JPH0985106A - Regeneration method for ion exchange resin - Google Patents

Regeneration method for ion exchange resin

Info

Publication number
JPH0985106A
JPH0985106A JP7243155A JP24315595A JPH0985106A JP H0985106 A JPH0985106 A JP H0985106A JP 7243155 A JP7243155 A JP 7243155A JP 24315595 A JP24315595 A JP 24315595A JP H0985106 A JPH0985106 A JP H0985106A
Authority
JP
Japan
Prior art keywords
exchange resin
separation
water
ion exchange
regeneration tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7243155A
Other languages
Japanese (ja)
Other versions
JP3852487B2 (en
Inventor
Takeshi Tsurumi
武 鶴見
Shuji Yoda
修二 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24315595A priority Critical patent/JP3852487B2/en
Publication of JPH0985106A publication Critical patent/JPH0985106A/en
Application granted granted Critical
Publication of JP3852487B2 publication Critical patent/JP3852487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regeneration method of ion exchange resin capable of improving separation property of the ion exchange resin in a short time at a low cost without using a new equipment and a chemical. SOLUTION: Transfer of the ion exchange resin 2 from a desalting tower 1 is started in a state pressured holding preserved water 11 in a separation regeneration tower 3, and the water flowing into the separation regeneration tower 3 is not discharge from a water discharge path 6 in the lower part but discharged only from the upper discharge paths 8, 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は混床を形成している
イオン交換樹脂の再生方法に関する。
TECHNICAL FIELD The present invention relates to a method for regenerating an ion-exchange resin forming a mixed bed.

【0002】[0002]

【従来の技術】発電プラントにおいては、復水中の不純
物による系統材質の腐食やタービンスケールの防止の点
から、給水の水質をより高度に維持する必要がある。こ
のため復水を給水として循環使用するための復水脱塩装
置として、高い処理水質が得られる混床式イオン交換脱
塩装置が用いられている。
2. Description of the Related Art In a power generation plant, it is necessary to maintain the water quality of feed water at a high level in order to prevent corrosion of system materials and turbine scale due to impurities in condensate. Therefore, as a condensate demineralizer for circulating and using condensate as feed water, a mixed bed type ion exchange desalinizer that can obtain high treated water quality is used.

【0003】混床式イオン交換脱塩装置の処理水質はイ
オン交換樹脂の再生状態により決定されるが、樹脂の再
生状態をより高度にするためには、逆再生をできるだけ
生じさせない必要がある。逆再生とは、アニオン交換樹
脂の混入したカチオン交換樹脂を塩酸や硫酸など酸溶液
で再生する際、アニオン交換樹脂がCl形やSO4形な
どに再生され、またカチオン交換樹脂の混入したアニオ
ン交換樹脂を水酸化ナトリウムなどのアルカリ溶液で再
生する際、カチオン交換樹脂がNa形などに再生される
ことである。
[0003] The treated water quality of the mixed-bed type ion exchange desalination apparatus is determined by the regenerated state of the ion exchange resin. In order to make the regenerated state of the resin more sophisticated, it is necessary to prevent reverse regeneration as much as possible. Reverse regeneration means that, when a cation exchange resin mixed with an anion exchange resin is regenerated with an acid solution such as hydrochloric acid or sulfuric acid, the anion exchange resin is regenerated into a Cl form or SO 4 form, and an anion exchange resin mixed with a cation exchange resin. When the resin is regenerated with an alkali solution such as sodium hydroxide, the cation exchange resin is regenerated to the Na form or the like.

【0004】従って、逆再生を生じさせないためには、
混床を形成しているイオン交換樹脂を再生するとき、カ
チオン交換樹脂とアニオン交換樹脂とをできるだけ完全
に近い状態に分離し、カチオン交換樹脂中へのアニオン
交換樹脂の混入、およびアニオン交換樹脂中へのカチオ
ン交換樹脂の混入を極力減少させる必要がある。
Therefore, in order to prevent reverse reproduction,
When regenerating the ion-exchange resin forming the mixed bed, the cation-exchange resin and the anion-exchange resin are separated to a state as complete as possible, and the anion-exchange resin is mixed into the cation-exchange resin. It is necessary to minimize the incorporation of cation exchange resin into the resin.

