JP2018178209A - Tilting type refining apparatus and tilting slag discharging method - Google Patents

Tilting type refining apparatus and tilting slag discharging method Download PDF

Info

Publication number
JP2018178209A
JP2018178209A JP2017081243A JP2017081243A JP2018178209A JP 2018178209 A JP2018178209 A JP 2018178209A JP 2017081243 A JP2017081243 A JP 2017081243A JP 2017081243 A JP2017081243 A JP 2017081243A JP 2018178209 A JP2018178209 A JP 2018178209A
Authority
JP
Japan
Prior art keywords
tilting
detection
coil
detection coil
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081243A
Other languages
Japanese (ja)
Other versions
JP6939039B2 (en
Inventor
健夫 井本
Takeo Imoto
健夫 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017081243A priority Critical patent/JP6939039B2/en
Publication of JP2018178209A publication Critical patent/JP2018178209A/en
Application granted granted Critical
Publication of JP6939039B2 publication Critical patent/JP6939039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tilting type refining apparatus and tilting slag discharging method capable of reducing time for slag discharging while minimizing flowing-out of molten metal from a vessel opening when discharging molten slag by tilting a refining vessel while leaving the molten metal in the refining vessel.SOLUTION: The tilting type refining apparatus comprises a detection coil 4 provided in a wall of the refining vessel (converter 1) in contact with a path (discharge path 17) through which molten slag 34 passes when the refining vessel is tilted to discharge the molten slag 34 in the refining vessel, and the detection coil 4 has one or a plurality of conductive coils and includes an AC current applying device 8 for applying an AC current to the detection coil 4, and a detection device 9 for detecting a change in induced electromotive force in the detection coil 4 or a change in impedance of the detection coil. When the molten metal is detected, as a result of detection by the detection device 9, to reach an installed position of the detection coil, a tilting speed of the refining vessel is reduced or the tilting is stopped in response to the detection.SELECTED DRAWING: Figure 1

Description

本発明は、精錬容器を傾動して精錬容器内の溶融スラグを排出することのできる傾動型精錬装置及びその傾動型精錬装置を用いた傾動排滓方法に関するものである。   The present invention relates to a tilting type refining device capable of discharging a molten slag in a refining container by tilting the refining container and a tilting displacement method using the tilting type refining device.

高炉から出銑した溶銑は、製鋼工程において不純物除去精錬を行い、所定の鋼成分に調整した上で鋳片とし、その後の圧延工程で所定の鋼製品を製造する。製鋼工程における不純物除去精錬のうち、脱燐と脱炭精錬は主に転炉において行われる。一つの転炉で脱燐と脱炭精錬を順次行う方法として、脱燐精錬−脱燐スラグの排出−脱炭精錬をこの順序で行う方法が知られている。転炉内に溶銑を装入し、脱燐精錬のために生石灰等の精錬剤を転炉内に投入して純酸素を吹き込みつつ脱燐精錬を行う。脱燐精錬時に脱珪反応も進行する。脱燐精錬完了後に転炉を傾動して、溶鉄は転炉内に残したままで転炉炉口から脱燐スラグのみを排出し、その後転炉を直立して脱炭精錬を行う。脱炭精錬時に追加の精錬剤を転炉内に投入し、仕上げ脱燐精錬が行われることもある。脱炭精錬終了後に、まず転炉の出鋼孔が設けられている側に転炉を傾動して溶鋼を出鋼し、その後転炉を反対側に傾動して溶融スラグ(脱炭スラグ)を排出する。この方法はダブルスラグ法とも呼ばれる。出鋼後に炉内に残存する脱炭スラグは脱燐能力を有しているので、脱炭スラグを排滓せずに次チャージの脱燐精錬における脱燐精錬剤として用いることができ、このような方法はMURC法とも呼ばれる。   The hot metal discharged from the blast furnace is subjected to impurity removal refining in a steel making process, adjusted to a predetermined steel component, and made into a slab, and a predetermined steel product is manufactured in a subsequent rolling process. Among impurity removal and refining in the steel making process, dephosphorization and decarburization are mainly performed in a converter. As a method of sequentially performing dephosphorization and decarburization refinement in one converter, a method of performing dephosphorization refinement-discharge of dephosphorization slag-decarburization refinement in this order is known. Hot metal is charged into the converter, and a refining agent such as quicklime is introduced into the converter for dephosphorization to carry out dephosphorization while blowing in pure oxygen. The desiliconation reaction also proceeds during dephosphorization refining. After completion of the dephosphorization refining, the converter is tilted, and while leaving the molten iron in the converter, only dephosphorization slag is discharged from the converter furnace port, and then the converter is stood upright to carry out decarburization refining. At the time of decarburization refining, an additional refining agent may be introduced into the converter, and finishing dephosphorization may be performed. After completion of decarburization and refining, first, the converter is tilted to the side where the steel tapping hole of the converter is provided, and the molten steel is discharged, and then the converter is tilted to the opposite side to remove molten slag (decarburized slag) Discharge. This method is also called double slag method. Since the decarburized slag remaining in the furnace after deburring has dephosphorization ability, it can be used as a dephosphorizing agent in dephosphorization refining of the next charge without discharging the decarburized slag, Method is also called MURC method.

鋼の転炉精錬において、まず脱珪精錬が終了した時点で脱珪スラグを転炉から排出し、その後に石灰源などの脱燐精錬剤を転炉内に投入して高塩基度スラグによる脱燐精錬を実施する方法も知られている。   In the converter smelting of steel, the desiliconization slag is first discharged from the converter when the desiliconization refining is completed, and then the dephosphorizing refining agent such as the lime source is introduced into the converter to remove the high basicity slag. It is also known how to carry out phosphorus refining.

転炉や電気炉を用いて鉄やフェロクロムなどの溶融還元精錬を実施する際に、溶融還元終了後に炉内に溶融金属を残したままでスラグを除去する場合にも、精錬炉を傾動してスラグの排出を行う。また、溶銑予備脱硫精錬法の一種であるKR法においては、鍋型精錬容器(溶銑鍋)内に溶銑を収容し、脱硫精錬剤を添加してスターラーで溶銑脱硫精錬を行った上で、その後の復硫を防止するために溶銑鍋を傾動して脱硫スラグを排出する処理が行われる。   When performing smelting reduction of iron or ferrochrome using a converter or an electric furnace, the smelting furnace is also tilted to remove slag while leaving molten metal in the furnace after completion of smelting reduction. Discharge the In addition, in the KR method, which is a kind of hot metal preliminary desulfurization refining method, hot metal is contained in a pot type refining vessel (hot metal pot), a desulfurizing refining agent is added, and the hot metal desulfurization refining is performed with a stirrer. In order to prevent the resulfurization of the steel, the treatment to discharge the desulfurization slag by tilting the hot metal ladle is performed.

以上に例示した、精錬容器内に溶融金属を残したまま、精錬容器を傾動して溶融スラグのみを排出する方法(傾動排滓方法)が有する課題について、精錬容器が転炉であって溶銑を精錬する場合を例にとって説明する。傾動排滓開始前の転炉内溶融スラグのうち、排滓によって転炉から排出した溶融スラグの比率を、「排滓率」という。精錬容器である転炉の開口部(以下「炉口」ともいう。)の位置を転炉の傾動によって下降させ、炉口開口位置の下端(以下「炉口下端部」という。)が炉内の溶融スラグ液面直下まで下降し、炉口から溶融スラグの排出を行う。溶融スラグの比重が溶鉄の比重よりも小さいため、炉内の下層に溶鉄、上層に溶融スラグが位置している。従って、溶鉄の液面が炉口下端部よりも下方に位置するように転炉の傾動を制御することにより、転炉内の溶鉄は排出せず、溶融スラグのみを排出する。しかし、傾動排滓時における転炉内の溶融スラグ層の厚みはさほど厚くないので、溶鉄流出を抑制しつつ高い排滓率を確保するためには、適切な傾動角度を把握する必要がある。実際には、傾動速度を極低速としつつ転炉の傾動を継続し、炉口から溶鉄の流出が視認できた時点で傾動を停止する方法が採られている。この方法では、傾動速度を極低速とするために傾動排滓に要する時間が長くなるとともに、炉口からの溶鉄の流出を確認して停止しているので、溶鉄の損失が免れない。   With regard to the problems with the methods exemplified above, with the molten metal left in the refining container, tilting the refining container and discharging only the molten slag (tilting and discharging method), the refining container is a converter and the molten iron is The case of refining will be described as an example. Among the molten slag in the converter before the start of the tilting displacement, the ratio of the molten slag discharged from the converter by the displacement is referred to as "displacement rate". The position of the opening (hereinafter also referred to as the “furnace port”) of the converter, which is a refining vessel, is lowered by tilting the converter, and the lower end of the furnace port opening position (hereinafter referred to as “the lower end of the furnace port”) is inside the furnace. Descend to just below the molten slag liquid level, and discharge the molten slag from the furnace port. Since the specific gravity of the molten slag is smaller than that of the molten iron, the molten iron is located in the lower layer in the furnace and the molten slag is located in the upper layer. Therefore, by controlling the tilt of the converter so that the liquid level of the molten iron is located below the lower end of the furnace port, the molten iron in the converter is not discharged but only the molten slag is discharged. However, since the thickness of the molten slag layer in the converter at the time of tilting displacement is not so thick, it is necessary to grasp an appropriate tilting angle in order to secure a high discharge rate while suppressing molten iron outflow. In practice, the method of continuing the tilting of the converter while making the tilting speed extremely low and stopping the tilting when the outflow of the molten iron is visible from the furnace opening is adopted. In this method, the time required for the tilting displacement is long in order to make the tilting speed extremely low, and since the outflow of the molten iron from the furnace opening is confirmed and stopped, the loss of the molten iron can not be avoided.

