
加熱することにより、処理中の溶鋼温度降下を低減する
ことができる。FIG. 3 shows an example in which a heating burner 10 for injecting and burning fuel gas and oxygen gas into a vacuum / decompression tank is arranged. The heating burner 10 heats the refractory in the vacuum / decompression tank during processing and during non-treatment, and keeps the temperature of the refractory in the tank at a high temperature to further suppress the adhesion of metal to the refractory in the tank. However, it is possible to avoid the contamination of molten steel due to the adhesion of the ingot, the restriction in the continuous treatment of different types of steel, and the reduction in productivity for removing the ingot. Here, in order to obtain a sufficient effect of preventing the adhesion of the metal, the temperature of the refractory of the inner wall of the tank is always set to 100 ° C.
It is necessary to be 0 ° C. or higher. Further, by heating the inside of the vacuum / decompression tank to a high temperature during processing and during non-processing by the heating burner, the temperature drop of molten steel during processing can be reduced.
【0018】本発明の装置を使用して溶鋼精錬を行う
際、取鍋内溶鋼湯面上のスラグ量を下記の条件範囲に調
整することにより、効率の良い精錬を行うことが可能で
ある。When refining molten steel using the apparatus of the present invention, it is possible to perform efficient refining by adjusting the amount of slag on the molten steel surface in the ladle within the following condition range.
【0019】0.010≦H/h≦0.025 H;取鍋内スラグ厚み h;取鍋内溶鋼バス深さ ここでH/hの範囲を限定している理由は以下に述べる
とおりである。スラグ厚みが厚くH/hが0.025以
上の場合は、真空精錬中においても溶鋼湯面がスラグに
覆われ、真空下に暴露される溶鋼表面積が小さいため十
分な脱水素効率を得ることができない。一方、スラグ厚
みが薄くH/hが0.010以下の場合はスラグと溶鋼
の接触面積が小さくなりスラグの介在物吸着能が低下
し、十分な脱酸素効率を得ることができない。従って清
浄鋼の精錬においてはスラグ厚みを上記の範囲内に調整
することが望ましい。0.010 ≦ H / h ≦ 0.025 H; slag thickness in ladle h; molten steel bath depth in ladle The reason for limiting the range of H / h is as follows. . When the slag thickness is large and H / h is 0.025 or more, the molten steel surface is covered with slag even during vacuum refining and the surface area of the molten steel exposed to vacuum is small, so that sufficient dehydrogenation efficiency can be obtained. Can not. On the other hand, when the slag thickness is small and H / h is 0.010 or less, the contact area between the slag and the molten steel is reduced, the ability to adsorb inclusions of the slag is reduced, and sufficient deoxygenation efficiency cannot be obtained. Therefore, in refining clean steel, it is desirable to adjust the slag thickness within the above range.
【0020】また、本発明の装置では槽上部に配置した
加熱バーナー7より酸素のみを供給して溶鋼中のAlを
燃焼させ、その反応熱により溶鋼の加熱を行うことが可
能である。ところで従来のRH酸素上吹き法では、溶鋼
を反応槽内に導入するために少なくとも200torr
以下の槽内圧力とすることが必要であり、そのため減圧
下で体積が増大した酸素ガスが溶鋼を飛散させ、あるい
は酸素と溶鋼中炭素との反応によって生成したCOガス
が溶鋼を飛散させることによるスプラッシュ発生が大き
いことが問題であった。ここで本発明の装置では、酸素
を溶鋼に供給する処理を行う際の槽内圧力は大気圧以下
であれば可能であるため、500torr以上760t
orr以下の槽内圧力で酸素上吹きによるAl昇熱を行
うことによりスプラッシュ発生を最小限に抑制すること
が可能である。槽内圧力を760torr以下としたの
は、槽内が大気圧以上の加圧状態となることにより、真
空シール部分への槽内高温ガス吹き出しによるシール材
の焼損が発生するためである。Further, in the apparatus of the present invention, it is possible to burn only Al in the molten steel by supplying only oxygen from the heating burner 7 disposed in the upper part of the tank, and to heat the molten steel by the reaction heat. By the way, in the conventional RH oxygen top blowing method, at least 200 torr is required to introduce molten steel into the reaction tank.