【0005】復水脱塩装置(混床式イオン交換脱塩装
置)は、復水中にイオン交換樹脂の再生剤である酸また
はアルカリが混入しないように、脱塩塔と分離再生塔と
は完全に分離されており、再生が必要になったときは、
その脱塩塔を主系統から切離し、脱塩塔内の樹脂を加圧
水と加圧空気により分離再生塔に移送して再生してい
る。
[0005] The condensate demineralizer (mixed bed type ion exchange demineralizer) is a complete demineralization tower and a separation regeneration tower so that acid or alkali which is a regenerant of the ion exchange resin is not mixed in the condensate. It has been separated into
The desalting tower is separated from the main system, and the resin in the desalting tower is transferred to the separation and regeneration tower by pressurized water and pressurized air for regeneration.

【0006】図2は復水脱塩装置における従来のイオン
交換樹脂の再生工程を示す系統図である。図2におい
て、1は脱塩塔、2はこの脱塩塔1に充填されたイオン
交換樹脂、3は分離再生塔、4a、4b、4cは集散水
用のストレーナー、4dは薬注用のストレーナー、4e
は樹脂コレクター、V1〜V14はバルブである。
FIG. 2 is a system diagram showing a conventional ion exchange resin regeneration process in a condensate demineralizer. In FIG. 2, 1 is a desalting tower, 2 is an ion exchange resin packed in the desalting tower 1, 3 is a separation and regeneration tower, 4a, 4b and 4c are strainers for collecting and sprinkling water, 4d is a strainer for chemical injection. 4e
Is a resin collector, and V1 to V14 are valves.

【0007】従来の再生方法では、イオン交換樹脂2の
再生は次のようにして行われている。まず、バルブV
6、V8を開(他のバルブは閉)の状態にする。このと
き、分離再生塔3内は水を抜いて空の状態にしておく。
これは、脱塩塔1からの多量の水およびイオン交換樹脂
2を受入れるため、分離再生塔3からの排水が追い付か
ず短時間で満水となって、イオン交換樹脂2の一部が分
離再生塔3の上部から流出するのを防止するためであ
る。次にバルブV2、V13、V14を開き、水および
空気を脱塩塔1に導入することにより、混床を形成して
いるイオン交換樹脂2を移送路5を通して分離再生塔3
に移送する。このとき分離再生塔3に導入される水は、
分離再生塔3の下部および上部の排水路6、7から排出
する。
In the conventional regeneration method, the ion exchange resin 2 is regenerated as follows. First, the valve V
6 and V8 are opened (other valves are closed). At this time, the separation and regeneration tower 3 is drained to leave an empty state.
Since this accepts a large amount of water and the ion exchange resin 2 from the desalting tower 1, the drainage water from the separation and regeneration tower 3 does not catch up and becomes full in a short time, and a part of the ion exchange resin 2 is separated and regenerated. This is to prevent it from flowing out from the upper part of 3. Next, the valves V2, V13 and V14 are opened, and water and air are introduced into the demineralization tower 1, so that the ion exchange resin 2 forming a mixed bed is passed through the transfer path 5 to separate and regenerate the tower 3.
Transfer to At this time, the water introduced into the separation and regeneration tower 3 is
It is discharged from the drainage channels 6 and 7 in the lower part and the upper part of the separation and regeneration tower 3.

【0008】移送終了後は、バルブV8、V11が開の
状態で分離再生塔3の下部から水を導入し、イオン交換
樹脂2を逆洗して、比重差によりアニオン交換樹脂とカ
チオン交換樹脂とを分離する。分離したアニオン交換樹
脂は移送路8を通してアニオン交換樹脂再生塔(図示せ
ず)に移送する。このような逆洗分離は複数回に分けて
行う場合もある。
After the transfer is completed, water is introduced from the lower part of the separation and regeneration tower 3 with the valves V8 and V11 open, and the ion exchange resin 2 is backwashed to separate the anion exchange resin and the cation exchange resin due to the difference in specific gravity. To separate. The separated anion exchange resin is transferred to the anion exchange resin regeneration tower (not shown) through the transfer path 8. Such backwash separation may be performed in multiple times.

【0009】分離再生塔3に残った(分離された)カチ
オン交換樹脂は、バルブV3、V6が開の状態で薬注路
9から塩酸、硫酸などの再生剤を注入する薬注工程、ほ
ぼ同量の水を注入する押出工程の後、バルブV6、V1
0が開の状態で通水する洗浄工程を行って再生する。ア
ニオン交換樹脂はアニオン交換樹脂再生塔(図示せず)
において水酸化ナトリウムなどの再生剤により同様に再
生する。
The cation exchange resin remaining (separated) in the separation / regeneration tower 3 is almost the same as the chemical injection step of injecting a regenerant such as hydrochloric acid or sulfuric acid from the chemical injection passage 9 with the valves V3 and V6 open. After the extrusion process of injecting a quantity of water, valves V6, V1
It is regenerated by performing a washing step of passing water with 0 open. Anion exchange resin is an anion exchange resin regeneration tower (not shown)
In the same manner, it is regenerated with a regenerating agent such as sodium hydroxide.