傾動排滓時に溶鉄が炉口から流出する直前に溶鉄を検出できれば、排滓時間を短縮でき、かつ溶鉄ロスを防ぐことができるため、センシング技術は極めて重要である。そのため、チャージ毎の溶鉄流出限界傾動角度のばらつきも含めて測定するための技術が提案されている。   If the molten iron can be detected immediately before the molten iron flows out from the furnace opening at the time of tilting and discharging, the discharging time can be shortened and the molten iron loss can be prevented, so the sensing technology is extremely important. Therefore, a technique has been proposed for measurement including the variation of the molten iron outflow limit tilt angle for each charge.

特許文献1においては、精錬容器のスラグ放出路最上端部付近の下方壁に一方の電極を設け、他方の電極をその下方の精錬容器本体に設け、両電極を用いて溶融金属との導通電流値を検知し、精錬容器の排滓位置傾動角をうる方法が開示されている。また特許文献2には、傾動時に炉口スラグ放流路上端部に複数個の電極を挿入し、電極間の導通を検知することにより、炉口から排出される溶融物が金属かスラグかを判断する方法が開示されている。   In Patent Document 1, one electrode is provided on the lower wall near the top end of the slag discharge path of the refining vessel, the other electrode is provided on the lower refining vessel main body, and the conduction current with the molten metal using both electrodes A method is disclosed for detecting the value and obtaining the displacement position tilt angle of the refining vessel. Further, according to Patent Document 2, a plurality of electrodes are inserted at the upper end of the furnace throat slag discharge passage at the time of tilting, and conduction between the electrodes is detected to determine whether the molten material discharged from the furnace throat is metal or slag. Methods are disclosed.

特許文献3には、精錬容器の耐火物内壁に設けられた羽口から容器内にガスを吹き込み、その背圧の変化を検知し、溶融金属の到達を判断して排滓位置傾動角を得る方法が開示されている。特許文献4には、精錬容器の耐火物内壁に設けられた羽口から容器内にガスを吹き込み、羽口内部に設置された光ファイバーによって溶融スラグまたは溶融金属に含まれる固有元素の発光スペクトル強度を測定し、溶融金属の到達を判断して排滓位置傾動角を得る方法が開示されている。   In Patent Document 3, gas is blown into the vessel from a tuyere provided on the inner wall of the refractory of the refining vessel, a change in back pressure is detected, and arrival of molten metal is judged to obtain a displacement position tilting angle. A method is disclosed. In Patent Document 4, gas is blown into the vessel from the tuyere provided on the inner wall of the refractory of the refining vessel, and the optical spectrum intensity of the specific element contained in the molten slag or molten metal is measured by the optical fiber installed inside the tuyere. A method of measuring and judging the arrival of molten metal to obtain the displacement position tilt angle is disclosed.

特開平05−288479号公報Japanese Patent Application Laid-Open No. 05-288479 特開平06−201278号公報Unexamined-Japanese-Patent No. 06-201278 gazette 特開平06−235585号公報Japanese Patent Application Laid-Open No. 06-235585 特開平06−235016号公報Japanese Patent Application Laid-Open No. 06-235016 特開平05−018679号公報Japanese Patent Application Laid-Open No. 05-018679 特開昭53−048008号公報JP-A-53-048008

前記特許文献1〜特許文献4に記載のセンシング技術を実施する際の問題点としては、電極やバブリング羽口、ファイバー観察部が精錬容器での精錬中に溶融金属や溶融スラグと接触することが避けられず、精度の良い測定を実施するためには、接触時に付着した地金やスラグ除去のメンテナンスを高い頻度で実施する必要がある。そのため、これら方法は、生産性や作業負荷の面での課題が多かった。   As a problem when carrying out the sensing technique described in the patent documents 1 to 4, the electrodes, the bubbling tuyere, and the fiber observation part come into contact with the molten metal and the molten slag during the refining in the refining vessel. Inevitably, in order to carry out an accurate measurement, it is necessary to frequently carry out maintenance of removal of bare metal and slag adhered at the time of contact. Therefore, these methods have many problems in terms of productivity and work load.

特許文献5には、溶融金属収容容器の壁面に設けられた出湯孔から溶融金属を排出させるにあたり、出湯孔の鉄皮より内側に発信・受信センサーコイルを対面するように埋設しておくとともに、これらを信号処理装置に連結して出湯末期におけるスラグの流出を電磁誘導の原理で検出する方法が開示されている。特許文献6には、1つの検出コイルを配置して検出コイルのインピーダンス変化を検出する方法が開示されている。しかし、これら特許文献5、6に記載の発明は、出湯孔の通過物が溶融金属から溶融スラグに変化する現象を検出するものであって、本発明のように、傾動排滓時に炉口からの溶融金属排出を防止する方法とは相違している。また、出湯孔からの流出物が溶融スラグに変化する現象を検出するにおいても、実際には検出遅れが存在することが知られており、用途には制約がある。   In Patent Document 5, when the molten metal is discharged from the tapping hole provided in the wall surface of the molten metal storage container, the transmission / reception sensor coil is embedded so as to face inside the iron skin of the tapping hole, There is disclosed a method of connecting them to a signal processing device and detecting the outflow of slag at the end of tapping on the principle of electromagnetic induction. Patent Document 6 discloses a method of arranging one detection coil to detect a change in impedance of the detection coil. However, the inventions described in these Patent Documents 5 and 6 detect a phenomenon in which the passage material of the tapping hole changes from molten metal to molten slag, and as in the present invention, from the furnace opening at the time of tilting discharge. Is different from the method of preventing the discharge of molten metal. In addition, even when detecting a phenomenon in which the effluent from the tapping hole changes to molten slag, it is known that detection delay actually exists, and the application is restricted.

本発明は、精錬容器を傾動して精錬容器内に溶融金属を残したままで溶融スラグを排出するに際し、炉口からの溶融金属流出を最小限に抑えつつ、排滓時間の短縮を図ることのできる、傾動型精錬装置及び傾動排滓方法を提供することを目的とする。   The present invention is intended to shorten the discharge time while minimizing the outflow of molten metal from the furnace opening when discharging the molten slag while leaving the molten metal in the refining container while tilting the refining container. It is an object of the present invention to provide a tilt type refining device and a tilt displacement method that can be performed.

即ち、本発明の要旨とするところは以下のとおりである。
(1)精錬容器を傾動することのできる傾動型精錬装置において、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に溶融スラグが通過する経路を排出経路と称し、当該排出経路に接する精錬容器の炉壁内に検出コイルを有し、当該検出コイルは導電コイルを1個又は複数個有し、前記検出コイルに交流電流を印加する交流電流印加装置と、前記検出コイルにおける誘導起電力の変化又は検出コイルのインピーダンス変化を検出する検出装置とを備えることを特徴とする傾動型精錬装置。
(2)前記検出コイルを、前記排出経路内に複数有することを特徴とする上記(1)に記載の傾動型精錬装置。
(3)前記検出コイルをコイル交換ユニット内に収納し、当該コイル交換ユニットを精錬容器の外側から精錬容器の炉壁内に着脱可能に装着してなることを特徴とする上記(1)又は(2)に記載の傾動型精錬装置。
(4)上記(1)から(3)までのいずれかひとつに記載の傾動型精錬装置を用いた傾動排滓方法であって、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に、前記検出装置で検出した誘導起電力の変化又はインピーダンス変化から、前記検出コイル設置位置に溶融金属が到達したことを検知し、当該検知に対応して精錬容器の傾動速度を減速し、あるいは傾動を停止することを特徴とする傾動排滓方法。
(5)上記(2)又は(3)に記載の傾動型精錬装置を用いた傾動排滓方法であって、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に、前記検出装置で検出した誘導起電力の変化又はインピーダンス変化から、前記検出コイル設置位置に溶融金属が到達したことを検知し、第1の検出コイルに接続した検出装置で溶融金属の到達を検知したときに精錬容器の傾動速度を減速し、第2の検出コイルに接続した検出装置で溶融金属の到達を検知したときに傾動を停止することを特徴とする傾動排滓方法。
That is, the place made into the summary of the present invention is as follows.
(1) In a tilting type refining device capable of tilting the refining vessel, a path through which molten slag passes when the molten slag in the refining vessel is discharged by tilting the refining vessel is referred to as a discharge path, and An alternating current application device having a detection coil in a furnace wall of a refining vessel in contact with the detection coil, the detection coil having one or a plurality of conductive coils, and applying an alternating current to the detection coil; And a detection device for detecting a change in power or a change in impedance of the detection coil.
(2) The tilting and refining apparatus according to (1), wherein a plurality of the detection coils are provided in the discharge path.
(3) The detection coil is accommodated in a coil exchange unit, and the coil exchange unit is detachably mounted in the furnace wall of the refinement vessel from the outside of the refinement vessel. The tilting type refining device described in 2).
(4) In the tilting displacement method using the tilting type refining device according to any one of (1) to (3) above, when tilting the refining container and discharging the molten slag in the refining container Detecting that the molten metal has reached the detection coil installation position from the change in the induced electromotive force or the impedance change detected by the detection device, and decelerating the tilting speed of the refining vessel in response to the detection A tilting displacement method characterized by stopping tilting.
(5) A tilt displacement method using the tilt type refining device according to the above (2) or (3), wherein when the refining container is tilted and the molten slag in the refining container is discharged, the detection device When the arrival of molten metal is detected by the detection device connected to the first detection coil, it is detected that the molten metal has reached the detection coil installation position from the change in the induced electromotive force or the impedance change detected in step A tilting displacement method comprising: decelerating a tilting speed of a container and stopping tilting when the arrival of molten metal is detected by a detection device connected to a second detection coil.

本発明の傾動型精錬装置及び傾動排滓方法により、精錬容器を傾動して精錬容器内に溶融金属を残したままで溶融スラグを排出するに際し、炉口からの溶融金属流出を最小限に抑えつつ、排滓時間の短縮を図ることが可能となる。   According to the tilting type refining device and the tilting displacement method of the present invention, when discharging the molten slag while tilting the refining container and leaving the molten metal in the refining container, the molten metal outflow from the furnace opening is minimized. It is possible to shorten the evacuation time.