It is necessary to set the pressure in the tank below, so that the oxygen gas whose volume has increased under reduced pressure scatters the molten steel, or the CO gas generated by the reaction between oxygen and carbon in the molten steel scatters the molten steel. The problem was that the splash was large. Here, in the apparatus of the present invention, since the pressure in the tank at the time of performing the process of supplying oxygen to the molten steel can be as low as the atmospheric pressure or less, the pressure is not less than 500 torr and not more than 760 t.
Splash generation can be suppressed to a minimum by performing Al heat-up by blowing oxygen over at a tank pressure of orr or lower. The reason why the pressure in the tank is set to 760 torr or less is that when the inside of the tank is pressurized to a pressure equal to or higher than the atmospheric pressure, the sealing material is burned out by blowing out the high-temperature gas in the tank to the vacuum seal portion.
【0021】尚、本発明の装置においては、必要に応じ
てCa等蒸気圧の高い元素を鉄皮で被覆したワイヤーを
用いて添加するワイヤー添加装置を具備することも可能
であり、このワイヤー添加を行う場合は、真空・減圧精
錬後引き続き大気圧で行うことが好ましい。In the apparatus of the present invention, it is also possible to provide a wire adding apparatus for adding an element having a high vapor pressure such as Ca using a wire coated with a steel shell, if necessary. Is preferably carried out at atmospheric pressure after vacuum and reduced pressure refining.
【0022】[0022]
【実施例】転炉脱炭精錬後、出鋼時に各合金の純分換算
でMn合金6.8kg/t,Si合金2.7kg/t,
アルミ0.45kg/tを添加し、またスラグ組成コン
トロールのためCaO3.0kg/tを添加した溶鋼に
ついて、図3に示す本発明の装置を用いて精錬を行い、
従来のRH処理との比較を行った。表1に本発明例の製
造条件及び製造結果を、表2に比較例の製造条件と製造
結果とを示す。EXAMPLE After converter decarburization and refining, at the time of tapping, 6.8 kg / t of Mn alloy, 2.7 kg / t of Si alloy,
The molten steel to which 0.45 kg / t of aluminum was added and 3.0 kg / t of CaO was added for slag composition control was refined using the apparatus of the present invention shown in FIG.
A comparison with the conventional RH processing was performed. Table 1 shows the production conditions and production results of the present invention, and Table 2 shows the production conditions and production results of the comparative example.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】処理後の水素の値は本発明例、比較例とも
に同等の良好なレベルである。処理後酸素は比較例が1
8ppmであるのに対して本発明例は8ppmと非常に
良好な結果であった。処理後スラグ成分のT.Feが、
比較例が1.40%と高い値であるのに対して、本発明
例は取鍋中のスラグと溶鋼との反応が十分に進行し、
T.Feが0.24%と非常に低い値を実現でき、その
ためにスラグ酸化度が低下して溶鋼中の酸素濃度を低下
することができた。本発明の装置を用いることにより、
従来RH法と同等の低水素化を達成し且つ従来よりも清
浄度の高い鋼を得ることができた。The value of hydrogen after the treatment is the same good level in both the present invention example and the comparative example. The oxygen after the treatment was 1 in the comparative example.
In contrast to 8 ppm, the example of the present invention was 8 ppm, which was a very good result. T. of slag component after treatment Fe is
In contrast to the comparative example having a high value of 1.40%, in the example of the present invention, the reaction between the slag in the ladle and the molten steel sufficiently progressed,
T. A very low value of Fe of 0.24% could be realized, so that the degree of slag oxidation was reduced and the oxygen concentration in the molten steel could be reduced. By using the device of the present invention,
It was possible to obtain steel having a low hydrogenation equivalent to that of the conventional RH method and a higher degree of cleanliness than the conventional RH method.