【0010】しかし、上記の従来法では、イオン交換樹
脂2の移送開始の際は分離再生塔3は空の状態であり、
しかも分離再生塔3の下部の排水路6からも排水するた
め、流入するイオン交換樹脂2は水流によって分離再生
塔3内下部のストレーナー4cに押付けられる。このス
トレーナー4cは通常20cm程度のピッチで設けられ
ているため、ストレーナー4c間またはその付近に高密
度で堆積したイオン交換樹脂2は、ストレーナー4cか
ら水を導入して逆洗しても流動化しにくい状態となる。
従って、逆洗の際に分離再生塔3の下部では均一な水流
が発生せず、このためイオン交換樹脂2がアニオン交換
樹脂とカチオン交換樹脂とに分離されにくい空間が生
じ、結果としてカチオン交換樹脂中にアニオン交換樹脂
が残留することになる。
However, in the above-mentioned conventional method, the separation and regeneration tower 3 is empty at the time of starting the transfer of the ion exchange resin 2,
Moreover, since the water is also drained from the drainage channel 6 in the lower part of the separation / regeneration tower 3, the inflowing ion-exchange resin 2 is pressed against the strainer 4c in the lower part inside the separation / regeneration tower 3 by the water flow. Since the strainers 4c are normally provided at a pitch of about 20 cm, the ion-exchange resin 2 deposited at high density between or near the strainers 4c is difficult to fluidize even if water is introduced from the strainers 4c and backwashed. It becomes a state.
Therefore, a uniform water flow is not generated in the lower part of the separation / regeneration tower 3 during backwashing, which creates a space in which the ion exchange resin 2 is difficult to separate into an anion exchange resin and a cation exchange resin, and as a result, a cation exchange resin. The anion exchange resin will remain inside.

【0011】アニオン交換樹脂が残留した状態でカチオ
ン交換樹脂を塩酸または硫酸等の酸で再生すると、アニ
オン交換樹脂がR−Cl形またはR−SO4形等に逆再
生され、これらの逆再生樹脂が処理水質を悪化させる原
因となる。上記従来の再生方法では、全体のアニオン交
換樹脂の0.8〜2%程度が逆再生されている。
When the cation exchange resin is regenerated with an acid such as hydrochloric acid or sulfuric acid in a state where the anion exchange resin remains, the anion exchange resin is reversely regenerated into R-Cl type or R-SO 4 type , and these reverse regeneration resins are used. Causes deterioration of treated water quality. In the above conventional regeneration method, about 0.8 to 2% of the entire anion exchange resin is reversely regenerated.

【0012】従来の方法においても、逆洗を長時間行っ
たり、逆洗分離の回数を増加すればイオン交換樹脂2の
分離性は向上するが、この方法では時間がかかるととも
に使用する逆洗水の量が増加し、コスト高になる。
Also in the conventional method, if the backwashing is performed for a long time or the number of backwashing separations is increased, the separability of the ion exchange resin 2 is improved. However, this method takes time and the backwashing water used. The amount will increase and the cost will increase.

【0013】上記問題点を解決するため、樹脂の分離性
を改善する方法が提案されている。例えば、アニオン交
換樹脂中のカチオン交換樹脂の分離のために濃厚水酸化
ナトリウム溶液を用いて再分離する方法、希薄アンモニ
ア水により樹脂をアンモニウム形にして処理水質への影
響を無害化する方法、中間樹脂を再生から除外する方
法、中間比重樹脂交換により樹脂の分離性を改善する方
法などが知られている。しかし、これらの方法はいずれ
も新たな付加設備を必要としたり、より大量のイオン交
換樹脂を必要とする。また、これらの技術はアニオン交
換樹脂中へのカチオン交換樹脂の混入に対する対策が主
であり、カチオン交換樹脂中に混入するアニオン交換樹
脂については効果が小さい。
In order to solve the above problems, a method for improving the separability of resin has been proposed. For example, a method of re-separation using a concentrated sodium hydroxide solution for separation of a cation exchange resin in an anion exchange resin, a method of detoxifying the effect on treated water quality by converting the resin into an ammonium form with dilute ammonia water, and an intermediate method. Known methods include the method of excluding the resin from regeneration and the method of improving the separability of the resin by exchanging the resin of intermediate specific gravity. However, all of these methods require new additional equipment or a larger amount of ion exchange resin. In addition, these techniques mainly take measures against the mixture of the cation exchange resin into the anion exchange resin, and the effect of the anion exchange resin mixed into the cation exchange resin is small.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決するため、新たな設備や薬品を使用せず、
しかも短時間に低コストでイオン交換樹脂の分離性を改
善することができるイオン交換樹脂の再生方法を提案す
ることである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems by using no new equipment or chemicals,
Moreover, it is to propose a method for regenerating an ion exchange resin, which can improve the separability of the ion exchange resin in a short time and at low cost.