本発明により傾動排滓を実施する状況を示す断面図であり、(A)は検出コイルが1個の場合、(B)は検出コイルが2個の場合である。It is sectional drawing which shows the condition which implements tilting displacement according to this invention, (A) is a case where there are one detection coil, (B) is a case where there are two detection coils. 本発明の検出コイルが2個の導電コイルを有する場合について説明する概念図であり、(A)は検出コイルと各装置の組み合わせを示す図、(B)はオシロスコープ画像を示す図である。It is a conceptual diagram explaining the case where the detection coil of this invention has two conducting coils, (A) is a figure which shows the combination of a detection coil and each apparatus, (B) is a figure which shows an oscilloscope image. 本発明の検出コイルが1個の導電コイルを有する場合について説明する概念図である。It is a conceptual diagram explaining the case where the detection coil of this invention has one conducting coil. 検出したピーク値の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the detected peak value. 着脱式の検出コイルを組み込んだ状態を示す部分断面図である。It is a fragmentary sectional view which shows the state incorporating a detachable detection coil. 着脱式の検出コイルを組み込む前の状態を示す部分断面図であり、(A)は精錬装置側、(B)はコイル交換ユニットを示す。It is a fragmentary sectional view showing the state before incorporating a removable detection coil, (A) is a refinement device side, (B) shows a coil exchange unit.

本発明について、以下、精錬容器として転炉を例にとり、転炉での溶鉄精錬時に、炉内に溶鉄を残したまま溶融スラグを炉口から排出する中間排滓を実施する場合の適用例として、図1を参照しながら説明を行う。ここで、本発明は、精錬容器が転炉に限定されるものではなく、電気炉、鍋型容器いずれであっても、傾動機能を有していれば採用することができる。溶鋼や溶銑、各種ステンレス鋼等の高合金鋼など各種溶鉄と、その上面に存在する溶融スラグであって、溶鉄より低密度で、電気伝導度が溶鉄と比較して無視しうる程度に小さい溶融スラグの排出時に活用できる傾動型精錬装置であればよい。また、当該傾動型精錬装置を用いたダブルスラグ法、溶銑予備処理、溶融還元、鍋排滓操業などにも適用できるものである。   In the present invention, taking the converter as an example of the refining vessel as an example, as an application example in the case of carrying out an intermediate discharge in which molten slag is discharged from the furnace port while molten iron remains in the furnace at the time of molten iron refining in the converter. The description will be made with reference to FIG. Here, in the present invention, the refining vessel is not limited to the converter, and any one of an electric furnace and a pot-type vessel can be adopted as long as it has a tilting function. Various molten irons such as molten steel, hot metal, high alloy steels such as various stainless steels, and molten slag present on the upper surface, which has lower density than molten iron and a negligible electric conductivity compared to molten iron It may be a tilting type refining device that can be utilized at the time of discharge of slag. Moreover, it is applicable also to the double slag method, the hot metal pre-treatment, the smelting reduction, the pan exhausting operation etc. using the said tilting type refinement | purification apparatus.

転炉1は、傾動軸を中心として炉体を傾動することができる。炉体直立時に上方となる位置に炉口2を有する。溶銑装入時には、炉口を炉前側に傾動して炉口から溶銑を装入し、その後転炉を直立して上方から炉口を通して純酸素上吹きランスを挿入して酸素吹錬(脱燐精錬、脱珪精錬など)を行う。中間排滓時には、図1に示すように、炉口2を炉前側20に傾動して、溶鉄33を炉内に残留しつつ炉口2から溶融スラグ34(脱燐スラグなど)を排出し、炉下に配置したスラグパン3中に溶融スラグ34を収容する。その後転炉を直立して再度酸素吹錬(脱炭精錬、脱燐精錬など)を行い、目標とする不純物濃度まで不純物除去精錬を行い、転炉を炉裏側に傾動して出鋼孔から溶鉄(溶鋼)を出鋼する。炉内に残留した溶融スラグ(脱炭スラグなど)は、転炉を炉前側に傾動して炉口から排出するか、あるいは次チャージの脱燐精錬スラグとして用いるために残留させる。   The converter 1 can tilt the furnace body about a tilting axis. A furnace port 2 is provided at a position which is upward when the furnace body is upright. At the time of molten metal charging, the furnace port is tilted to the front side of the furnace and molten metal is charged from the furnace port, and then the converter is erected and a pure oxygen top lance is inserted from above through the furnace port to blow oxygen Smelting, desiliconizing, etc.). At the time of middle dumping, as shown in FIG. 1, the furnace port 2 is tilted to the furnace front side 20, and the molten slag 33 (such as dephosphorized slag) is discharged from the furnace port 2 while the molten iron 33 remains in the furnace, The molten slag 34 is accommodated in the slag pan 3 disposed under the furnace. After that, the converter is stood upright, oxygen blowing (decarburization refining, dephosphorization refining, etc.) is performed again, impurity removal refining is performed to the target impurity concentration, the converter is tilted to the back side of the furnace and molten iron (Steeling of molten steel) The molten slag (decarburized slag and the like) remaining in the furnace is left to tilt the converter to the front side of the furnace to be discharged from the furnace port or to be used as a dephosphorizing slag for the next charge.

転炉1の炉内形状は一般的に、直立したときの下方から、炉底部13、円筒状の炉腹部14、直立時に上すぼまりの円錐台状となる炉上部15を経て、炉頂に炉口2を有する。精錬容器(転炉1)を傾動して精錬容器内の溶融スラグ34を排出する際に溶融スラグ34が通過する経路を、ここでは排出経路17と称する。転炉を排滓側(炉前側20)に傾動したとき、炉口2は傾動軸を中心に回転する。排滓時において炉口2の開口部のうちで一番低い位置を、ここでは炉口下端部19という。炉口下端部19を含む炉体炉上部15の炉内側表面16であって、排滓時に溶融スラグが接する位置が、前記排出経路17を形成する。   The furnace inside shape of the converter 1 generally passes from the bottom when standing up, the furnace bottom 13, the cylindrical furnace belly 14, and the furnace top 15 which becomes an upside-down truncated cone when standing up, and then the furnace top Have a furnace port 2. A path through which the molten slag 34 passes when the molten slag 34 in the refining vessel is discharged by tilting the refining vessel (converter 1) is referred to as a discharge path 17 here. When the converter is tilted to the discharge side (furnace front side 20), the furnace port 2 rotates around the tilting axis. The lowest position of the opening of the furnace port 2 at the time of evacuation is referred to as the furnace lower end 19 here. The furnace inner surface 16 of the furnace upper portion 15 including the furnace lower end portion 19 and the position where the molten slag contacts at the time of discharge forms the discharge path 17.

本発明では、前記排出経路17に接する転炉1(精錬容器)の炉内側に検出コイル4を設ける。検出コイル4は、導電コイル5を1個又複数個有するものである。導電コイル5は、導電線を1ターン又は複数ターン巻き回したコイルを意味する。   In the present invention, the detection coil 4 is provided on the inside of the converter 1 (refining vessel) in contact with the discharge path 17. The detection coil 4 has one or more conductive coils 5. The conductive coil 5 means a coil in which a conductive wire is wound one turn or a plurality of turns.

本発明の検出コイル4は、検出コイル4付近の炉壁11の炉内側表面16に接して存在する溶融物が溶融スラグ34であるか溶融金属(溶鉄33)であるかを、検出コイル4における誘導起電力の変化又は検出コイル4のインピーダンス変化として検出する機能を有する。そのため、検出コイル4は排出経路17に接する炉壁内であって、炉壁の炉内側表面16に近接して設け、さらに検出コイル4が形成する磁力線が炉壁の炉内側表面16と交差するように設ける。検出コイル4の中心軸と炉壁の炉内側表面16との交差位置を検出位置18という。具体的には、検出コイル4の中心軸が炉壁の炉内側表面16に対して垂直又は垂直から45度以内の角度として設けると好ましい。また、検出コイル4と炉壁の炉内側表面16との間隔は、500mm以下であれば十分に検出感度を確保することができる。   The detection coil 4 of the present invention in the detection coil 4 determines whether the molten material existing in contact with the furnace inner surface 16 of the furnace wall 11 near the detection coil 4 is molten slag 34 or molten metal (molten iron 33) It has a function of detecting as a change in induced electromotive force or an impedance change in the detection coil 4. Therefore, detection coil 4 is provided in the furnace wall in contact with discharge path 17 and close to furnace inner surface 16 of the furnace wall, and magnetic lines of force formed by detection coil 4 intersect furnace inner surface 16 of the furnace wall. To set up. The intersection position of the central axis of the detection coil 4 and the furnace inner surface 16 of the furnace wall is referred to as a detection position 18. Specifically, it is preferable that the central axis of the detection coil 4 be provided perpendicular to the furnace inner surface 16 of the furnace wall or at an angle within 45 degrees from the vertical. Moreover, if the space | interval of the detection coil 4 and the furnace inner surface 16 of a furnace wall is 500 mm or less, detection sensitivity is fully securable.