【0026】図4は本発明の装置を用いて真空精錬を行
った際の、取鍋内スラグ厚みHと溶鋼バス深さhの比
(H/h)と脱水素効率及び脱酸素効率の関係を示した
図である。H/h>0.025の領域では溶鋼表面が真
空処理中においてもスラグに覆われた状態となり、真空
に暴露される溶鋼表面積が小さいため十分な脱水素効率
が得られない。また、H/h<0.010%の領域で
は、スラグ量が少なくスラグと溶鋼との十分な反応表面
積が得られないため、十分な脱酸素効率を得ることがで
きない。FIG. 4 shows the relationship between the ratio (H / h) of the slag thickness H in the ladle and the molten steel bath depth h (H / h) and the dehydrogenation efficiency and deoxygenation efficiency when vacuum refining is performed using the apparatus of the present invention. FIG. In the region of H / h> 0.025, the surface of the molten steel is covered with slag even during vacuum processing, and a sufficient dehydrogenation efficiency cannot be obtained because the surface area of the molten steel exposed to vacuum is small. Further, in the range of H / h <0.010%, the amount of slag is small and a sufficient reaction surface area between slag and molten steel cannot be obtained, so that sufficient deoxidation efficiency cannot be obtained.
【0027】図5は軸受鋼について、従来高清浄度鋼を
得るために用いられているLF−RH法と本発明の装置
を用いて精錬を行った場合の製品トータル酸素の比較で
ある。本発明の装置を用いることにより、軸受鋼のよう
な高級鋼の製造においても従来同等以上の高清浄度を得
ることができ、且つLF工程の省略により製造コストを
低減することが可能である。FIG. 5 is a comparison of the total oxygen content of the bearing steel obtained by refining using the LF-RH method conventionally used for obtaining high-purity steel and the apparatus of the present invention. By using the apparatus of the present invention, even in the production of high-grade steel such as bearing steel, it is possible to obtain a high degree of cleanliness equal to or higher than the conventional one, and it is possible to reduce the production cost by omitting the LF step.
【0028】図6は図3の装置について、槽内加熱バー
ナーの効果を示した図である。槽内加熱バーナーを用い
て真空・減圧槽内壁耐火物温度を1000℃以上に保持
することにより、著しく地金付着量を低減することがで
きた。FIG. 6 is a diagram showing the effect of the in-tank heating burner on the apparatus of FIG. By maintaining the refractory temperature of the inner wall of the vacuum / decompression tank at 1000 ° C. or higher by using the in-tank heating burner, the amount of metal ingot was significantly reduced.
【0029】図7は図3の装置を用いて溶鋼に加熱バー
ナーより酸素のみを供給し、溶鋼中のAlを燃焼させて
溶鋼の昇熱を行う処理を行った際の、槽内圧力とスプラ
ッシュ到達高さの関係を示した図である。槽内圧力を5
00torr以上とすることにより、従来RHと比較し
てスプラッシュ到達高さを低減することができ、槽内地
金付着量を低減することができた。FIG. 7 shows the pressure and splash in the tank when only oxygen is supplied to the molten steel from the heating burner using the apparatus shown in FIG. 3 to burn Al in the molten steel to increase the heat of the molten steel. It is the figure which showed the relationship of the reaching height. 5 tank pressure
By setting the pressure to 00 torr or more, the height at which the splash reached can be reduced as compared with the conventional RH, and the amount of the ingot in the tank could be reduced.
