JPH0989616A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH0989616A
JPH0989616A JP7266328A JP26632895A JPH0989616A JP H0989616 A JPH0989616 A JP H0989616A JP 7266328 A JP7266328 A JP 7266328A JP 26632895 A JP26632895 A JP 26632895A JP H0989616 A JPH0989616 A JP H0989616A
Authority
JP
Japan
Prior art keywords
phase
ultrasonic
vibration
signal
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7266328A
Other languages
Japanese (ja)
Inventor
Yutaka Inada
豊 稲田
Koichi Tashiro
耕一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP7266328A priority Critical patent/JPH0989616A/en
Publication of JPH0989616A publication Critical patent/JPH0989616A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flowmeter for properly measuring flow rate by generating an ultrasonic vibration with the maximum amplitude. SOLUTION: A flow-rate meter has a filter 13 for inputting the ultrasonic vibration of a piezoelectric ceramic body 6 of an ultrasonic converter 3 for transmitting signal, an amplifier 14 for amplifying a signal from the filter 13, and a phase control circuit 15 for outputting a drive signal A for driving the piezoelectric ceramic body 6 by setting a phase based on the phase difference between the phase of a signal from the amplifier 14 and that of ultrasonic vibration to the piezoelectric ceramic body 6. A phase control circuit 15 can set the phase of the drive signal A based on the phase difference between the phase of a signal from the amplifier 14 and that of ultrasonic vibration and can output the drive signal A with the same phase as that of ultrasonic vibration, thus maximizing the amplitude of the ultrasonic vibration and stably measuring flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を計測
する超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring a flow rate of a fluid.

【0002】[0002]

【従来の技術】従来の超音波流量計の一例として、超音
波の送、受信機能をそれぞれ有する一対の超音波変換器
を備え、一対の超音波変換器のうち一方から他方に送信
される超音波が流体の流れにより受ける変化に基づいて
流体の流量を計測するものがある。
2. Description of the Related Art As an example of a conventional ultrasonic flowmeter, a pair of ultrasonic transducers each having a function of transmitting and receiving an ultrasonic wave are provided, and an ultrasonic wave transmitted from one of the pair of ultrasonic transducers to the other is provided. There is a method in which the flow rate of a fluid is measured based on a change in sound waves caused by the flow of the fluid.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した超
音波流量計では、最大振幅の超音波を発生すれば適正な
計測が図れるので、最大振幅の超音波を発生することが
望まれる。このような要望に対して超音波変換器の温度
を計測し、この計測値に基づいて超音波周波数を調整す
るように構成したものがあるが、この超音波流量計で
は、温度情報の誤差等により共振周波数とのずれを発生
しやすく、必ずしも上述した要望に応えられていないと
いうのが実情であった。
By the way, in the above-mentioned ultrasonic flowmeter, it is desirable to generate the ultrasonic wave of the maximum amplitude because proper measurement can be achieved if the ultrasonic wave of the maximum amplitude is generated. In response to such a demand, there is a configuration in which the temperature of the ultrasonic transducer is measured and the ultrasonic frequency is adjusted based on the measured value. As a result, a deviation from the resonance frequency is likely to occur, and the above-mentioned demand has not always been met.

【0004】本発明は、上記事情に鑑みてなされたもの
で、最大振幅の超音波振動を発生し適正な流量計測を行
える超音波流量計を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic flowmeter capable of generating ultrasonic vibration of maximum amplitude and performing proper flow rate measurement.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
超音波の送、受信機能を有する一対の超音波変換器を備
え、前記一対の超音波変換器のうち一方から他方に送信
される超音波が流体の流れにより受ける変化に基づいて
流体の流量を計測する超音波流量計において、前記一方
の超音波変換器の送信部の超音波振動を検出する振動検
出手段と、該振動検出手段からの信号を増幅する増幅手
段と、該増幅手段からの信号の位相と前記送信部の超音
波振動の位相との位相差に基づいて前記送信部を駆動す
る駆動信号の位相を設定して該駆動信号を前記送信部に
出力する位相制御部とを有することを特徴とする。
According to the first aspect of the present invention,
A pair of ultrasonic transducers having a function of transmitting and receiving ultrasonic waves is provided, and the flow rate of the fluid is changed based on the change in the ultrasonic waves transmitted from one of the pair of ultrasonic transducers to the other due to the flow of the fluid. In an ultrasonic flow meter for measurement, a vibration detecting means for detecting ultrasonic vibration of the transmitting portion of the one ultrasonic transducer, an amplifying means for amplifying a signal from the vibration detecting means, and a signal from the amplifying means. And a phase controller that sets the phase of the drive signal that drives the transmitter based on the phase difference between the phase of the ultrasonic vibration of the transmitter and outputs the drive signal to the transmitter. Is characterized by.