本発明の検出動作原理について、まずは導電コイル5を2個有する検出コイル4を用い、一方の導電コイル5(一次コイル6)に交流電流印加装置8を接続して交流電流を印加し、他方の導電コイル5(二次コイル7)に検出装置9を接続して当該二次コイル7に誘起される誘導起電力を検出する方法を例に、図2に基づいて説明を行う。一次コイル6と二次コイル7の位置関係については、一次コイル6で発生する磁場が、二次コイル7の中を通るような位置関係に配置すればよい。
交流電流印加装置8によって一次コイル6に交流電流を印加すると、一次コイル6の中を通過する交流の磁場35が生じる。二次コイル7には、一次コイル6による磁場35に起因して誘導起電力が生じるので、検出装置9によって誘導起電力を計測することができる。一次コイル6が形成する交流磁場35の範囲内に導電性の物質が存在すると、導電性の物質(溶鉄33)内には、交流磁場35に起因して誘導電流36が流れるので、その結果、二次コイル7に誘起される誘導起電力は、一次コイル6による影響に加えて導電性物質内の誘導電流36の影響が付加されるので、二次コイル7で検出される誘導起電力が変化することになる。そこで、一次コイル6に交流電流を印加しつつ、二次コイル7の誘導起電力を検出することにより、検出コイル4の交流磁場範囲内に導電性の物質が存在するか否かを検出することが可能となる。本発明において、精錬容器の排出経路17において、炉壁の炉内側表面16と接する部分の物質が溶融スラグ34(低電気伝導度)から溶鉄33(高電気伝導度)に置き換わったタイミングを、二次コイル7の誘導起電力の変化として検出することができる。交流電流印加装置8として、定電流型と定電圧型のいずれをも用いることができる。このとき、一次コイルへの印加形式は定電圧形式が好ましい。これは、印加電流によって発生する磁場は、一次コイルの印加電流と巻数の積(A・ターン)で規定されることから一定の磁束を維持することができ、また、二次コイルで検知するインピーダンス変化の良好な検出精度を簡易に確保できるためである。
Regarding the detection operation principle of the present invention, first, using the detection coil 4 having two conductive coils 5, the alternating current application device 8 is connected to one of the conductive coils 5 (primary coil 6) to apply an alternating current, The method for detecting the induced electromotive force induced in the secondary coil 7 by connecting the detection device 9 to the conductive coil 5 (secondary coil 7) will be described based on FIG. The positional relationship between the primary coil 6 and the secondary coil 7 may be such that the magnetic field generated by the primary coil 6 passes through the secondary coil 7.
When an alternating current is applied to the primary coil 6 by the alternating current application device 8, an alternating magnetic field 35 passing through the primary coil 6 is generated. Since an induced electromotive force is generated in the secondary coil 7 due to the magnetic field 35 by the primary coil 6, the induced electromotive force can be measured by the detection device 9. If a conductive substance is present within the range of the alternating magnetic field 35 formed by the primary coil 6, the induced current 36 flows in the conductive substance (the molten iron 33) due to the alternating magnetic field 35, as a result, The induced electromotive force induced in the secondary coil 7 is affected by the induced current 36 in the conductive material in addition to the influence by the primary coil 6, so the induced electromotive force detected by the secondary coil 7 changes It will be done. Therefore, by detecting the induced electromotive force of the secondary coil 7 while applying an alternating current to the primary coil 6, it is possible to detect whether or not a conductive substance is present within the alternating magnetic field range of the detection coil 4. Is possible. In the present invention, the timing at which the material of the portion of the furnace wall in contact with the furnace inner surface 16 in the discharge passage 17 of the smelting vessel is replaced by molten slag 34 (low electrical conductivity) with molten iron 33 (high electrical conductivity) It can be detected as a change in the induced electromotive force of the next coil 7. As the alternating current application device 8, either a constant current type or a constant voltage type can be used. At this time, a constant voltage type is preferable as an application type to the primary coil. This is because the magnetic field generated by the applied current is defined by the product (A-turn) of the applied current of the primary coil and the number of turns, and a constant magnetic flux can be maintained, and the impedance detected by the secondary coil This is because it is possible to easily ensure good detection accuracy of the change.

そこで、図2(A)に示すように、導電コイル5として一次コイル6と二次コイル7を有する検出コイル4を転炉1の排出経路17の炉壁内に埋め込み、検出コイル4の中心軸を炉壁の炉内側表面16と垂直に設置した。交流電流印加装置8によって一次コイル6に定電流の交流電流を印加し、二次コイル7にはオシロスコープ28を接続した。二次コイル7の両端に生成する電圧の時間変化をオシロスコープ28で観察し、転炉内の溶鉄33が検出コイル4埋設位置に到達する前と後とで波形の変化をとらえた。二次コイル信号のピーク値と、二次コイル信号の位相と一次コイル印加交流電圧の位相との位相差を観察した。図2(B)は、横軸が時間(交流電流印加装置の位相を基準とする)、縦軸が二次コイル両端の電圧である。溶鉄到達前37の波形を実線、溶鉄到達後38の波形を破線で示している。図2(B)に示すように、溶鉄が到達するとともに、二次コイルで観察される波形は、ピーク値51が急激に変化するとともに、位相値の変化52が観察された。検出コイル4が生成する交流磁場35中に導電性を有する溶鉄33が出現し、溶鉄33中に誘導電流36が流れることにより、二次コイル7に生成する誘導起電力が変化したためと推測される。従って、二次コイル信号のピーク値と位相値のいずれか、または両方を考慮した変化を、ロックインアンプ等を用いた信号処理を施して検出装置9で検出することにより、溶鉄の到達時期や溶融金属の深さを検出することができる。   Therefore, as shown in FIG. 2A, the detection coil 4 having the primary coil 6 and the secondary coil 7 as the conductive coil 5 is embedded in the furnace wall of the discharge path 17 of the converter 1 and the central axis of the detection coil 4 Were placed perpendicular to the furnace inner surface 16 of the furnace wall. An alternating current of constant current was applied to the primary coil 6 by the alternating current application device 8, and an oscilloscope 28 was connected to the secondary coil 7. The time change of the voltage generated at both ends of the secondary coil 7 was observed with an oscilloscope 28, and the change in waveform was caught before and after the molten iron 33 in the converter reached the detection coil 4 embedded position. The phase difference between the peak value of the secondary coil signal, the phase of the secondary coil signal, and the phase of the AC voltage applied to the primary coil was observed. In FIG. 2B, the horizontal axis is time (based on the phase of the alternating current application device), and the vertical axis is the voltage across the secondary coil. The waveform 37 before reaching the molten iron is shown by a solid line, and the waveform 38 after reaching the molten iron is shown by a broken line. As shown in FIG. 2 (B), as the molten iron arrived, the waveform observed in the secondary coil showed a sharp change in the peak value 51 and a change 52 in the phase value. It is presumed that the induced electromotive force generated in the secondary coil 7 is changed by the appearance of the conductive molten iron 33 in the alternating current magnetic field 35 generated by the detection coil 4 and the flow of the induced current 36 in the molten iron 33 . Therefore, the detection time of the molten iron or the change by considering either or both of the peak value and the phase value of the secondary coil signal is detected by the detection device 9 by signal processing using a lock-in amplifier or the like. The depth of the molten metal can be detected.

本発明の検出動作原理について、次に図3にもとづいて、導電コイル5を1個有する検出コイル4を用い、導電コイル5に交流電流印加装置8を接続して交流電流を印加し、当該検出コイル4(導電コイル5)のインピーダンス変化を検出する方法を例に説明を行う。
交流電流印加装置8によって検出コイル4(1個の導電コイル5)に交流電流を印加すると、検出コイル4の中に交流磁場35が生じる。検出コイル4が形成する交流磁場35の範囲内に導電性の物質が存在すると、導電性の物質内には、交流磁場に起因して誘導電流36が流れるので、その結果、検出コイル4のインピーダンスが変化する。そこで、検出コイル4に交流電流を印加しつつ、検出コイル4のインピーダンス変化を検出することにより、検出コイル4の交流磁場35範囲内に導電性の物質が存在するか否かを検出することが可能となる。本発明において、精錬容器(転炉1)の排出経路17において、炉壁の炉内側表面16と接する部分の物質が溶融スラグ34(低電気伝導度)から溶鉄33(高電気伝導度)に置き換わったタイミングを、検出コイル4のインピーダンス変化として検出することができる。交流電流印加装置8として、定電流型交流印加装置を用いた場合には、検出コイル両端の電圧(配線27aと配線27cの間の電圧)の変化をもって、インピーダンス変化として検出することができる。また定電圧型交流電流印加装置を用いた場合には、検出コイル4を流れる電流(配線27bを流れる電流)の変化をもって、インピーダンス変化として検出することができる。
Regarding the detection operation principle of the present invention, next, based on FIG. 3, using the detection coil 4 having one conductive coil 5, the AC current application device 8 is connected to the conductive coil 5 to apply an alternating current, and the detection A method of detecting a change in impedance of the coil 4 (conductive coil 5) will be described as an example.
When an alternating current is applied to the detection coil 4 (one conductive coil 5) by the alternating current application device 8, an alternating magnetic field 35 is generated in the detection coil 4. If a conductive substance is present within the range of the AC magnetic field 35 formed by the detection coil 4, the induced current 36 flows in the conductive substance due to the AC magnetic field, and as a result, the impedance of the detection coil 4 Changes. Therefore, by detecting the change in impedance of the detection coil 4 while applying an alternating current to the detection coil 4, it is possible to detect whether a conductive substance is present within the range of the AC magnetic field 35 of the detection coil 4. It becomes possible. In the present invention, in the discharge path 17 of the refining vessel (converter 1), the material of the portion of the furnace wall in contact with the furnace inner surface 16 is replaced with the molten slag 34 (low electrical conductivity) by the molten iron 33 (high electrical conductivity). The timing can be detected as a change in impedance of the detection coil 4. When a constant current type alternating current application device is used as the alternating current application device 8, the change in the voltage (voltage between the wiring 27a and the wiring 27c) at both ends of the detection coil can be detected as a change in impedance. In addition, when a constant voltage type alternating current application device is used, a change in the current flowing through the detection coil 4 (the current flowing through the wiring 27b) can be detected as a change in impedance.