【0030】[0030]
【発明の効果】本発明の装置及びこれを用いる精錬方法
により、従来の取鍋精錬法で問題となっていた取鍋シー
ル部分への溶鋼飛散による悪影響を回避できると共に、
槽内地金付着量を低減し、処理中の溶鋼温度降下を低減
することができる。また、高清浄度が要求される鋼の製
造において、スラグの酸化度を低下させてスラグを改質
する工程と脱ガス工程を同一の精錬装置で行うことによ
る製造工程の効率化が可能である。According to the apparatus of the present invention and the refining method using the same, it is possible to avoid the adverse effect of molten steel scattering on the ladle seal portion, which is a problem in the conventional ladle refining method, and
The amount of metal in the tank can be reduced, and the temperature drop of molten steel during processing can be reduced. Further, in the production of steel requiring high cleanliness, the efficiency of the production process can be improved by performing the process of reforming the slag by reducing the degree of oxidation of the slag and the process of degassing with the same refining device. .
【図1】本発明装置の実施例の断面図。FIG. 1 is a sectional view of an embodiment of the apparatus of the present invention.
【図2】本発明装置の真空蓋内部に円筒部を設置した場
合の断面図FIG. 2 is a cross-sectional view of the apparatus of the present invention when a cylindrical portion is installed inside a vacuum lid.
【図3】本発明装置に加熱用バーナーを設置した断面図FIG. 3 is a sectional view in which a heating burner is installed in the apparatus of the present invention.
【図4】本発明装置を用いて溶鋼精錬を行う際の取鍋内
スラグ厚みhと溶鋼バス深さHの比(H/h)と各種精
錬効率の関係を示した図FIG. 4 is a diagram showing a relationship between a ratio (H / h) of a slag thickness h in a ladle and a molten steel bath depth H (H / h) and various refining efficiencies when performing molten steel refining using the apparatus of the present invention.
【図5】軸受鋼の製品T.Oにおける従来法と本発明に
よる方法の比較図FIG. 5: Bearing steel product T. Comparison diagram of the conventional method and the method according to the present invention in O
【図6】本発明装置における真空・減圧槽内壁耐火物温
度と地金付着厚みを示した図FIG. 6 is a diagram showing the refractory temperature of the inner wall of the vacuum / decompression tank and the thickness of the metal in the apparatus of the present invention.
【図7】本発明装置を用いてAlを含む溶鋼に酸素を吹
き付けた際の槽内圧力とスプラッシュ到達高さを示した
図FIG. 7 is a diagram showing the pressure in the tank and the height at which the splash reaches when oxygen is blown onto molten steel containing Al using the apparatus of the present invention.
1 取鍋 2 真空・減圧槽 3 攪拌ガス吹き込みプラグ 4 溶鋼 5 スラグ 6 攪拌ガス 7 攪拌ガスによる溶鋼湯面盛り上がり部 8 シール材 9 円筒部 10 加熱バーナー DESCRIPTION OF SYMBOLS 1 Ladle 2 Vacuum / decompression tank 3 Stirring gas blowing plug 4 Molten steel 5 Slag 6 Stirring gas 7 Molten steel surface rising part by stirring gas 8 Seal material 9 Cylindrical part 10 Heating burner
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 雅之 室蘭市仲町12番地 新日本製鐵株式会社 室蘭製鐵所内 (72)発明者 青木 淳 室蘭市仲町12番地 新日本製鐵株式会社 室蘭製鐵所内 (56)参考文献 特開 昭47−7301(JP,A) 特開 昭62−63611(JP,A) 特開 昭62−64460(JP,A) 特開 平3−281720(JP,A) 特開 平2−101108(JP,A) 特開 平5−25533(JP,A) 実開 昭61−199559(JP,U) (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 B22D 1/00 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masayuki Arai 12 Nakamachi, Muroran City Nippon Steel Corporation Muroran Steel Works (72) Inventor Jun Aoki 12th Nakamachi, Muroran City Nippon Steel Corporation Muroran Steel In-house (56) References JP-A-47-7301 (JP, A) JP-A-62-63611 (JP, A) JP-A-62-64460 (JP, A) JP-A-3-281720 (JP, A) JP-A-2-101108 (JP, A) JP-A-5-25533 (JP, A) JP-A-61-199559 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) C21C 7/10 B22D 1/00