【0015】[0015]

【課題を解決するための手段】本発明は、混床を形成し
ているイオン交換樹脂を分離再生塔に移送して分離、再
生する方法において、イオン交換樹脂の移送を開始する
際、分離再生塔に水を保持しておき、樹脂移送に同伴す
る水を分離再生塔の下部以外の部分から排出することを
特徴とするイオン交換樹脂の再生方法である。
DISCLOSURE OF THE INVENTION The present invention is a method for transferring an ion exchange resin forming a mixed bed to a separation / regeneration tower to separate and regenerate it. When the transfer of the ion exchange resin is started, the separation / regeneration is performed. A method for regenerating an ion exchange resin, characterized in that water is retained in the tower, and water accompanying the resin transfer is discharged from a portion other than the lower part of the separation and regeneration tower.

【0016】本発明の方法は、アニオン交換樹脂とカチ
オン交換樹脂とが混合されて混床を形成しているイオン
交換樹脂の再生であればどのようなイオン交換樹脂の再
生にも適用できるが、復水脱塩装置に使用されているイ
オン交換樹脂の再生に適用するのが好ましい。
The method of the present invention can be applied to the regeneration of any ion exchange resin as long as it is the regeneration of the ion exchange resin in which the anion exchange resin and the cation exchange resin are mixed to form a mixed bed. It is preferably applied to the regeneration of the ion exchange resin used in the condensate demineralizer.

【0017】イオン交換樹脂の移送を開始する際の分離
再生塔に保持する水の量は特に制限されないが、水深1
mないし満水時の水深、好ましくは形成される樹脂層高
の50%ないし満水時の2/3の水深とするのが好適で
ある。樹脂の移送に同伴する水を排出する部分は、分離
再生塔の下部以外の部分であれば制限はないが、大量の
水を排出するために、塔上部に設けられた集散水用スト
レーナーのほかに、塔頂部に連絡するガス抜き用の配管
等からも排水するのが好ましい。
The amount of water held in the separation and regeneration tower when starting the transfer of the ion exchange resin is not particularly limited, but the water depth is 1
It is preferable that the depth is m to the water depth when the water is full, preferably 50% of the height of the resin layer to be formed or 2/3 the water depth when the water is full. There is no restriction on the part that discharges the water accompanying the transfer of the resin, except for the part other than the lower part of the separation and regeneration tower, but in order to discharge a large amount of water, besides the strainer for collecting and dispersing water provided at the top of the tower. In addition, it is preferable to drain the gas from a pipe or the like for venting gas which communicates with the top of the tower.

【0018】本発明では、分離再生塔に水を保持した状
態でイオン交換樹脂の移送を開始し、しかも樹脂移送に
同伴する水を分離再生塔の下部から排出せず、下部以外
の流路のみから排水することにより、流入するイオン交
換樹脂がストレーナーに押付けられて流動化しにくくな
る状態を防止できる。このとき同時に、分離再生塔内部
では保持された水の中を樹脂が沈降するので、沈降の過
程で両樹脂の比重差に基づく分離が行われる。この分離
は完全なものではないが、次工程の逆洗により容易に分
離される状態にあり、分離再生塔を空の状態で移送を開
始する従来の方法に比べて分離性は大きく改善される。
このため短時間の逆洗によりアニオン交換樹脂とカチオ
ン交換樹脂とを分離することができ、カチオン交換樹脂
中へのアニオン交換樹脂の混入を防止することができ
る。
In the present invention, the transfer of the ion exchange resin is started in a state where water is held in the separation / regeneration tower, and the water accompanying the resin transfer is not discharged from the lower part of the separation / regeneration tower, and only the flow paths other than the lower part are discharged. It is possible to prevent the inflowing ion-exchange resin from being pressed against the strainer and becoming difficult to fluidize by draining from the drain. At this time, at the same time, since the resin settles in the water held inside the separation / regeneration tower, separation is performed based on the difference in specific gravity between the two resins during the settling process. Although this separation is not perfect, it is easily separated by backwashing in the next step, and the separability is greatly improved compared to the conventional method in which the separation and regeneration tower is started to be transferred in an empty state. .
Therefore, the anion exchange resin and the cation exchange resin can be separated by backwashing for a short time, and the anion exchange resin can be prevented from being mixed into the cation exchange resin.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は復水脱塩装置における本発明の
イオン交換樹脂の再生工程を示す系統図である。図1に
おいて、図2と同一符号は同一または相当部分を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a regeneration process of the ion exchange resin of the present invention in a condensate demineralizer. 1, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.