転炉1などの精錬容器に用いる耐火物12には、通常マグネシアカーボンなどの比較的電気伝導度の高い耐火物が施工されている場合が多いため、本発明の検出コイル4が形成する交流磁場35によって、周囲の耐火物中にも誘導電流が形成される。一方、周囲の導電体の電気伝導度などに変化がなければ、検出コイル4には安定して変化が少ない誘導起電力またはインピーダンスが発生する。また、検出コイル周辺耐火物の温度変化などが影響して、誘導起電力のピーク値や位相が徐々に変化する温度ドリフトが観察されることがあるが、温度ドリフトによる時間変化は、溶鉄の到来に起因する時間変化に比較して緩慢であるため、通常のバックグラウンド除去回路によってその影響をキャンセル演算することは容易である。   In many cases, a refractory having a relatively high electric conductivity such as magnesia carbon is usually applied to the refractory 12 used in a refining vessel such as the converter 1, so that the alternating magnetic field formed by the detection coil 4 of the present invention An induced current is also formed in the surrounding refractory by 35. On the other hand, if there is no change in the electrical conductivity and the like of the surrounding conductor, an induced electromotive force or impedance is generated in the detection coil 4 stably and with less change. In addition, temperature drift of the peak value and phase of induced electromotive force may be observed gradually due to temperature change of refractory around detection coil, etc., but the time change due to temperature drift is the arrival of molten iron Since it is slow compared to the time change caused by the above, it is easy to cancel the influence by the usual background removal circuit.

図4には、実施例操業で得られた検出信号のうち、ピーク値の時間変化をプロットした例を示す。横軸が経過時間、縦軸がピーク値である。この観察結果に示すように、実際の測定時には耐火物の電気伝導度や付着地金等の影響で、一次コイルに同一の周波数、電流を印加しても、二次コイルの誘導起電力として得られる信号値は異なる他、温度が変化してコイルや周囲の導電体の電気抵抗が変化することによる信号の変化(前述の温度ドリフト)が現れるが、電気伝導度の高い溶鉄がコイル上を通過することで信号に急激なピークが発生するため、バックグラウンド除去回路で温度ドリフトなどの影響をキャンセル演算した上で、信号の変化率に閾値を設けることによって、精度良く溶鉄の到達時刻を検出することができる。   FIG. 4 shows an example of plotting the time change of the peak value among the detection signals obtained in the example operation. The horizontal axis is the elapsed time, and the vertical axis is the peak value. As shown in this observation result, even when the same frequency and current are applied to the primary coil, it can be obtained as the induced electromotive force of the secondary coil under the influence of the electrical conductivity of the refractory and the attached metal during actual measurement. While the signal value differs, the change in signal (the above-mentioned temperature drift) due to the change in temperature and the change in the electrical resistance of the coil and surrounding conductors appears, but molten iron with high electrical conductivity passes over the coil Because a sharp peak occurs in the signal, the background removal circuit cancels the effect of temperature drift etc., and detects the arrival time of molten iron with high accuracy by setting the threshold for the rate of change of the signal. be able to.

前述のように、出湯孔からの流出物が溶鉄から溶融スラグに変化する現象を電磁的に検出する従来の方法において、実際には検出遅れが存在することが知られており、用途には制約がある。一般的に特許文献5に示されるような出鋼孔でのスラグ検知や、連続鋳造における取鍋スラグの終了判定の場合には、出鋼流や注入流に混入するスラグは、最初は流れの中心位置に少しずつ混入し、流れの表面部にスラグが出現するのはスラグ混入開始から遅れ時間経過後であることがわかっている。初期条件が溶鉄充満状態のノズル内にスラグが流入開始するときのインピーダンス変化を検出するものであるために、検出コイルの感度が最も悪い中心部からスラグが少しずつ流入を始める条件では閾値の設定が難しく、閾値を誤検知のない程度に設定する場合にはノズル内が殆どスラグで充満された状態で検知させることになってしまう。それに対し、本発明で対象とする傾動排滓での溶鉄検知の場合には、炉内の検出位置に溶鉄が到達するに際し、到達した溶鉄は炉壁の炉内側表面に沿って移動する。非電気伝導体であるスラグの流入に対して、電気伝導度の高い溶鉄が検出コイルに近い面を通過する現象に対して閾値が設けられるため、少量の溶鉄の通過に対しても大きな信号変化を検出でき、排滓時の溶鉄が多量に流出開始する前に容易に信号検知できるという構造上の利点がある。   As described above, in the conventional method of electromagnetically detecting a phenomenon in which the effluent from the tapping hole changes from molten iron to molten slag, it is known that a detection delay actually exists, which restricts the use There is. In the case of slag detection at the tapping hole as generally shown in Patent Document 5 or determination of the end of ladle slag in continuous casting, the slag mixed in the tapping steel flow or the injection flow is initially a flow of It is known that it is mixed little by little at the center position and slag appears on the surface of the flow after the delay time has elapsed from the start of slag mixing. Since the initial condition is to detect the change in impedance when slag starts to flow into the nozzle filled with molten iron, the threshold is set under the condition where slag starts to flow little by little from the central part where the sensitivity of the detection coil is the worst. In the case where the threshold value is set to such an extent that there is no false detection, it is detected in a state where the interior of the nozzle is almost full of slag. On the other hand, in the case of molten iron detection in the tilting displacement targeted in the present invention, when the molten iron reaches the detection position in the furnace, the reached molten iron moves along the furnace inner surface of the furnace wall. Since a threshold is set for the phenomenon that molten iron with high electrical conductivity passes near the detection coil against the inflow of slag, which is a non-electrical conductor, a large signal change occurs even for the passage of a small amount of molten iron There is a structural advantage that it can be detected and the signal can be easily detected before the start of a large amount of molten iron at the time of discharge.

従って、上記装置と原理に基づき、電気伝導度が溶鉄よりも著しく小さなスラグ排出時に、コイル上部の検出位置に溶鉄が到達したときに時間遅れなく信号値が急激に変化するので、この時点を溶鉄到達タイミングとして検出することができる。その結果、排出経路17のうちで排滓口(炉口2)の直前に検出コイル4を設置し、設置したコイル上部の検出位置18に溶鉄33が到達したタイミングで傾動を停止するなどの制御を実施することで、溶鉄33のスラグパン3への流出を抑制した傾動角にて排滓を実施することができる。   Therefore, based on the above apparatus and principle, when the molten iron reaches the detection position at the top of the coil when the slag is discharged when the electric conductivity is significantly smaller than the molten iron, the signal value changes rapidly without time delay. It can be detected as arrival timing. As a result, the detection coil 4 is installed immediately before the discharge port (furnace port 2) in the discharge path 17, and control such as stopping tilting at the timing when the molten iron 33 reaches the detection position 18 above the installed coil By carrying out the above, the displacement can be carried out at a tilt angle in which the outflow of the molten iron 33 to the slag pan 3 is suppressed.

本発明は、図1(B)に示すように、検出コイル4を排出経路内に複数有することとすると好ましい。これにより、排滓時間を短縮することができ、生産性の向上に大きく貢献する。図1(B)には傾動方向に向けて検出コイル4を2ケ所設けている図にて示しており、望ましい装置の一例である。スラグ排出時、傾動角度を大きくするに従って溶鉄存在領域が炉口2方向に移動する。この移動方向に対して複数の検出コイル4を設置する。炉口2から遠い側の検出コイル4を第1の検出コイル4A、炉口2に近い側の検出コイル4を第2の検出コイル4Bと名付ける。これにより、炉口2に向かって進行する溶鉄33が、それぞれの検出コイル4の検出位置18に到達するタイミングを個別に把握することができる。その効果の活用例としては、傾動開始から第1の検出コイル4Aの検出位置18に溶鉄が到達するまでは早い傾動速度にて排滓を実施し、第1の検出コイル4A位置に溶鉄が到達したことを検知して、その後、傾動速度を低下させる。次いで、第2の検出コイル4Bの検出位置に溶鉄が到達した時点で傾動を停止するなどの操業を行うことができる。従って、上記にて説明した装置を用いて傾動排滓操業を実施することで高速かつ歩留まりの高い傾動排滓を実施することが可能である。   In the present invention, as shown in FIG. 1B, it is preferable that a plurality of detection coils 4 be provided in the discharge path. This makes it possible to shorten the displacement time and greatly contributes to the improvement of productivity. FIG. 1B shows a diagram in which two detection coils 4 are provided in the tilting direction, which is an example of a desirable apparatus. At the time of slag discharge, the molten iron existing region moves in the direction of the furnace port 2 as the tilt angle is increased. A plurality of detection coils 4 are installed in the moving direction. The detection coil 4 on the side far from the furnace opening 2 is referred to as a first detection coil 4A, and the detection coil 4 on the side close to the furnace opening 2 is referred to as a second detection coil 4B. Thereby, the timing at which the molten iron 33 advancing toward the furnace port 2 reaches the detection position 18 of each detection coil 4 can be grasped individually. As an example of utilization of the effect, discharge is carried out at a high tilting speed until the molten iron reaches the detection position 18 of the first detection coil 4A from the tilting start, and the molten iron reaches the first detection coil 4A position After that, it decreases the tilting speed. Then, when the molten iron reaches the detection position of the second detection coil 4B, an operation such as stopping tilting can be performed. Therefore, it is possible to implement high-speed and high-yield tilt displacement by performing tilt displacement operation using the apparatus described above.

300t/ch程度の溶鉄精錬を実施する、耐火物12としてマグネシアカーボンを内張りした転炉1への実施を想定した場合には、検出コイル4を構成する導電コイル5が周囲の耐火物と共に加熱されることから、コイルの材質としては耐熱金属でコイルとしての加工性が良い材質が望ましく、例えば、絶縁被覆した1mmφ程度のモリブデンなどが適した材料として挙げられる。また、交流電流を印加した導電コイル5によって発生する磁場は、印加する電流とターン数の積に比例する。コイルのサイズ(直径)が大きい場合には磁束密度が低くなるなどの悪影響があるため、直径が700mmを超えるものは望ましくなく、また、コイル加工の観点から30mm以下の内径のものは一般的に製作が困難である。また、印加電流が高いと磁束は強くなる一方で、コイルの発熱による寿命低下などがあることから、10Aを超える電流を印加することは望ましくなく、コイルのターン数を5ターン以上にして「アンペア(A)×ターン(−)」増加を図ることで良好な設計ができる。また、二次コイル7はターン数を増加して誘導起電力の電圧感度を高めることができるため、一次コイル6と同様のサイズ、ターン数で設計することで差し支えはない。   Assuming that the implementation to the converter 1 which carries out molten iron refining of about 300 t / ch and is lined with magnesia carbon as the refractory 12, the conductive coil 5 which constitutes the detection coil 4 is heated together with the surrounding refractory. Therefore, the material of the coil is preferably a heat-resistant metal and a material having good processability as the coil, and examples of suitable materials include insulating-coated molybdenum of about 1 mmφ. Further, the magnetic field generated by the conductive coil 5 to which the alternating current is applied is proportional to the product of the applied current and the number of turns. If the size (diameter) of the coil is large, there is an adverse effect such as a decrease in magnetic flux density, so a coil with a diameter of more than 700 mm is not desirable. It is difficult to make. In addition, while the magnetic flux becomes strong when the applied current is high, the life of the coil is decreased due to heat generation, and so it is not desirable to apply a current exceeding 10 A. Good design can be achieved by increasing (A) x turn (-). Further, since the secondary coil 7 can increase the number of turns to enhance the voltage sensitivity of the induced electromotive force, designing with the same size and number of turns as the primary coil 6 is acceptable.