【0006】このような構成とすれば、位相制御部が増
幅手段からの信号の位相と超音波振動の位相との位相差
に基づいて駆動信号の位相を設定することが可能であ
り、超音波振動の位相と同等位相とした駆動信号を出力
することにより超音波振動の振幅が最大値になる。
With such a configuration, the phase control section can set the phase of the drive signal based on the phase difference between the phase of the signal from the amplifying means and the phase of the ultrasonic vibration. The amplitude of the ultrasonic vibration reaches the maximum value by outputting the drive signal having the same phase as the vibration phase.

【0007】請求項2記載の発明は、請求項1記載の構
成において、一方の超音波変換器の送信部の温度を検出
する送信側温度検出手段を設け、前記位相制御部は、前
記送信側温度検出手段の検出データに基づいて駆動信号
の位相を調整することを特徴とする。
According to a second aspect of the present invention, in the structure according to the first aspect, a transmission side temperature detecting means for detecting the temperature of the transmission section of one ultrasonic transducer is provided, and the phase control section is provided for the transmission side. The phase of the drive signal is adjusted based on the detection data of the temperature detecting means.

【0008】このような構成とすれば、位相制御部が、
送信側温度検出手段の検出データに基づいて駆動信号の
位相を調整する。
With such a configuration, the phase control unit
The phase of the drive signal is adjusted based on the detection data of the transmission side temperature detecting means.

【0009】請求項3記載の発明は、請求項1記載の構
成において、一方の超音波変換器の送信部の温度を検出
する送信側温度検出手段と、前記他方の超音波変換器の
受信部の温度を検出する受信側温度検出手段とを設け、
前記位相制御部は、前記送、受信側温度検出手段の検出
データに基づいて駆動信号の位相を調整することを特徴
とする。
According to a third aspect of the present invention, in the structure according to the first aspect, a transmitting side temperature detecting means for detecting the temperature of the transmitting section of one ultrasonic transducer, and a receiving section of the other ultrasonic transducer. And a receiving side temperature detecting means for detecting the temperature of
The phase control unit adjusts the phase of the drive signal based on the detection data of the temperature detecting means on the sending and receiving sides.

【0010】このような構成とすれば、位相制御部が、
送、受信側温度検出手段の検出データに基づいて駆動信
号の位相を調整する。
With this structure, the phase control section
The phase of the drive signal is adjusted based on the detection data of the temperature detecting means on the sending and receiving sides.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1実施の形態の
超音波流量計を図1及び図2に基づいて説明する。図に
おいて、流体が流れる管1内には、カルマン渦を発生さ
せる渦発生柱2が設けられている。管1内の渦発生領域
を間にして、超音波の送、受信機能をそれぞれ有する一
対の超音波変換器3,4が、管1に設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION An ultrasonic flowmeter according to a first embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, a vortex generating column 2 for generating a Karman vortex is provided in a pipe 1 through which a fluid flows. The tube 1 is provided with a pair of ultrasonic transducers 3 and 4 each having a function of transmitting and receiving ultrasonic waves with the vortex generation region in the tube 1 in between.