Claims (6)
有しない真空・減圧槽を取鍋の上部に直接連接して槽内
を減圧し、取鍋内に不活性ガスを吹き込むことにより取
鍋内溶鋼を攪拌し、取鍋内溶鋼の精錬を行うための装置
であって、取鍋上部と真空・減圧槽は密着させシール構
造とし、真空・減圧槽は胴部を有し、該胴部の内径が取
鍋上端部の内径より小さく、取鍋内に吹き込む攪拌ガス
によって生じる取鍋内溶鋼湯面の盛り上がり部の投射断
面径以上であり、真空・減圧槽の頂部までの高さが、取
鍋内溶鋼湯面から5m以上であることを特徴とする真空
・減圧精錬装置。1. A vacuum / decompression tank having no dipping tube for dipping into molten steel in a ladle is connected directly to the upper part of the ladle to depressurize the tank and blow an inert gas into the ladle. the ladle molten steel was stirred for an apparatus for performing the refining ladle molten steel, the ladle top and vacuum and depressurizing snug seal structure
And forming, vacuum-vacuum chamber has a body portion, the inner diameter of the body portion is smaller than the inner diameter of the ladle upper portion, the projection cross-section of the raised part of the ladle the molten steel surface caused by the stirring gas blown into the ladle diameter or less on der is, the height to the top of the vacuum and depressurizing, preparative
Vacuum and pressure reducing refining apparatus according to claim der Rukoto least 5m from the pot in the molten steel surface.
筒部は取鍋内溶鋼の盛り上がり部投射断面径以上の内径
を有し、且つ取鍋上端内径以下の外径を有し、該円筒部
の下端位置が取鍋上端より下方かつ取鍋内溶鋼に浸漬し
ないことを特徴とする請求項1に記載の真空・減圧精錬
装置。Wherein the cylindrical portion is provided in the vacuum and depressurizing the lower, circular
The inner diameter of the cylinder is larger than the projected cross-sectional diameter of the raised part of the molten steel in the ladle
The vacuum device according to claim 1 , wherein the cylindrical portion has an outer diameter less than or equal to the inner diameter of the upper end of the ladle, and the lower end position of the cylindrical portion is lower than the upper end of the ladle and is not immersed in the molten steel in the ladle. Vacuum refining equipment.
び酸素ガスを燃焼させて火炎を噴出するバーナーを配し
たことを特徴とする請求項1又は2に記載の真空・減圧
精錬装置。3. A vacuum-vacuum refining apparatus according to claim 1 or 2 by burning fuel and oxygen gas from the lower end to the vacuum-vacuum vessel to be characterized in that arranged burners for jetting flame.
を満足するように調整することを特徴とする請求項1乃
至3のいずれかに記載の真空・減圧精錬装置を用いた取
鍋精錬方法。 0.010≦H/h≦0.025 H;取鍋内スラグ厚み h;取鍋内溶鋼バス深さ4. The vacuum / vacuum refining according to any one of claims 1 to 3 , wherein the amount of slag on the ladle molten steel surface is adjusted so as to satisfy the following conditions. Ladle refining method using equipment. 0.010 ≦ H / h ≦ 0.025 H: Slag thickness in ladle h: Depth of molten steel bath in ladle
から噴出させる火炎により該真空・減圧槽内壁の温度を
連続使用中の状態において1000℃以上に常時保持す
ることを特徴とする請求項3に記載の真空・減圧精錬装
置を用いた取鍋精錬方法。5. The temperature of the inner wall of the vacuum / decompression tank is constantly maintained at 1000 ° C. or higher in a state of continuous use by a flame ejected from a lower end of a burner disposed in the vacuum / decompression tank. 4. A ladle refining method using the vacuum / vacuum refining device according to 3 .