従って、本発明によって設置される検出コイルと配線類には、溶鉄精錬時にコイルに伝達される温度で電流印加、電圧測定できる材質であれば差し支えないことから、前述のモリブデンのような高融点(2903℃)金属やタングステン(3653℃)などが安価であり適している。   Therefore, the detection coil and the wiring installed according to the present invention may be made of any material that can apply current and measure voltage at the temperature transmitted to the coil at the time of molten iron refining, so high melting point (molybdenum 2903 ° C) metal and tungsten (3653 ° C) are inexpensive and suitable.

コイル変形や機械的な断線などのメンテナンスに対しては精錬容器が鍋型であれば、オフライン炉補修時に実施することで対応可能である。一方、転炉1のように稼働率の高い精錬容器を用いる場合は、耐火物内壁からの補修交換作業は極めて生産性を悪化させることから望ましくない。また、稼働中の転炉炉内は高温であり、炉内から行う補修作業は困難である。さらに、精錬容器か大型転炉である場合、図5に示すように、炉内のウェア煉瓦40を築造した直後はウェア煉瓦40の厚みが800mm程度であるのに対し、ウェア煉瓦40巻き替え直前においては損耗が進行し、ウェア煉瓦40の厚みが200mm程度まで減少する。本発明の検出コイル4は、溶鉄到達の検出感度を高めるためには炉内側表面16にできるだけ近い位置に設置することが好ましく、前述のように炉内側表面16から500mm以内に設けることが好ましい。ウェア煉瓦40内の検出コイル4の埋設位置を固定とすると、損耗が進行した際にも溶損されない位置(炉内側表面16から深い位置)に設置する必要が生じるため、ウェア煉瓦築造直後の煉瓦厚みが厚い時点では十分な検出精度を得ることができない。   It is possible to cope with maintenance such as coil deformation and mechanical disconnection by carrying out at the time of off-line furnace repair if the refining container is a pot type. On the other hand, in the case of using a smelting vessel having a high operation rate as in the converter 1, repair and replacement work from the inner wall of the refractory is not desirable because it greatly deteriorates the productivity. In addition, the inside of the converter furnace in operation is at a high temperature, and the repair work performed from the inside of the furnace is difficult. Furthermore, in the case of a refining container or a large converter, the thickness of the wear brick 40 is about 800 mm immediately after building the wear brick 40 in the furnace as shown in FIG. In the case, wear progresses and the thickness of the wear brick 40 decreases to about 200 mm. The detection coil 4 of the present invention is preferably placed as close as possible to the furnace inner surface 16 in order to enhance the detection sensitivity of molten iron arrival, and is preferably provided within 500 mm from the furnace inner surface 16 as described above. If the buried position of the detection coil 4 in the wear brick 40 is fixed, the brick needs to be installed at a position where it will not be melted away (at a deep position from the furnace inner surface 16) even when wear progresses. Sufficient detection accuracy can not be obtained when the thickness is thick.

それに対して本発明では、炉壁耐火物内に埋め込む検出コイル4を、鉄皮42外側からの交換可能に設ける方式を用いることにより、上記問題を解決することができる。即ち、検出コイル4をコイル交換ユニット22内に収納し、コイル交換ユニット22を精錬容器の外側から精錬容器の炉壁11内に着脱可能に装着する。その例として図5、図6には鉄皮42側からスリーブ交換方式のコイル交換ユニット22でコイル交換が可能な形式を参考図として示す。検出コイル4設置位置において、鉄皮42、パーマネント煉瓦41、ウェア煉瓦40のそれぞれに検出コイル設置用の孔21を設ける。検出コイル4を有するコイル交換ユニット22は、鉄皮42の外側から、当該孔21の中に挿入して設置する。コイル交換ユニット22は、図6(B)に示すように、外周をスリーブ煉瓦23とし、内部に検出コイル4を埋設し、スリーブ煉瓦23の内側を例えばマグネシア充填物24で充填する。検出コイル4を設置する位置(鉄皮42側からの長さ)は、その時点のウェア煉瓦40の残存厚みに対応して変更することができる。これにより、ウェア煉瓦40の残存厚みが逐次薄肉化するのに対応して、検出コイル4と炉内側表面16との間の距離を最適範囲に維持することが可能となる。   On the other hand, in the present invention, the above-mentioned problem can be solved by using a method in which the detection coil 4 embedded in the furnace wall refractory is replaceably provided from the outside of the iron shell 42. That is, the detection coil 4 is accommodated in the coil exchange unit 22, and the coil exchange unit 22 is detachably mounted in the furnace wall 11 of the refining vessel from the outside of the refining vessel. As an example, a form in which coil exchange can be performed by the coil exchange unit 22 of the sleeve exchange system from the side of the iron skin 42 is shown as a reference drawing in FIGS. At the installation position of the detection coil 4, holes 21 for installation of the detection coil are provided in the iron skin 42, the permanent brick 41, and the wear brick 40 respectively. The coil exchange unit 22 having the detection coil 4 is inserted into the hole 21 from the outside of the iron shell 42 and installed. As shown in FIG. 6B, the coil exchange unit 22 has the outer periphery as a sleeve brick 23, the detection coil 4 is embedded inside, and the inside of the sleeve brick 23 is filled with, for example, magnesia filler 24. The position (the length from the iron skin 42 side) at which the detection coil 4 is installed can be changed according to the remaining thickness of the wear brick 40 at that time. Thereby, it becomes possible to maintain the distance between detection coil 4 and furnace inner surface 16 in the optimal range in response to the remaining thickness of wear brick 40 becoming successively thinner.

コイル交換ユニット22を炉壁内に設置するに際しては、鉄皮42の孔21を通過させてコイル交換ユニット22を挿入し(図5)、コイル交換ユニットと孔との間の空隙は、マグネシア質の粉と水ガラスの混合物などで充填する。コイル交換ユニット22底部の着脱交換部25を鉄皮42に固定する。交流電流印加装置8、検出装置9との間の配線27は、オートジョイント配線29として検出コイル設置位置付近まで配線されている。オートジョイント配線29とは、交換ユニットを挿入したときにカプラー方式などで容易に検出器に接続するための配線を意味する。着脱交換部25の端子ボックス26内において、検出コイル4と交流電流印加装置8、検出装置9との間の配線27の接続を行う。   When installing the coil exchange unit 22 in the furnace wall, the coil exchange unit 22 is inserted by passing the hole 21 of the iron shell 42 (FIG. 5), and the space between the coil exchange unit and the hole is magnesian Fill with a mixture of powder and water glass. The detachable exchange unit 25 at the bottom of the coil exchange unit 22 is fixed to the iron shell 42. Wiring 27 between the alternating current application device 8 and the detection device 9 is wired as an auto joint wire 29 up to the vicinity of the detection coil installation position. The auto joint wire 29 means a wire for easily connecting to the detector by a coupler method or the like when the replacement unit is inserted. In the terminal box 26 of the attachment / detachment exchange unit 25, the wire 27 is connected between the detection coil 4 and the alternating current application device 8 and the detection device 9.

本発明の効果を検証するために、300t規模の上底吹き転炉を、本発明を適用した傾動型精錬装置として、傾動排滓方法を実施した。この転炉を用いたダブルスラグ吹錬操業実験の概要とその結果を示す。検出コイル4の設置位置は、図1(B)に示すように、排出経路17内であって、炉口下端部19の先端から500mm位置(第2の検出コイル4B)と、1500mm位置(第1の検出コイル4A)の2ケ所とした。それぞれに直径60mm、0.5mmφのMo質の絶縁コイル(20ターン)を一次コイル6と二次コイル7を同心軸にウェア煉瓦の炉内側表面16から70mmの深さに設置し、一次コイル6には300Hz、1A(実効値)の定電流を交流電流印加装置8で流しつつ、二次コイル7で発生する電圧のピーク電圧(実効値)を検出装置9でモニターしつつ傾動排滓実験を実施した。検出装置9で検出したピーク電圧が予め設定した閾値を超えたところで、溶鉄が検出位置に到達したものと認識した。   In order to verify the effect of the present invention, the tilting displacement method was implemented as a tilting type refinement device to which the present invention was applied as the upper bottom blowing converter of 300 t scale. The outline and results of the double slag blowing operation experiment using this converter are shown. The installation position of the detection coil 4 is, as shown in FIG. 1B, in the discharge path 17, 500 mm from the tip of the furnace lower end 19 (second detection coil 4B) and 1500 mm It was set as two places of 1 detection coil 4A). Insulating coils (20 turns) with a diameter of 60 mm and a diameter of 0.5 mm are respectively installed at a depth of 70 mm from the furnace inner surface 16 of the wear brick with the primary coil 6 and the secondary coil 7 as concentric axes. The constant current of 1 Hz (effective value) at 300 Hz and 1 A (effective value) is supplied by the alternating current application device 8, while the peak voltage (effective value) of the voltage generated in the secondary coil 7 is monitored by the detecting device 9 Carried out. When the peak voltage detected by the detection device 9 exceeded a preset threshold value, it was recognized that the molten iron reached the detection position.

初期溶銑の成分(質量%)は、4.0[C]−0.6[Si]−0.08[Mn]−0.15[P]−0.005[S]で溶銑の初期温度は1300〜1350℃で、第1吹錬前に生石灰を9t添加して40000Nm3/hの送酸速度で約6分の第1吹錬(脱燐精錬)を行った。その後、傾動排滓を実施して脱燐スラグの排滓を行った。排滓完了後に炉体を正転して塩基度2.5を目標に配合した生石灰と転炉スラグ混合の精錬剤を5t添加して70000Nm3/hで第2吹錬(脱炭精錬)して、吹止[C]0.04−0.07%,1635−1650℃で出鋼した。吹止[P]を評価し、吹止[P]が低いほど、傾動排滓での排滓率が高く、脱炭精錬における復燐現象が少なかったものと評価した。脱燐スラグの傾動排滓においてスラグパンに排出されたスラグと地金を粉砕、磁力選別して、地鉄の秤量値から溶銑ロスを評価した。 The component (mass%) of the initial molten iron is 4.0 [C] -0.6 [Si] -0.08 [Mn] -0.15 [P] -0.005 [S] and the initial temperature of the molten iron is At 1300 to 1350 ° C., 9 t of quick lime was added before the first blowing and the first blowing (dephosphorization refining) was carried out for about 6 minutes at an acid feed rate of 40,000 Nm 3 / h. Thereafter, tilting displacement was carried out to discharge the dephosphorized slag. After exhausting is complete, the furnace body is rotated forward to add 5 t of a refining agent mixed with quick lime and converter slag mixed with a target of basicity 2.5, and the second blowing (decarburizing refining) at 70000 Nm 3 / h Then, steel was tapped at blowoff [C] 0.04-0.07%, 1635-1650 ° C. The blow stop [P] was evaluated, and the lower the blow stop [P], the higher the displacement rate in the tilting displacement and the less the rephosphorization phenomenon in the decarburization refining was evaluated. The slag and the base metal discharged to the slag pan in the tilting displacement of dephosphorized slag were crushed and magnetically separated, and the hot metal loss was evaluated from the weighing value of the ground iron.

本発明の検出を用いない比較例においては、傾動速度は3°/秒で、目視にて溶銑流出が認められた時点で傾動を停止し、停止したままスラグ排出を継続した。この比較例および後述の実施例1〜3のいずれも、スラグの排出が認められなくなった時点で傾動排滓を終了して転炉を正転させた。   In the comparative example which does not use the detection of the present invention, the tilting speed was 3 ° / sec, and when the hot metal outflow was visually observed, the tilting was stopped, and the slag discharging was continued while stopping. In any of this comparative example and Examples 1 to 3 described later, the tilting displacement was finished and the converter was normally rotated when the discharge of the slag was not recognized.

実施例1として、傾動速度は3°/秒として傾動排滓を行い、先端から500mmの第2の検出コイル4Bの信号のみをモニターして溶鉄33が検出位置18に到達したことが確認された時点で傾動を停止して排滓を行った。   In Example 1, it was confirmed that the molten iron 33 reached the detection position 18 by performing tilting displacement with the tilting speed set to 3 ° / sec and monitoring only the signal of the second detection coil 4B 500 mm from the tip. At that time, the tilting was stopped and the patient was discharged.

また、実施例2は、先端から1500mmの第1の検出コイル4Aのモニター信号にて溶鉄33が検出されるまでは傾動速度を8°/秒の高速傾動とし、検出の後傾動速度を3°/秒に切り替えて、500mm位置の第2の検出コイル4Bのモニター信号が溶鉄を検出した時点で傾動を停止して排滓を行った。   In Example 2, the tilting speed is high-speed tilting at 8 ° / sec until the molten iron 33 is detected by the monitor signal of the first detection coil 4A 1500 mm from the tip, and the backward tilting speed of detection is 3 ° It switched to 1 / second, and when the monitor signal of the 2nd detection coil 4B of a 500-mm position detected a molten iron, tilting was stopped and drainage was performed.

更に実施例3は、先端から1500mmの第1の検出コイル4Aのモニター信号にて溶鉄が検出されるまでは傾動速度を8°/秒の高速傾動とし、検出の後傾動速度を1°/秒の低速傾動に切り替えて、500mm位置の第2の検出コイル4Bのモニター信号が溶鉄を検出した時点で傾動を停止して排滓を行うことにより、実施例2よりも高い歩留りを志向したものである。   Furthermore, in Example 3, until the molten iron is detected by the monitor signal of the first detection coil 4A of 1500 mm from the tip, the tilting speed is high-speed tilting at 8 ° / sec, and the backward tilting speed of detection is 1 ° / sec. By switching to low speed tilting and stopping the tilting when the monitor signal of the second detection coil 4B at the 500 mm position detects molten iron and performing displacement, it aims at a higher yield than in Example 2. is there.

上記実験によって得られた実験結果を表1に示す。ここで、メタルロスは、第1吹錬(脱燐精錬)後の傾動排滓で排出された鉄分ロスをスラグパン中の回収地金の秤量値から算定評価したものであり、第2吹錬時の鉄分酸化や第2排滓時に排出された鉄ロスを除いた値である。吹止[P]は第2吹錬(脱炭精錬)後にサブランスで採取したサンプルをOES法(カントバック法)にて分析した値である。   The experimental results obtained by the above experiment are shown in Table 1. Here, the metal loss is the iron loss that was discharged by tilting displacement after the first blowing (dephosphorization refining) was calculated and evaluated from the weighed value of the recovered metal in the slag pan, and at the time of the second blowing It is the value excluding the iron loss discharged at the time of iron content oxidation and the 2nd exhaustion. The blow stop [P] is a value obtained by analyzing the sample collected by sublance after the second blow (decarburization and refining) by the OES method (Kantback method).

ここでの排滓時間(秒)の定義は、第1吹錬を停止して上吹きランスを上昇させた後、傾動開始から排滓が完了して正転モードにステータスを切り換えたまでの時間で規定している。従ってこの排滓時間には、第1吹錬停止後のランス上昇時間や、炉口での過剰スラグフォーミング鎮静までの傾動待機時間、傾動排滓完了から正転、第2吹錬開始までのランス下降までの非吹錬時間を除外し、本発明の効果の一つである傾動排滓時間短縮効果を厳密に比較した値である。   The definition of displacement time (seconds) here is the time from the start of tilting to the completion of displacement and switching of the status to normal rotation mode after stopping the first blowing and raising the upper blowing lance. Is defined in. Therefore, during this discharge time, the lance rise time after the first blowing stop, the tilt standby time until excessive slag forming sedation at the furnace opening, the lance from the completion of the tilt discharge to the normal rotation, and the second blowing start It is the value which excluded the non-blowing time until descent, and compared strictly the tilting displacement time shortening effect which is one of the effects of the present invention.

Figure 2018178209
Figure 2018178209

実験の結果、比較例、実施例1〜3とも吹き止め[P]は目標値の0.02%以下を全て満足するものであり、傾動排滓によって脱燐スラグを十分に排滓できたことが認められた。   As a result of the experiment, in all of the comparative examples and Examples 1 to 3, the blow stop [P] satisfied all 0.02% or less of the target value, and the dephosphorization slag was able to sufficiently discharge the dephosphorized slag by tilting displacement. Was recognized.

基本条件(比較例)では溶銑ロスが第1吹錬後のメタルロスが2.7t/ch(歩留ロス0.9%)であった。これに対し、実施例1、2とも歩留まりロスを0.3%以下に抑制でき、本発明の実施によって傾動排滓操業における高歩留りの効果が著しいことを確認することができた。更に、検出器を2つ備えた実施例2では、メタルロスが発生しない時期の高速傾動を実施することができたことから、溶銑ロスは実施例1と同等レベルであることに加え、排滓時間を3割以上短縮でき、生産性を効果的に向上させることが可能であることを確認することができた。また、最終傾動速度を1°/秒にした実施例3では、排滓時間は比較例や実施例1と同等であったが、メタルロスを実施例2よりも大幅に削減することができた。実施例2では、第2の検出コイル4Bで溶鉄を検出すると同時に傾動を停止しているものの、傾動停止前の傾動速度が3°/秒であるため、炉口方向へ流れる溶鉄の流れを急停止することができず、一部の溶鉄が炉口2から流出した。これに対し実施例3では、傾動停止前の傾動速度が1°/秒であるため、傾動停止後に直ちに溶鉄の流れを停止することができ、炉口2からの溶鉄流出を防止できたものと推定される。従って、複数の検出コイル4を用いた装置での操業では、より多くの炉内状況が把握できるために、メタルロスを低位に維持しつつ排滓時間を短縮する操業(実施例2)や、メタルロスを極めて低位に抑制する操業(実施例3)などが実施できることを確認することができた。   Under the basic conditions (comparative example), the metal loss after the first blowing was 2.7 t / ch (yield loss 0.9%). On the other hand, the yield loss can be suppressed to 0.3% or less in Examples 1 and 2 and it can be confirmed that the effect of the high yield in the tilting displacement operation is remarkable by the implementation of the present invention. Furthermore, in the second embodiment having two detectors, high-speed tilting can be performed at a time when metal loss does not occur, so that the hot metal loss is at the same level as that of the first embodiment. Could be reduced by 30% or more, and it could be confirmed that it was possible to effectively improve the productivity. In addition, in Example 3 in which the final tilting speed was 1 ° / sec, the displacement time was equivalent to that of the comparative example and Example 1, but the metal loss could be significantly reduced as compared with Example 2. In the second embodiment, although the molten steel is detected by the second detection coil 4B and the tilting is stopped at the same time, the tilting speed before the tilting is 3 ° / sec. It was not possible to stop, and some molten iron flowed out of the furnace port 2. On the other hand, in Example 3, since the tilting speed before stopping the tilting was 1 ° / sec, it was possible to immediately stop the flow of molten iron after stopping the tilting and prevent the flow of molten iron from the furnace port 2 Presumed. Therefore, in an operation using an apparatus using a plurality of detection coils 4, an operation (Example 2) of shortening the displacement time while maintaining the metal loss at a low level can be performed because the inside of the furnace can be grasped more (Example 2) It could be confirmed that an operation (example 3) and the like can be carried out to suppress the above into a very low level.