【0012】一対の超音波変換器3,4のうち一方の超
音波変換器(以下、送信用超音波変換器という。)3に
駆動回路5が接続されており、駆動信号Aを送信用超音
波変換器3に出力して送信用超音波変換器3の圧電セラ
ミックス体6を振動させ超音波Bを発生させる。送信用
超音波変換器3からの超音波Bが渦発生領域を通ってカ
ルマン渦により変調されて他方の超音波変換器(以下、
受信側超音波変換器という。)4に受信される。受信側
超音波変換器4には、渦信号検出器7が接続されてお
り、受信側超音波変換器4が受信する信号と駆動回路5
が出力する駆動信号Aとを比較して変調成分を取り出
し、渦の発生周波数を示すパルス状の渦信号Dを出力す
る。そして、渦信号Dに基づいて図示しない計測部が流
体の流量を求める。
A drive circuit 5 is connected to one of the pair of ultrasonic transducers 3 and 4 (hereinafter referred to as transmitting ultrasonic transducer) 3 and a driving signal A is transmitted to the transmitting ultrasonic transducer 3. The ultrasonic wave is output to the acoustic wave transducer 3 to vibrate the piezoelectric ceramic body 6 of the transmitting ultrasonic wave transducer 3 to generate ultrasonic waves B. The ultrasonic wave B from the transmitting ultrasonic wave transducer 3 passes through the vortex generation region and is modulated by the Karman vortex so that the other ultrasonic wave transducer (hereinafter,
It is called a receiving ultrasonic transducer. ) 4 is received. A vortex signal detector 7 is connected to the reception-side ultrasonic transducer 4, and signals received by the reception-side ultrasonic transducer 4 and the drive circuit 5 are connected.
Is compared with the drive signal A output by the pulse generator to extract the modulation component, and the pulsed vortex signal D indicating the vortex generation frequency is output. Then, based on the vortex signal D, a measuring unit (not shown) determines the flow rate of the fluid.

【0013】送信用超音波変換器3には、略矩形の圧電
セラミックス体6(送信部)が設けられており、駆動信
号Aに応じて振動し超音波Bを発生する。圧電セラミッ
クス体6は、一面側(図2の下側)に共通電極8を設
け、この一面側が管1に近接して配置され、該一面側に
対向する他面側(図2の上側)に、駆動電極9及び振動
検出電極(振動検出手段)10を設けている。この場
合、駆動電極9及び振動検出電極10は分割形成された
ものになっている。図2中、11は筐体であり、圧電セ
ラミックス体6、駆動電極9及び振動検出電極10を支
持する。
The transmitting ultrasonic transducer 3 is provided with a substantially rectangular piezoelectric ceramic body 6 (transmitting portion), which vibrates in response to a drive signal A to generate an ultrasonic wave B. The piezoelectric ceramic body 6 is provided with a common electrode 8 on one surface side (lower side in FIG. 2), the one surface side is arranged close to the tube 1, and the other surface side (upper side in FIG. 2) facing the one surface side is arranged. A drive electrode 9 and a vibration detection electrode (vibration detection means) 10 are provided. In this case, the drive electrode 9 and the vibration detection electrode 10 are formed separately. In FIG. 2, reference numeral 11 denotes a housing, which supports the piezoelectric ceramic body 6, the drive electrode 9, and the vibration detection electrode 10.

【0014】駆動回路5は、直列接続されたフィルタ1
3、増幅器14、位相制御回路15を有し、駆動電極
9、振動検出電極10と共に、振動帰還発振回路12を
構成する。本超音波流量計には電源16が備えられてお
り、この電源16には、前記フィルタ13、増幅器1
4、位相制御回路15がそれぞれ並列に接続されてい
る。
The driving circuit 5 is a filter 1 connected in series.
3, the amplifier 14, and the phase control circuit 15, and together with the drive electrode 9 and the vibration detection electrode 10, constitute the vibration feedback oscillation circuit 12. The ultrasonic flowmeter is equipped with a power supply 16, and the power supply 16 includes the filter 13 and the amplifier 1.
4, the phase control circuit 15 is connected in parallel.

【0015】圧電セラミックス体6は圧力を受けて振動
すると、その振動に応じた大きさの電圧を発生し、これ
に応じて振動検出電極10が、その電圧を受けて圧電セ
ラミックス体6の振動を検出し、検出した振動信号Eを
フィルタ13に出力する。フィルタ13は、振動信号E
から不要な周波数成分を除去し、送信用超音波変換器3
の動作周波数付近の周波数成分を抽出して増幅器14に
出力する。
When the piezoelectric ceramic body 6 vibrates under pressure, a voltage having a magnitude corresponding to the vibration is generated, and in response to this, the vibration detection electrode 10 receives the voltage and vibrates the piezoelectric ceramic body 6. The detected vibration signal E is output to the filter 13. The filter 13 has a vibration signal E
The unnecessary ultrasonic wave component is removed from the
The frequency component in the vicinity of the operating frequency is extracted and output to the amplifier 14.