【0020】図1においては、脱塩塔1内に混床を形成
しているイオン交換樹脂2の再生は次のようにして行
う。まずバルブV10またはV11を開き、脱塩水を分
離再生塔3に導入し、保有水11とする。保有水11の
保有量は水深1m以上、特に分離再生塔3にイオン交換
樹脂2を全量移送したときの樹脂層高の50%以上とす
るのが好ましい。脱塩水の導入が終了すると、バルブV
10またはV11は閉じる。
In FIG. 1, the ion exchange resin 2 forming a mixed bed in the desalting tower 1 is regenerated as follows. First, the valve V10 or V11 is opened, and demineralized water is introduced into the separation / regeneration tower 3 to obtain the retained water 11. It is preferable that the amount of the retained water 11 is 1 m or more, particularly 50% or more of the height of the resin layer when the entire amount of the ion exchange resin 2 is transferred to the separation and regeneration tower 3. After the introduction of demineralized water, the valve V
10 or V11 is closed.

【0021】次にバルブV1、V2、V8、V13、V
14を開き、水および空気を脱塩塔1に導入することに
より、混床を形成しているイオン交換樹脂2を移送路5
を通して分離再生塔3に移送する。このとき樹脂に同伴
して分離再生塔3に導入される水は、分離再生塔の上部
の排水路7、10から排出し、下部の排水路6からは排
出しない。このため分離再生塔3に導入された樹脂はス
トレーナー4cに強く押付けられることはなく、ストレ
ーナー4c間またはストレーナー4c付近に密な状態で
堆積することがない。
Next, the valves V1, V2, V8, V13, V
By opening 14 and introducing water and air into the desalting tower 1, the ion exchange resin 2 forming the mixed bed is transferred to the transfer path 5
Through the separation and regeneration tower 3. At this time, the water introduced into the separation and regeneration tower 3 along with the resin is discharged from the drainage paths 7 and 10 at the upper part of the separation and regeneration tower, and is not discharged from the drainage path 6 at the lower part. Therefore, the resin introduced into the separation / regeneration tower 3 is not strongly pressed against the strainer 4c and is not densely accumulated between the strainers 4c or in the vicinity of the strainer 4c.

【0022】移送終了後は、従来と同様の方法で処理す
る。すなわちバルブV8、V11が開の状態で分離再生
塔3の下部から水を導入し、イオン交換樹脂2を逆洗し
て比重差によりアニオン交換樹脂とカチオン交換樹脂と
を分離する。分離したアニオン交換樹脂はバルブV7を
開の状態にして移送路8を通してアニオン交換樹脂再生
塔(図示せず)に移送する。このような逆洗分離は複数
回に分けて行うこともできる。
After the transfer is completed, the processing is performed in the same manner as the conventional method. That is, water is introduced from the lower part of the separation and regeneration tower 3 with the valves V8 and V11 open, and the ion exchange resin 2 is backwashed to separate the anion exchange resin and the cation exchange resin by the difference in specific gravity. The separated anion exchange resin is transferred to the anion exchange resin regeneration tower (not shown) through the transfer passage 8 with the valve V7 opened. Such backwash separation can be performed in multiple times.

【0023】分離再生塔3に残った(分離された)カチ
オン交換樹脂は、バルブV3、V6が開の状態で薬注路
9から塩酸、硫酸などの酸溶液を再生剤として注入して
再生する。アニオン交換樹脂はアニオン交換樹脂再生塔
(図示せず)において水酸化ナトリウムなどのアルカリ
溶液を再生剤として注入して再生する。
The cation exchange resin remaining (separated) in the separation and regeneration tower 3 is regenerated by injecting an acid solution such as hydrochloric acid or sulfuric acid as a regenerant from the chemical injection passage 9 with the valves V3 and V6 open. . The anion exchange resin is regenerated by injecting an alkaline solution such as sodium hydroxide as a regenerant in an anion exchange resin regeneration tower (not shown).