することで添加したAlを燃焼させ、溶鋼昇温を行うに
際し、真空・減圧槽内の圧力を760Torr〜500Torr
とすることを特徴とする請求項1乃至3のいずれかに記
載の真空・減圧精錬装置を用いた取鍋精錬方法。6. Addition of Al into molten steel, supply of oxygen gas to burn the added Al, and when raising the temperature of molten steel, increase the pressure in the vacuum / decompression tank to 760 Torr to 500 Torr.
A ladle refining method using the vacuum / vacuum refining apparatus according to any one of claims 1 to 3 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362818A JP3043326B1 (en) | 1998-12-21 | 1998-12-21 | Ladle refining apparatus and ladle refining method using the same |
PCT/JP2000/003067 WO2001086007A1 (en) | 1998-12-21 | 2000-05-12 | Ladle refining device and ladle refining method using it |
TW89109391A TW487736B (en) | 1998-12-21 | 2000-05-15 | Ladle refining apparatus and ladle refining method using this apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362818A JP3043326B1 (en) | 1998-12-21 | 1998-12-21 | Ladle refining apparatus and ladle refining method using the same |
PCT/JP2000/003067 WO2001086007A1 (en) | 1998-12-21 | 2000-05-12 | Ladle refining device and ladle refining method using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3043326B1 true JP3043326B1 (en) | 2000-05-22 |
JP2000178637A JP2000178637A (en) | 2000-06-27 |
Family
ID=26344901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10362818A Expired - Lifetime JP3043326B1 (en) | 1998-12-21 | 1998-12-21 | Ladle refining apparatus and ladle refining method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3043326B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100455977B1 (en) | 2000-05-12 | 2004-11-08 | 신닛뽄세이테쯔 카부시키카이샤 | Ladle refining device and ladle refining method using it |
JP5689914B2 (en) * | 2013-03-28 | 2015-03-25 | 榮子 山田 | Ladle vacuum refining method for molten steel |
-
1998
- 1998-12-21 JP JP10362818A patent/JP3043326B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000178637A (en) | 2000-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3953199A (en) | Process for refining pig iron | |
KR100214927B1 (en) | Vacuum refining method of molten metal | |
JP6645374B2 (en) | Melting method of ultra low sulfur low nitrogen steel | |
KR100455977B1 (en) | Ladle refining device and ladle refining method using it | |
JP5601132B2 (en) | Melting method of low carbon aluminum killed steel with excellent cleanability | |
JP3043326B1 (en) | Ladle refining apparatus and ladle refining method using the same | |
JP5200380B2 (en) | Desulfurization method for molten steel | |
JPH0510406B2 (en) | ||
JP4687103B2 (en) | Melting method of low carbon aluminum killed steel | |
JP4534734B2 (en) | Melting method of low carbon high manganese steel | |
JP4360270B2 (en) | Method for refining molten steel | |
JP3777630B2 (en) | Method for heat refining of molten steel | |
CN111172355A (en) | Induction heating single-nozzle vacuum refining furnace and clean steel smelting process | |
JPH0987732A (en) | Method for refining molten steel | |
JPS61235506A (en) | Heating up method for molten steel in ladle | |
TW487736B (en) | Ladle refining apparatus and ladle refining method using this apparatus | |
JP2001152234A (en) | Carbon adding method to molten steel in ladle | |
JP5515651B2 (en) | Desulfurization method for molten steel | |
JPS6010087B2 (en) | steel smelting method | |
JPH11140530A (en) | Production of ultra-low nitrogen stainless steel | |
JP2724030B2 (en) | Melting method of ultra low carbon steel | |
JP3706451B2 (en) | Vacuum decarburization method for high chromium steel | |
JPH10298634A (en) | Method for reduction-refining stainless steel | |
JPH0480316A (en) | Method for decarburizing molten steel under reduced pressure | |
JPH09111331A (en) | Ladle reining apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080310 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120310 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130310 Year of fee payment: 13 |