【0016】増幅器14は、フィルタ13からの信号を
増幅して、所望の大きさ(圧電セラミックス体6を充分
振動し得る大きさ)にし、増幅した信号を位相制御回路
15に出力する。
The amplifier 14 amplifies the signal from the filter 13 to a desired size (a size sufficient to vibrate the piezoelectric ceramic body 6) and outputs the amplified signal to the phase control circuit 15.

【0017】位相制御回路15は、増幅信号の位相をシ
フトし、駆動信号Aの位相が圧電セラミックス体6の振
動(振動信号E)の位相と等しくなるようにする。位相
制御回路15の移相量(シフト量)は、フィルタ13及
び増幅器14の位相回転量と、圧電セラミックス体6の
振動と振動信号Eとの位相差量によって決定され、この
移相量は、あらかじめ設定されている。ここで、フィル
タ13及び増幅器14の位相回転量と、圧電セラミック
ス体6の振動と前記振動信号Eとの位相差量は、温度や
圧力等の外部要因では大きく変化しないものである。
The phase control circuit 15 shifts the phase of the amplified signal so that the phase of the drive signal A becomes equal to the phase of the vibration of the piezoelectric ceramic body 6 (vibration signal E). The amount of phase shift (shift amount) of the phase control circuit 15 is determined by the amount of phase rotation of the filter 13 and the amplifier 14, and the amount of phase difference between the vibration of the piezoelectric ceramic body 6 and the vibration signal E. It is preset. Here, the amount of phase rotation of the filter 13 and the amplifier 14 and the amount of phase difference between the vibration of the piezoelectric ceramic body 6 and the vibration signal E do not change significantly due to external factors such as temperature and pressure.

【0018】上述したように構成した超音波流量計で
は、位相制御回路15が増幅器14からの信号の位相を
あらかじめ設定した移相量分シフトし、圧電セラミック
ス体6の振動の位相と同等の位相を有する駆動信号Aを
生成し、この駆動信号Aを圧電セラミックス体6に出力
する。すると、駆動信号Aの位相が圧電セラミックス体
6の振動の位相が同等であることにより、圧電セラミッ
クス体6の振動(振動信号E)の振幅は最大となり、安
定した、かつ良好な流量計測を行うことができる。
In the ultrasonic flowmeter constructed as described above, the phase control circuit 15 shifts the phase of the signal from the amplifier 14 by a preset phase shift amount, and a phase equivalent to the phase of vibration of the piezoelectric ceramic body 6. Is generated and the drive signal A is output to the piezoelectric ceramic body 6. Then, since the phase of the drive signal A is the same as the phase of the vibration of the piezoelectric ceramic body 6, the amplitude of the vibration (vibration signal E) of the piezoelectric ceramic body 6 becomes maximum, and stable and favorable flow rate measurement is performed. be able to.

【0019】また、温度、圧力変化によりほとんど変化
しない位相回転量、位相差量に基づいて移相量を設定
し、この移相量分、駆動信号Aの位相がシフトされて最
大振幅の振動信号Eを発生するので、仮に温度や圧力の
変動が生じても大きな超音波Bが得られ、ひいては安定
した流量計測を図ることができる。
Further, the phase shift amount is set based on the amount of phase rotation and the amount of phase difference that hardly change due to temperature and pressure changes, and the phase of the drive signal A is shifted by the amount of this phase shift and the vibration signal of maximum amplitude is set. Since E is generated, a large ultrasonic wave B can be obtained even if the temperature or pressure fluctuates, and thus stable flow rate measurement can be achieved.

【0020】図3は、さらに安定した超音波送受信を行
うための本発明の第2実施の形態の超音波流量計を示
す。
FIG. 3 shows an ultrasonic flowmeter according to a second embodiment of the present invention for performing more stable ultrasonic wave transmission / reception.