本発明によって、転炉型精錬容器や電気炉、鍋型精錬容器などの傾動型精錬装置を用いた傾動排滓において、非接触にて排出部への溶鉄到達状況の把握が可能になることから、短時間にて高歩留りの排滓が実施でき、副剤(精錬剤)コストの低減とそれに伴うスラグ排出量の削減、生産性の向上など工業的利用価値の高い操業が実施できるなど工業的利用価値の高い操業が実施できる。   According to the present invention, in tilting displacement using a tilting type refining device such as a converter type refining vessel, an electric furnace, a pot type refining vessel, etc., it becomes possible to grasp the molten iron reaching condition to the discharge part without contact. Able to carry out high-yield scraping in a short time, reduce the cost of auxiliary agents (refining agents), reduce the amount of slag emissions accompanying it, and carry out operations with high industrial value such as productivity improvement etc. It is possible to carry out highly valuable operations.

1:転炉
2:炉口
3:スラグパン
4:検出コイル
5:導電コイル
6:一次コイル
7:二次コイル
8:交流電流印加装置
9:検出装置
10:カセットボックス
11:炉壁
12:耐火物
13:炉底部
14:炉腹部
15:炉上部
16:炉内側表面
17:排出経路
18:検出位置
19:炉口下端部
20:炉前側
21:孔
22:コイル交換ユニット
23:スリーブ煉瓦
24:マグネシア充填物
25:着脱交換部
26:端子ボックス
27:配線
28:オシロスコープ
29:オートジョイント配線
33:溶鉄
34:溶融スラグ
35 磁場
36 誘導電流
37:溶鉄到達前
38:溶鉄到達後
40:ウェア煉瓦
41:パーマネント煉瓦
42:鉄皮
51:ピーク値
52:位相値の変化
1: Converter 2: furnace opening 3: slag pan 4: detection coil 5: conductive coil 6: primary coil 7: secondary coil 8: alternating current application device 9: detection device 10: cassette box 11: furnace wall 12: refractory 13: furnace bottom 14: furnace abdomen 15: furnace top 16: furnace inside surface 17: discharge route 18: detection position 19: furnace mouth lower end 20: furnace front 21: hole 22: coil exchange unit 23: sleeve brick 24: magnesia Filling material 25: Detachable exchange unit 26: Terminal box 27: Wiring 28: Oscilloscope 29: Auto joint wiring 33: Molten iron 34: Molten slag 35 Magnetic field 36 Induction current 37: Molten iron arrival 38: Molten iron arrival 40: Wear brick 41: Permanent brick 42: iron shell 51: peak value 52: change in phase value

Claims (5)

精錬容器を傾動することのできる傾動型精錬装置において、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に溶融スラグが通過する経路を排出経路と称し、当該排出経路に接する精錬容器の炉壁内に検出コイルを有し、当該検出コイルは導電コイルを1個又は複数個有し、前記検出コイルに交流電流を印加する交流電流印加装置と、前記検出コイルにおける誘導起電力の変化又は検出コイルのインピーダンス変化を検出する検出装置とを備えることを特徴とする傾動型精錬装置。   In a tilting type refining apparatus capable of tilting a refining vessel, a path through which molten slag passes when discharging a molten slag in the refining vessel by tilting the refining vessel is referred to as a discharge path, and the refining vessel contacts the discharge path. A detection coil is provided in the furnace wall, the detection coil has one or a plurality of conductive coils, and an alternating current application device for applying an alternating current to the detection coil, and a change in induced electromotive force in the detection coil And a detection device for detecting a change in impedance of the detection coil. 前記検出コイルを、前記排出経路内に複数有することを特徴とする請求項1に記載の傾動型精錬装置。   The tilting type refinement device according to claim 1, wherein a plurality of the detection coils are provided in the discharge path. 前記検出コイルをコイル交換ユニット内に収納し、当該コイル交換ユニットを精錬容器の外側から精錬容器の炉壁内に着脱可能に装着してなることを特徴とする請求項1又は請求項2に記載の傾動型精錬装置。   The said detection coil is accommodated in a coil exchange unit, The said coil exchange unit is detachably mounted in the furnace wall of a refinement container from the outer side of a refinement container, It is characterized by the above-mentioned. Tilting type refining equipment. 請求項1から請求項3までのいずれか1項に記載の傾動型精錬装置を用いた傾動排滓方法であって、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に、前記検出装置で検出した誘導起電力の変化又はインピーダンス変化から、前記検出コイル設置位置に溶融金属が到達したことを検知し、当該検知に対応して精錬容器の傾動速度を減速し、あるいは傾動を停止することを特徴とする傾動排滓方法。   It is the tilting displacement method using the tilting type refinement | purification apparatus of any one of Claim 1- Claim 3, Comprising: When tilting a refinement container and discharging the molten slag in a refinement container, it is said It detects that the molten metal has reached the detection coil installation position from the change in the induced electromotive force detected by the detection device or the impedance change, and reduces the tilting speed of the refining vessel or stops the tilting in response to the detection. Tilt displacement method characterized by having. 請求項2又は請求項3に記載の傾動型精錬装置を用いた傾動排滓方法であって、精錬容器を傾動して精錬容器内の溶融スラグを排出する際に、前記検出装置で検出した誘導起電力の変化又はインピーダンス変化から、前記検出コイル設置位置に溶融金属が到達したことを検知し、第1の検出コイルに接続した検出装置で溶融金属の到達を検知したときに精錬容器の傾動速度を減速し、第2の検出コイルに接続した検出装置で溶融金属の到達を検知したときに傾動を停止することを特徴とする傾動排滓方法。   It is a tilting displacement method using the tilting type refinement device according to claim 2 or 3, and when the refinement container is tilted to discharge the molten slag in the refinement container, the induction detected by the detection device When the arrival of molten metal is detected by the detection device connected to the first detection coil by detecting that the molten metal has reached the detection coil installation position from the change in electromotive force or the change in impedance, the tilting speed of the refining vessel A second detection coil connected to the second detection coil to stop the tilting when the arrival of molten metal is detected.
JP2017081243A 2017-04-17 2017-04-17 Tilt-type refining device and tilt-removal method Active JP6939039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081243A JP6939039B2 (en) 2017-04-17 2017-04-17 Tilt-type refining device and tilt-removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081243A JP6939039B2 (en) 2017-04-17 2017-04-17 Tilt-type refining device and tilt-removal method

Publications (2)

Publication Number Publication Date
JP2018178209A true JP2018178209A (en) 2018-11-15
JP6939039B2 JP6939039B2 (en) 2021-09-22

Family

ID=64281346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081243A Active JP6939039B2 (en) 2017-04-17 2017-04-17 Tilt-type refining device and tilt-removal method

Country Status (1)

Country Link
JP (1) JP6939039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819759A (en) * 2019-11-20 2020-02-21 中国十七冶集团有限公司 Modular installation method for protective device of large top-bottom combined blown converter
CN113444854A (en) * 2020-03-26 2021-09-28 宝山钢铁股份有限公司 Full-automatic converter deslagging method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819759A (en) * 2019-11-20 2020-02-21 中国十七冶集团有限公司 Modular installation method for protective device of large top-bottom combined blown converter
CN113444854A (en) * 2020-03-26 2021-09-28 宝山钢铁股份有限公司 Full-automatic converter deslagging method and system
CN113444854B (en) * 2020-03-26 2022-06-24 宝山钢铁股份有限公司 Full-automatic converter deslagging method and system

Also Published As

Publication number Publication date
JP6939039B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
EP0240998A1 (en) Melting furnace and method for melting metal
US3663204A (en) Method of measuring the thickness of a slag layer on metal baths
CN106048129B (en) Converter high-carbon low-phosphorus terminal point control metallurgical method under a kind of phosphorus high ferro water condition
US3610601A (en) Apparatus for positioning a consumable lance
EP3433385A1 (en) Inert gas blanketing of electrodes in an electric arc furnace
JP6939039B2 (en) Tilt-type refining device and tilt-removal method
JP3721872B2 (en) Ladle for refining molten steel
JP6028755B2 (en) Method for melting low-sulfur steel
US20130167688A1 (en) Method of making low carbon steel using ferrous oxide and mineral carbonates
EP3380818A1 (en) A method and a system measuring liquid and solid materials in the process of converting iron to steel in metallurgical vessels or furnaces
US3505062A (en) Method for positioning an oxygen lance
US6500224B1 (en) Method for operating a steelmaking furnace during a steelmaking process
JPH07166222A (en) Operation of electric furnace
JP2004277830A (en) Steelmaking method in converter
JP2000192124A (en) Method for measuring molten material level in furnace hearth part of blast furnace and its instrument
JP4686880B2 (en) Hot phosphorus dephosphorization method
KR20200055286A (en) Determining apparatus the point of input of slag making agent and determining method the point of input of slag making agent and electric arc furnace operation method thereby
JP7158570B2 (en) Method for refining molten iron alloys with high efficiency
EP2737285A1 (en) Method and apparatus for measuring liquid metal height and the thickness of a slag layer in a metallurgical vessel
TWI704232B (en) Method for refining molten iron alloy excellent in efficiency
JP7139877B2 (en) Ladle refining method for molten steel
KR20000043436A (en) Method for measuring height of molten ingot steel in blast furnace
Teoh Developments in non-vacuum ladle furnaces
JPH09165613A (en) Scrap melting method
EP3954788A1 (en) Converter furnace equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151