【0024】このように分離再生塔3に水を保持した状
態でイオン交換樹脂2の移送を開始し、しかも樹脂移送
に同伴する水を分離再生塔3の下部の排水路6から排水
せず、下部以外の流路、例えば排水路7、10のみから
排水すると、流入するイオン交換樹脂2がストレーナー
4cに押付けられて流動化しにくくなる状態を防止でき
る。これと同時に、分離再生塔3内部では保持された水
の中を樹脂が沈降するので、沈降の過程で両樹脂の比重
差に基づく分離が行われる。この分離は完全なものでは
ないが、次工程の逆洗により容易に分離される状態にあ
り、分離再生塔3を空の状態で移送を開始する従来の方
法に比べて分離性は大きく改善される。このため短時間
の逆洗によりアニオン交換樹脂とカチオン交換樹脂とを
分離することができ、カチオン交換樹脂中へのアニオン
交換樹脂の混入を防止することができる。
Thus, the transfer of the ion exchange resin 2 is started in a state where the water is held in the separation and regeneration tower 3, and the water accompanying the resin transfer is not drained from the drainage channel 6 below the separation and regeneration tower 3, Draining only from the channels other than the lower part, for example, the drainage channels 7 and 10, it is possible to prevent the inflowing ion exchange resin 2 from being pressed against the strainer 4c and becoming difficult to fluidize. At the same time, the resin settles in the retained water inside the separation / regeneration tower 3, so that separation is performed based on the difference in specific gravity between the two resins during the settling process. Although this separation is not perfect, it is easily separated by backwashing in the next step, and the separability is greatly improved as compared with the conventional method in which the separation and regeneration tower 3 is transferred in an empty state. It Therefore, the anion exchange resin and the cation exchange resin can be separated by backwashing for a short time, and the anion exchange resin can be prevented from being mixed into the cation exchange resin.

【0025】[0025]

【実施例】【Example】

実施例1 図1により説明した方法により樹脂の逆洗分離を行っ
た。脱塩塔1としては塔径3.2mφ、高さ2.5mの
円柱状の塔を使用し、カチオン交換樹脂として三菱化学
(株)製のDiaion PK228G(商標)6.8
3、アニオン交換樹脂として三菱化学(株)製のDi
aion PA312L(商標)3.7m 3を用いて混
床を形成した。分離再生塔3としては塔径2.3mφ、
高さ5.7mの円柱状の塔を用いた。分離再生塔3下部
に設けられている集散水用のストレーナー4cのピッチ
は約20cmである。
 Example 1 The resin was backwashed and separated by the method described with reference to FIG.
Was. The desalting tower 1 has a tower diameter of 3.2 mφ and a height of 2.5 m.
Using a columnar tower, Mitsubishi Chemical as a cation exchange resin
Diaion PK228G (trademark) 6.8 manufactured by Co., Ltd.
mThree, Di manufactured by Mitsubishi Chemical Corporation as anion exchange resin
aion PA312L (trademark) 3.7m ThreeMixed with
Formed a floor. The separation and regeneration tower 3 has a tower diameter of 2.3 mφ,
A columnar tower having a height of 5.7 m was used. Lower part of separation regeneration tower 3
Pitch of the strainer 4c for collecting and sprinkling water
Is about 20 cm.

【0026】分離再生塔3には初期水位1mの保有水1
1を保持した状態で移送を開始した。脱塩塔1内の全樹
脂は、12m3/hの水量と加圧空気により30分間で
分離再生塔3に移送した。このとき分離再生塔3に流入
する水は上部の排水路7、10から排出し、下部の排水
路6からは排出しなかった。
In the separation / regeneration tower 3, the stored water 1 having an initial water level of 1 m
The transfer was started while holding 1. All the resin in the desalting tower 1 was transferred to the separation and regeneration tower 3 in 30 minutes with a water amount of 12 m 3 / h and pressurized air. At this time, the water flowing into the separation and regeneration tower 3 was discharged from the upper drainage channels 7 and 10, and was not discharged from the lower drainage channel 6.