【0021】圧電セラミックス体6の超音波振動と振動
信号Eとの位相差は、圧電セラミックス体6内部での駆
動電極9から振動検出電極10までの伝達特性によって
生じるものであり、これは温度変化によってわずかなが
ら変化する。そのため、図1、図2の超音波流量計のよ
うに位相制御回路15での移相量を一定にすると、温度
変化による超音波送受信状態の変化が生じることにな
る。一方、圧電セラミックス体6での伝達特性の温度変
化割合は、事前に確認できる。そこで、図3に示すよう
に送信用超音波変換器3の温度を測定して温度信号Fを
出力する温度検出器(以下、送信側温度検出器とい
う。)20を設け、位相制御回路15Aが、温度信号F
に基づいてあらかじめ設定した移相量を補正して、駆動
信号Aの周波数を圧電セラミックス体6の共振周波数と
一致させ、温度変化に伴う超音波送受信の変化を最小に
するようにしている。
The phase difference between the ultrasonic vibration of the piezoelectric ceramics body 6 and the vibration signal E is caused by the transfer characteristic from the drive electrode 9 to the vibration detection electrode 10 inside the piezoelectric ceramics body 6, and this is due to the temperature change. Changes slightly depending on. Therefore, if the amount of phase shift in the phase control circuit 15 is constant as in the ultrasonic flowmeters of FIGS. 1 and 2, the ultrasonic transmission / reception state changes due to temperature changes. On the other hand, the temperature change rate of the transfer characteristic of the piezoelectric ceramic body 6 can be confirmed in advance. Therefore, as shown in FIG. 3, a temperature detector (hereinafter, referred to as a transmission side temperature detector) 20 that measures the temperature of the transmitting ultrasonic transducer 3 and outputs the temperature signal F is provided, and the phase control circuit 15A is provided. , Temperature signal F
The amount of phase shift set in advance is corrected on the basis of the above to match the frequency of the drive signal A with the resonance frequency of the piezoelectric ceramic body 6 to minimize the change in ultrasonic transmission / reception due to temperature change.

【0022】次に、本発明の第3実施の形態を図4に基
づいて説明する。この超音波流量計は図3に示す超音波
流量計に比して、受信側超音波変換器4にその温度を検
出する温度検出器(以下、受信側温度検出器という。)
21を設けたこと、送信側温度検出器20の検出値と受
信側温度検出器21の検出値との差分を求める温度差判
定器22を設けたこと、かつ図3の位相制御回路15A
に代えて、位相制御回路15Bを設けたことが異なって
いる。
Next, a third embodiment of the present invention will be described with reference to FIG. Compared with the ultrasonic flowmeter shown in FIG. 3, this ultrasonic flowmeter has a temperature detector for detecting the temperature of the ultrasonic transducer 4 on the receiving side (hereinafter referred to as temperature detector on the receiving side).
21 is provided, a temperature difference determiner 22 that obtains a difference between the detection value of the transmission side temperature detector 20 and the detection value of the reception side temperature detector 21 is provided, and the phase control circuit 15A of FIG.
Instead, the phase control circuit 15B is provided.

【0023】位相制御回路15Bは、送信側、受信側温
度検出器20,21の検出信号の差分が一定以上の場
合、あらかじめ設定した移相量を補正し、駆動信号Aの
周波数を送信側、受信側の圧電セラミックス体6,6の
共振周波数の中間の値になるようにする。
The phase control circuit 15B corrects a preset phase shift amount when the difference between the detection signals of the transmitting side and receiving side temperature detectors 20 and 21 is equal to or more than a certain value, and the frequency of the drive signal A is set to the transmitting side. It is set to an intermediate value between the resonance frequencies of the piezoelectric ceramic bodies 6 and 6 on the receiving side.

【0024】この超音波流量計では、仮に温度差により
送信用、受信用超音波変換器3,4に送受信特性の差が
生じているような場合にも送受信特性の低下を最小限に
留めることができ、ひいては適正な超音波送受信が図れ
て安定した流量計測が可能となる。
In this ultrasonic flowmeter, even if there is a difference in the transmission / reception characteristics between the transmission and reception ultrasonic transducers 3 and 4 due to the temperature difference, the deterioration of the transmission / reception characteristics should be minimized. As a result, stable ultrasonic wave transmission / reception can be achieved and stable flow rate measurement can be performed.

【0025】なお、上記実施の形態では、カルマン渦に
より超音波が変調されることを利用して流量計測を行
う、いわゆる超音波渦流量計を例にしたが、本発明は、
これに限らず、カルマン渦を利用しないタイプの超音波
流量計であってもよい。
In the above embodiment, the so-called ultrasonic vortex flowmeter, which measures the flow rate by utilizing the modulation of the ultrasonic waves by the Karman vortex, has been taken as an example.
The present invention is not limited to this, and may be an ultrasonic flowmeter of a type that does not utilize Karman vortex.

【0026】[0026]

【発明の効果】本発明は、位相制御部が増幅手段からの
信号の位相と超音波振動の位相との位相差に基づいて駆
動信号の位相を設定することが可能であり、超音波振動
の位相と同等位相とした駆動信号を出力することにより
超音波振動の振幅が最大値になり、安定した流量計測を
図ることができる。
According to the present invention, the phase control section can set the phase of the drive signal based on the phase difference between the phase of the signal from the amplifying means and the phase of the ultrasonic vibration. By outputting the drive signal having the same phase as the phase, the amplitude of ultrasonic vibration reaches the maximum value, and stable flow rate measurement can be achieved.

【0027】また、一方の超音波変換器の送信部の温度
を検出する送信側温度検出手段を設け、位相制御部が、
送信側温度検出手段の検出データに基づいて駆動信号の
位相を調整することにより、温度変化に伴う超音波送受
信の変化を最小にすることができる。
Further, a transmission side temperature detecting means for detecting the temperature of the transmitting section of one ultrasonic transducer is provided, and the phase control section is
By adjusting the phase of the drive signal based on the detection data of the transmitting side temperature detecting means, it is possible to minimize the change in ultrasonic transmission / reception due to the temperature change.

【0028】また、一方の超音波変換器の送信部の温度
を検出する送信側温度検出手段と、他方の超音波変換器
の受信部の温度を検出する受信側温度検出手段とを設
け、位相制御部が、送、受信側温度検出手段の検出デー
タに基づいて駆動信号の位相を調整することにより、仮
に温度差により一対の超音波変換器に送受信特性の差が
生じているような場合にも送受信特性の低下を最小限に
留めることができ、ひいては適正な超音波送受信が図れ
て安定した流量計測が可能となる。
Further, a transmitting side temperature detecting means for detecting the temperature of the transmitting section of one ultrasonic transducer and a receiving side temperature detecting means for detecting the temperature of the receiving section of the other ultrasonic transducer are provided, and the phase is set. When the control unit adjusts the phase of the drive signal based on the detection data of the sending and receiving side temperature detecting means, in the case where a difference in transmission and reception characteristics occurs between the pair of ultrasonic transducers due to the temperature difference. Also, the deterioration of the transmission / reception characteristics can be suppressed to a minimum, and by extension, proper ultrasonic transmission / reception can be achieved and stable flow rate measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施の形態の超音波流量計を模式
的に示す図である。
FIG. 1 is a diagram schematically showing an ultrasonic flowmeter according to a first embodiment of the present invention.

【図2】同超音波流量計の送信側を模式的に示す図であ
る。
FIG. 2 is a diagram schematically showing a transmitting side of the ultrasonic flow meter.

【図3】本発明の第2実施の形態の超音波流量計を模式
的に示す図である。
FIG. 3 is a diagram schematically showing an ultrasonic flowmeter according to a second embodiment of the present invention.

【図4】本発明の第3実施の形態の超音波流量計を模式
的に示す図である。
FIG. 4 is a diagram schematically showing an ultrasonic flowmeter according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 送信用超音波変換器 4 受信用超音波変換器 5 駆動回路 6 圧電セラミックス体 10 振動検出電極 13 フィルタ 14 増幅器 15 位相制御回路 3 Ultrasonic Transducer for Transmission 4 Ultrasonic Transducer for Reception 5 Drive Circuit 6 Piezoelectric Ceramics Body 10 Vibration Detection Electrode 13 Filter 14 Amplifier 15 Phase Control Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超音波の送、受信機能を有する一対の超
音波変換器を備え、前記一対の超音波変換器のうち一方
から他方に送信される超音波が流体の流れにより受ける
変化に基づいて流体の流量を計測する超音波流量計にお
いて、前記一方の超音波変換器の送信部の超音波振動を
検出する振動検出手段と、該振動検出手段からの信号を
増幅する増幅手段と、該増幅手段からの信号の位相と前
記送信部の超音波振動の位相との位相差に基づいて前記
送信部を駆動する駆動信号の位相を設定して該駆動信号
を前記送信部に出力する位相制御部とを有することを特
徴とする超音波流量計。
1. A pair of ultrasonic transducers having a function of transmitting and receiving ultrasonic waves, the ultrasonic wave being transmitted from one of the pair of ultrasonic transducers to the other based on a change caused by a fluid flow. In an ultrasonic flowmeter for measuring the flow rate of a fluid, a vibration detecting means for detecting ultrasonic vibration of the transmitting portion of the one ultrasonic transducer, an amplifying means for amplifying a signal from the vibration detecting means, Phase control for setting the phase of the drive signal for driving the transmitter based on the phase difference between the phase of the signal from the amplifier and the phase of the ultrasonic vibration of the transmitter and outputting the drive signal to the transmitter. And an ultrasonic flowmeter.
【請求項2】 前記一方の超音波変換器の送信部の温度
を検出する送信側温度検出手段を設け、前記位相制御部
は、前記送信側温度検出手段の検出データに基づいて駆
動信号の位相を調整することを特徴とする請求項1記載
の超音波流量計。
2. A transmission side temperature detecting means for detecting a temperature of a transmitting section of the one ultrasonic transducer is provided, and the phase control section controls the phase of the drive signal based on the detection data of the transmitting side temperature detecting means. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is adjusted.
【請求項3】 前記一方の超音波変換器の送信部の温度
を検出する送信側温度検出手段と、前記他方の超音波変
換器の受信部の温度を検出する受信側温度検出手段とを
設け、前記位相制御部は、前記送、受信側温度検出手段
の検出データに基づいて駆動信号の位相を調整すること
を特徴とする請求項1記載の超音波流量計。
3. A transmitting side temperature detecting means for detecting a temperature of a transmitting section of the one ultrasonic transducer, and a receiving side temperature detecting means for detecting a temperature of a receiving section of the other ultrasonic transducer. The ultrasonic flowmeter according to claim 1, wherein the phase controller adjusts the phase of the drive signal based on the detection data of the temperature detecting means on the sending and receiving sides.
JP7266328A 1995-09-20 1995-09-20 Ultrasonic flowmeter Pending JPH0989616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266328A JPH0989616A (en) 1995-09-20 1995-09-20 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266328A JPH0989616A (en) 1995-09-20 1995-09-20 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH0989616A true JPH0989616A (en) 1997-04-04

Family

ID=17429408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266328A Pending JPH0989616A (en) 1995-09-20 1995-09-20 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH0989616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215143A (en) * 2000-02-02 2001-08-10 Ricoh Elemex Corp Ultrasonic measuring apparatus
JP2008164464A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound output element
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215143A (en) * 2000-02-02 2001-08-10 Ricoh Elemex Corp Ultrasonic measuring apparatus
JP2008164464A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound output element
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter

Similar Documents

Publication Publication Date Title
JPH0791997A (en) Method and device for measuring flow rate or flow speed of liquid
JPH0989616A (en) Ultrasonic flowmeter
JP2003014515A (en) Ultrasonic flowmeter
JP3692689B2 (en) Flowmeter
JP4562425B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JPH06343200A (en) Ultrasonic wave transmitter
JP2005337937A (en) Air bubble sensor
JP2000298047A (en) Ultrasonic flow meter
JP2001116599A (en) Ultrasonic flowmeter
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP2991211B2 (en) Ultrasonic sensor
JP2903781B2 (en) Ultrasonic transducer drive circuit
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JPH10239123A (en) Ultrasonic flowmeter
JP3144177B2 (en) Vortex flow meter
JP3251378B2 (en) Ultrasonic flow meter for gas
JP2012107874A (en) Ultrasonic flowmeter
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP2011007764A (en) Ultrasonic level meter
JP2005300244A (en) Ultrasonic flow meter
JP6532504B2 (en) Ultrasonic flow meter
JP2006275814A (en) Ultrasonic flowmeter
JP2001249038A (en) Flow-rate measuring apparatus
JP2002296084A (en) Ultrasonic vortex flowmeter