【0027】移送終了後、逆洗分離およびアンモニア交
換樹脂の移送を下記の工程により実施した。 分離再生塔3逆洗 逆洗LV:12m/h、時間:30min、V−11、
V−8:開 アニオン交換樹脂移送 逆洗LV:12m/h、時間:30min、V−11、
V−7:開 分離再生塔3逆洗 逆洗LV:20m/h、時間:30min、V−11、
V−8:開 アニオン交換樹脂移送 逆洗LV:20m/h、時間:20min、V−11、
V−7:開
After completion of the transfer, backwash separation and transfer of the ammonia exchange resin were carried out by the following steps. Separation and regeneration tower 3 Backwash Backwash LV: 12 m / h, time: 30 min, V-11,
V-8: Open Anion exchange resin transfer Backwash LV: 12 m / h, time: 30 min, V-11,
V-7: Open Separation and Regeneration Tower 3 Backwash Backwash LV: 20 m / h, Time: 30 min, V-11,
V-8: Open Anion exchange resin transfer Backwash LV: 20 m / h, time: 20 min, V-11,
V-7: Open

【0028】次に、分離再生塔3内のカチオン交換樹脂
中に残留したアニオン交換樹脂の量を測定した結果、約
12.1 literであった。この量は全アニオン交換樹脂
に対して0.32%であり、後述の比較例1に比べて混
入量が少ないことがわかる。また従来法の比較例1に比
べて短時間で、しかも少ない水量で同等の分離能が得ら
れることがわかる。
Next, the amount of the anion exchange resin remaining in the cation exchange resin in the separation and regeneration tower 3 was measured, and it was about 12.1 liter. This amount was 0.32% with respect to the total anion exchange resin, and it can be seen that the amount mixed is smaller than that in Comparative Example 1 described later. Further, it can be seen that the same separation ability can be obtained in a shorter time and with a smaller amount of water as compared with Comparative Example 1 of the conventional method.

【0029】比較例1 図2により説明した方法により樹脂の逆洗分離を行っ
た。使用した脱塩塔1、分離再生塔3、ならびに樹脂お
よびその量は実施例1と同じである。分離再生塔3は空
の状態で移送を開始した。脱塩塔1内の全樹脂は、12
3/hの水量と加圧空気により30分間で分離再生塔
3に移送した。このとき分離再生塔3に流入する水は排
水路6、7から排出した。
Comparative Example 1 The resin was backwashed and separated by the method described with reference to FIG. The desalting tower 1, the separation and regeneration tower 3 used, the resin and the amount thereof are the same as in Example 1. The separation and regeneration tower 3 started the transfer in an empty state. The total resin in the desalting tower 1 is 12
It was transferred to the separation / regeneration tower 3 in 30 minutes with a water amount of m 3 / h and pressurized air. At this time, the water flowing into the separation and regeneration tower 3 was discharged from the drainage channels 6 and 7.

【0030】移送終了後、逆洗分離およびアニオン交換
樹脂の移送を実施例1と同様にして行った。その結果、
分離再生塔3内のカチオン交換樹脂中に残留したアニオ
ン交換樹脂の量は約32.4 literであった。この量は
全アニオン交換樹脂に対して0.87%であった。
After the completion of the transfer, backwash separation and transfer of the anion exchange resin were carried out in the same manner as in Example 1. as a result,
The amount of anion exchange resin remaining in the cation exchange resin in the separation and regeneration tower 3 was about 32.4 liter. This amount was 0.87% with respect to the total anion exchange resin.

【0031】さらに、上記に引続いて、逆洗分離を下記
の工程により実施した。 分離再生塔3逆洗 逆洗LV:24m/h、時間:30min、V−11、
V−8:開 分離再生塔3逆洗 逆洗LV:12m/h、時間:15min、V−11、
V−8:開
Further, subsequent to the above, backwash separation was carried out by the following steps. Separation and regeneration tower 3 Backwash Backwash LV: 24 m / h, time: 30 min, V-11,
V-8: Open Separation / Regeneration Tower 3 Backwash Backwash LV: 12 m / h, Time: 15 min, V-11,
V-8: Open

【0032】上記の結果、分離再生塔3内の樹脂層上部
に約11 literのアニオン交換樹脂が分離された。この
樹脂を除去すれば、最終的にカチオン交換樹脂中に混入
するアニオン交換樹脂の量は32.4−11=11.4
(liter)となる。この量は全アニオン交換樹脂に対し
て約0.3%である。
As a result of the above, about 11 liters of anion exchange resin was separated above the resin layer in the separation and regeneration tower 3. If this resin is removed, the amount of anion exchange resin finally mixed in the cation exchange resin is 32.4-11 = 11.4.
(Liter). This amount is about 0.3% based on the total anion exchange resin.

【0033】[0033]

【発明の効果】本発明のイオン交換樹脂の再生方法は、
分離再生塔に水を保持した状態で脱塩塔から樹脂を移送
し、樹脂に同伴する水を分離再生塔の下部以外の部分か
ら排出するようにしたので、新たな設備や薬品を使用せ
ず、しかも短時間に低コストでイオン交換樹脂の分離性
を改善することができる。
The method for regenerating an ion exchange resin according to the present invention comprises:
The resin was transferred from the desalting tower while the water was retained in the separation and regeneration tower, and the water entrained in the resin was discharged from parts other than the lower part of the separation and regeneration tower, so no new equipment or chemicals were used. Moreover, the separability of the ion exchange resin can be improved at low cost in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】復水脱塩装置における実施例のイオン交換樹脂
の再生工程を示す系統図である。
FIG. 1 is a system diagram showing a regeneration process of an ion exchange resin of an example in a condensate demineralizer.

【図2】復水脱塩装置における従来のイオン交換樹脂の
再生工程を示す系統図である。
FIG. 2 is a system diagram showing a conventional ion exchange resin regeneration process in a condensate demineralizer.

【符号の説明】[Explanation of symbols]

1 脱塩塔 2 イオン交換樹脂 3 分離再生塔 4a〜4d ストレーナー 4e コレクター 5、8 移送路 6、7、10 排水路 9 薬注路 11 保有水 1 Desalination tower 2 Ion exchange resin 3 Separation and regeneration tower 4a-4d Strainer 4e Collector 5, 8 Transfer path 6, 7, 10 Drainage path 9 Chemical injection path 11 Retained water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 混床を形成しているイオン交換樹脂を分
離再生塔に移送して分離、再生する方法において、イオ
ン交換樹脂の移送を開始する際、分離再生塔に水を保持
しておき、樹脂移送に同伴する水を分離再生塔の下部以
外の部分から排出することを特徴とするイオン交換樹脂
の再生方法。
1. A method for transferring an ion-exchange resin forming a mixed bed to a separation / regeneration tower to separate and regenerate it, wherein water is held in the separation / regeneration tower when the transfer of the ion-exchange resin is started. A method for regenerating an ion exchange resin, characterized in that water accompanying the resin transfer is discharged from a portion other than the lower part of the separation and regeneration tower.
JP24315595A 1995-09-21 1995-09-21 Regeneration method of ion exchange resin Expired - Fee Related JP3852487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24315595A JP3852487B2 (en) 1995-09-21 1995-09-21 Regeneration method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24315595A JP3852487B2 (en) 1995-09-21 1995-09-21 Regeneration method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPH0985106A true JPH0985106A (en) 1997-03-31
JP3852487B2 JP3852487B2 (en) 2006-11-29

Family

ID=17099629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24315595A Expired - Fee Related JP3852487B2 (en) 1995-09-21 1995-09-21 Regeneration method of ion exchange resin

Country Status (1)

Country Link
JP (1) JP3852487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075226A (en) * 2018-11-09 2020-05-21 栗田工業株式会社 Regeneration device for ion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075226A (en) * 2018-11-09 2020-05-21 栗田工業株式会社 Regeneration device for ion exchange resin

Also Published As

Publication number Publication date
JP3852487B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US4648976A (en) Integral water demineralizer system and method
US3385787A (en) Condensate purification process
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
KR101315182B1 (en) Process and equipment for demineralizing condensate
US3414508A (en) Condensate purification process
US3711401A (en) Regeneration method for dual beds of ion exchange resins
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
US2841550A (en) Process of operating a demineralizing installation
CA1166618A (en) Methods of ion exchange countercurrent regeneration
US3583908A (en) Condensate purification process
US4388417A (en) Regeneration of deep bed condensate polishers
JPH0985106A (en) Regeneration method for ion exchange resin
US4472282A (en) Mixed bed polishing process
JP3963025B2 (en) Ion exchange resin separation and regeneration method
US3975267A (en) Liquid treating system
US5212205A (en) Regeneration of deep bed condensate polishers
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JP2002361247A (en) Method for manufacturing pure water
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JP2011189317A (en) Ion exchange device
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2881107B2 (en) Regeneration method of mixed bed type ion exchange tower
JP2940651B2 (en) Pure water production equipment
JPH0138553B2 (en)
JP3543389B2 (en) Separation and regeneration method of ion exchange resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees