JPH098274A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH098274A
JPH098274A JP15921295A JP15921295A JPH098274A JP H098274 A JPH098274 A JP H098274A JP 15921295 A JP15921295 A JP 15921295A JP 15921295 A JP15921295 A JP 15921295A JP H098274 A JPH098274 A JP H098274A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
conductivity type
semiconductor device
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15921295A
Other languages
Japanese (ja)
Other versions
JP3917202B2 (en
Inventor
Kazuhisa Sakamoto
和久 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP15921295A priority Critical patent/JP3917202B2/en
Publication of JPH098274A publication Critical patent/JPH098274A/en
Application granted granted Critical
Publication of JP3917202B2 publication Critical patent/JP3917202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: To provide a mesa semiconductor device whose breakdown voltage can be increased without making the chip size too large and the depth of a recessed groove for forming the device in a mesa too deep. CONSTITUTION: A semiconductor device in which a semiconductor layer 2 having a second conductivity is separated in a mesa is manufactured by forming a p-n junction 10 by providing the semiconductor layer 2 for forming a semiconductor element on a semiconductor layer 1 having a first conductivity and a recessed groove deeper than the p-n junction in the semiconductor layer 2. In the semiconductor device, a channel stopper 6 which has the same conductivity as that of the semiconductor layer 1 has and contains high concentration impurity is provided on the bottom of the recessed groove.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイオード、トランジス
タ、サイリスタ、絶縁ゲートバイポーラトランジスタ
(IGBT)、MOSFET、ICなどの耐圧を向上し
た半導体装置およびその製法に関する。さらに詳しく
は、メサ構造で耐圧を向上させながら素子の小型化を達
成することができる半導体装置およびその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an improved breakdown voltage such as a diode, a transistor, a thyristor, an insulated gate bipolar transistor (IGBT), a MOSFET and an IC, and a manufacturing method thereof. More specifically, the present invention relates to a semiconductor device that can achieve downsizing of an element while improving withstand voltage with a mesa structure, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、たとえばトランジスタの高耐圧化
を図る方法として、図5に示されるように、ベース領域
2の外周側にフィールドリミティングリング(以下、F
LRという)4を設けてベース領域2とコレクタ領域1
間のpn接合10に形成される空乏層をFLR4の外周
側に拡げる方法が用いられている。
2. Description of the Related Art Conventionally, as a method for increasing the breakdown voltage of a transistor, for example, as shown in FIG. 5, a field limiting ring (hereinafter referred to as F
(Referred to as LR) 4 to provide a base region 2 and a collector region 1
A method is used in which the depletion layer formed in the pn junction 10 between them is expanded to the outer peripheral side of the FLR 4.

【0003】この従来のトランジスタは、n+型の半導
体基板1aおよびその上にエピタキシャル成長により形
成されたn-型の低不純物濃度の半導体層1bからなる
コレクタ領域1と、このコレクタ領域1に拡散などによ
り形成されたp型のベース領域2と、ベース領域2に拡
散などによりn+型不純物により形成されたエミッタ領
域3とからなっており、ベース・コレクタ間のpn接合
10の外周側にベース・コレクタ間の縦方向のpn接合
を囲むように、ベース領域と同じ導電型であるp型のF
LR4が設けられている。また5は半導体層1bの表面
に設けられたSiO2などからなる絶縁膜、6は空乏層
を終端させるチャネルストッパで、7、8、9はそれぞ
れコレクタ、ベース、エミッタの各電極である。
In this conventional transistor, a collector region 1 consisting of an n + type semiconductor substrate 1a and an n type low impurity concentration semiconductor layer 1b formed by epitaxial growth on the n + type semiconductor substrate 1a, and diffusion into the collector region 1 etc. A p-type base region 2 and an emitter region 3 formed by an n + -type impurity in the base region 2 by diffusion or the like. The base region is formed on the outer peripheral side of the pn junction 10 between the base and collector. A p-type F that has the same conductivity type as the base region so as to surround the vertical pn junction between the collectors.
LR4 is provided. Further, 5 is an insulating film made of SiO 2 or the like provided on the surface of the semiconductor layer 1b, 6 is a channel stopper for terminating the depletion layer, and 7, 8, 9 are collector, base and emitter electrodes, respectively.

【0004】高耐圧化の他の方法として、図6に示され
るように、ベース領域2とコレクタ領域1とのあいだの
pn接合10の深さより深い凹溝11をベース領域2の
周囲に設けて半導体層1bをメサ形状にする方法が知ら
れている。このようなメサ形状にすることによりpn接
合10の空乏層の延びは半導体層1bの表面側に曲げら
れないで、pn接合10に沿って平行に延びて凹溝11
のパッシベーション膜5aにあたる。そのため、空乏層
に曲率部ができずパッシベーション膜5aとの界面にお
いても耐圧が向上する(一般に空乏層の途中で曲率部が
形成されると、表面の絶縁膜との界面における耐圧も低
下し、曲率部が形成されないばあいに比べて空乏層の広
がりを広くしないと、同じ耐圧がえられないことが知ら
れている)。さらに凹溝11部のパッシベーション膜5
aは動作領域と異なるところに設けられるため、パッシ
ベーション膜5a内の電荷調整などにより耐圧に強い膜
とすることもでき、メサ構造にすることにより一層高耐
圧が可能となる。なお、図6において図5と同じ部分に
は同じ符号を付してある。
As another method of increasing the breakdown voltage, as shown in FIG. 6, a groove 11 deeper than the depth of the pn junction 10 between the base region 2 and the collector region 1 is provided around the base region 2. A method is known in which the semiconductor layer 1b has a mesa shape. With such a mesa shape, the extension of the depletion layer of the pn junction 10 is not bent toward the front surface side of the semiconductor layer 1b, but extends in parallel along the pn junction 10 to form the concave groove 11.
Corresponding to the passivation film 5a. Therefore, the depletion layer does not have a curved portion, and the breakdown voltage is improved even at the interface with the passivation film 5a (generally, when the curved portion is formed in the middle of the depletion layer, the breakdown voltage at the interface with the insulating film on the surface also decreases, It is known that the same breakdown voltage cannot be obtained unless the depletion layer is widened as compared with the case where no curved portion is formed). Further, the passivation film 5 in the groove 11 part
Since a is provided at a position different from the operation region, it can be made a film having a high withstand voltage by adjusting the charges in the passivation film 5a, and a higher withstand voltage can be obtained by using the mesa structure. In FIG. 6, the same parts as those in FIG. 5 are designated by the same reference numerals.

【0005】このメサ形状の半導体装置において、さら
に耐圧を高くするためにはpn接合10近傍のn-型半
導体層1bの不純物濃度を低くし、空乏層を広げること
により高耐圧を達成することができるが、空乏層の広が
りがメサ形状にした凹溝11の下側をくぐり抜ける。そ
のため凹溝11部でスクライブしてチップ化すると半導
体基板の切断部に空乏層の広がり部が露出することにな
り、空乏層部が直接露出すると却って不安定となり耐圧
が低下する。そのため、メサ形状でさらなる高耐圧をう
るためには、図6に示されるように、メサ形状にするた
めの凹溝11より外側にチャネルストッパ6を設け、空
乏層がチャネルストッパ6で終端するようにし、チャネ
ルストッパ6部でスクライブすることにより、空乏層の
延びを凹溝の下部を経由してベース領域2から遠ざける
とともにチャネルストッパ6に終端させている。そうす
ることにより空乏層の端部が直接チップの切断部に露出
せず、高耐圧を達成している。
In order to further increase the breakdown voltage of this mesa-shaped semiconductor device, it is possible to reduce the impurity concentration of the n -- type semiconductor layer 1b near the pn junction 10 and widen the depletion layer to achieve a high breakdown voltage. However, the depletion layer spreads under the mesa-shaped concave groove 11. Therefore, if the groove 11 is scribed to form a chip, the wide portion of the depletion layer is exposed at the cut portion of the semiconductor substrate, and if the depletion layer portion is directly exposed, it becomes rather unstable and the breakdown voltage decreases. Therefore, in order to obtain a higher withstand voltage with the mesa shape, as shown in FIG. 6, the channel stopper 6 is provided outside the concave groove 11 for forming the mesa shape so that the depletion layer terminates at the channel stopper 6. Then, the extension of the depletion layer is moved away from the base region 2 via the lower portion of the concave groove and terminated at the channel stopper 6 by scribing at the channel stopper 6 portion. By doing so, the end portion of the depletion layer is not directly exposed to the cut portion of the chip, and a high breakdown voltage is achieved.

【0006】高耐圧を達成する前述の2つの方法におい
て、メサ形状にするばあい凹溝11をエッチングで形成
するのに深くする程広い幅を必要とするため、たとえば
前述のベース領域2の端部とチップ端部(チャネルスト
ッパ6)までの距離が200μm以下のばあいはFLR
を用い、それより広いばあいにメサ形状を用いることが
多い。
In the above-mentioned two methods for achieving a high breakdown voltage, when the mesa shape is used, the deeper the groove is, the wider the groove needs to be to form it by etching. FLR if the distance between the edge and the end of the chip (channel stopper 6) is 200 μm or less
, And if it is wider than that, the mesa shape is often used.

【0007】[0007]

【発明が解決しようとする課題】メサ形状により高耐圧
化するばあい、前述のようにさらに高耐圧をうるために
空乏層を広げると凹溝の下側まで空乏層が達し、凹溝の
外側にチャネルストッパを設けてその部分で切断しなけ
ればならず、チップが大きくなるとともに、凹溝とスク
ライブ部のあいだの端部がワレたり、カケ易く、歩留り
が低下するという問題がある。
When the breakdown voltage is increased due to the shape of the mesa, if the depletion layer is expanded to obtain a higher breakdown voltage as described above, the depletion layer reaches the lower side of the groove and the outside of the groove. However, there is a problem that the chip becomes large and the end portion between the concave groove and the scribe portion is cracked or liable to chip, which lowers the yield.

【0008】一方、広がった空乏層が凹溝の下側に達し
ないようにするためには凹溝を深く形成すればよいが、
凹溝を余り深くすると半導体ウェハが沿ったり、クラッ
クが入り易く、信頼性が低下するという問題がある。
On the other hand, in order to prevent the expanded depletion layer from reaching the lower side of the groove, the groove may be formed deep.
If the groove is too deep, there is a problem that the semiconductor wafer runs along or cracks easily occur, resulting in a decrease in reliability.

【0009】本発明はこのような問題を解決し、メサ形
状の半導体装置において、さらなる高耐圧をうるばあい
にもチップサイズを大きくしないで、かつ、メサ形状に
するための凹溝の深さを余り深くしないで高耐圧がえら
れる半導体装置を提供することを目的とする。
The present invention solves such a problem, and in a mesa-shaped semiconductor device, the chip size is not increased even if higher withstand voltage is obtained, and the depth of the concave groove for forming the mesa shape is obtained. An object of the present invention is to provide a semiconductor device capable of obtaining a high breakdown voltage without making the depth too deep.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置は、
第1導電型半導体層に半導体素子形成のための第2導電
型半導体層が設けられることによりpn接合が形成さ
れ、該pn接合の深さより深い凹溝が前記第2導電型半
導体層に形成されることにより該第2導電型半導体層が
メサ形状に分離されてなる半導体装置であって、前記凹
溝の底部に前記第1導電型半導体層と同じ導電型で高不
純物濃度のチャネルストッパが設けられている。
According to the present invention, there is provided a semiconductor device comprising:
A pn junction is formed by providing a second conductivity type semiconductor layer for forming a semiconductor element on the first conductivity type semiconductor layer, and a groove deeper than the depth of the pn junction is formed in the second conductivity type semiconductor layer. In this way, the second conductive type semiconductor layer is separated into a mesa shape, and a channel stopper having the same conductive type as the first conductive type semiconductor layer and a high impurity concentration is provided at the bottom of the groove. Has been.

【0011】前記第1導電型半導体層がコレクタ領域
で、第2導電型半導体層がベース領域で、前記凹溝が該
ベース領域の外周に設けられて、前記ベース領域内に第
1導電型のエミッタ領域が設けられることによりメサ形
状の高耐圧のトランジスタがえられる。
The first conductive type semiconductor layer is a collector region, the second conductive type semiconductor layer is a base region, and the groove is provided on the outer periphery of the base region, and the first conductive type semiconductor layer is formed in the base region. By providing the emitter region, a high withstand voltage transistor having a mesa shape can be obtained.

【0012】本発明の半導体装置の製法は、(a)第1
導電型半導体層の素子形成領域の周囲に第1導電型の高
不純物濃度領域であるチャネルストッパを形成し、
(b)前記第1導電型半導体層の表面側に第2導電型半
導体層を形成し、(c)該第2導電型半導体層の前記チ
ャネルストッパの上部に位置する部分をエッチングして
前記チャネルストッパに達する凹溝を形成し、(d)該
凹溝にパッシベーション膜を形成し、(e)前記チャネ
ルストッパ部で切断してチップ化することを特徴とす
る。
The method of manufacturing a semiconductor device of the present invention comprises (a) first
A channel stopper, which is a high-concentration region of the first conductivity type, is formed around the element formation region of the conductivity type semiconductor layer,
(B) A second conductivity type semiconductor layer is formed on the surface side of the first conductivity type semiconductor layer, and (c) a portion of the second conductivity type semiconductor layer located above the channel stopper is etched to form the channel. It is characterized in that a concave groove reaching the stopper is formed, (d) a passivation film is formed in the concave groove, and (e) it is cut into chips by the channel stopper portion.

【0013】前記(b)工程の第2導電型半導体層を形
成する前に低不純物濃度の第1導電型半導体層をさらに
エピタキシャル成長することによりpn接合面と凹溝の
底部との距離を大きくすることができ、高耐圧で空乏層
の広がりを大きくしてもメサ形状の壁面に空乏層が終端
し易く、高耐圧がえられ易い。
Before forming the second conductivity type semiconductor layer in the step (b), the first conductivity type semiconductor layer having a low impurity concentration is further epitaxially grown to increase the distance between the pn junction surface and the bottom of the groove. Even if the withstand voltage is high and the expansion of the depletion layer is large, the depletion layer is likely to terminate on the mesa-shaped wall surface, and the high withstand voltage is easily obtained.

【0014】前記第2導電型半導体層内に第1導電型半
導体領域を形成することによりトランジスタ構造を形成
することができる。
A transistor structure can be formed by forming a first conductivity type semiconductor region in the second conductivity type semiconductor layer.

【0015】[0015]

【作用】本発明によれば、メサ形状にする凹溝の下側の
半導体層にチャネルストッパが該半導体層と同一導電型
で高不純物濃度に形成されているため、pn接合の空乏
層が高電圧で広がったばあいでも凹溝の下側をくぐるこ
となくチャネルストッパに入り込み、空乏層はチャネル
ストッパで終端する。その結果、凹溝部でスクライブし
てチップ化しても広がった空乏層の端部が切断面に露出
することなく安定した高耐圧がえられる。
According to the present invention, since the channel stopper is formed in the semiconductor layer below the mesa-shaped concave groove with the same conductivity type as the semiconductor layer and with a high impurity concentration, the depletion layer of the pn junction is high. Even if it spreads by the voltage, it enters the channel stopper without passing under the concave groove, and the depletion layer terminates at the channel stopper. As a result, a stable high breakdown voltage can be obtained without exposing the end of the depletion layer that has spread to the cut surface even if the chip is formed by scribing in the groove.

【0016】さらに、チャネルストッパにより広がった
空乏層を終端させることができるため、メサ形状にする
ための凹溝を空乏層の範囲が完全にカバーされる程深く
形成する必要がなく、チップ端部でのカケやワレの発生
を抑制し信頼性の高い半導体装置がえられる。
Further, since the depletion layer expanded by the channel stopper can be terminated, it is not necessary to form the concave groove for forming the mesa deep enough to completely cover the range of the depletion layer, and the chip end portion can be formed. It is possible to obtain a highly reliable semiconductor device which suppresses the occurrence of chipping and cracking.

【0017】本発明の半導体装置の製法によれば、チッ
プ化のための切断部にあらかじめチャネルストッパを形
成しておき、その上に第2導電型半導体層を形成し、該
第2導電型半導体層の前記チャネルストッパの上部部分
をエッチングしてメサ形状にする凹溝を形成しているた
め、簡単に凹溝の下部にチャネルストッパを形成するこ
とができる。その結果、凹溝部でスクライブしてチップ
化することにより、小型で高耐圧の半導体装置を容易に
うることができる。
According to the method of manufacturing a semiconductor device of the present invention, a channel stopper is formed in advance at a cutting portion for chip formation, and a second conductivity type semiconductor layer is formed thereon, and the second conductivity type semiconductor is formed. Since the upper portion of the channel stopper of the layer is etched to form the mesa-shaped concave groove, the channel stopper can be easily formed below the concave groove. As a result, it is possible to easily obtain a small-sized and high-breakdown-voltage semiconductor device by scribing in the groove portion to form a chip.

【0018】[0018]

【実施例】つぎに、図面を参照しながら本発明の半導体
装置およびその製法について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a semiconductor device of the present invention and a manufacturing method thereof will be described with reference to the drawings.

【0019】図1は本発明の半導体装置の一実施例のト
ランジスタの断面説明図、図2はその製法の各工程を示
す図、図3はその製法の他の実施例の製造工程の一部を
示す図、図4は図1の構造の半導体装置の歩留りの分布
を従来構造のものと比較して示した図である。
FIG. 1 is a cross-sectional explanatory view of a transistor of one embodiment of a semiconductor device of the present invention, FIG. 2 is a diagram showing each step of the manufacturing method, and FIG. 3 is a part of the manufacturing step of another embodiment of the manufacturing method. FIG. 4 is a diagram showing the yield distribution of the semiconductor device having the structure of FIG. 1 in comparison with that of the conventional structure.

【0020】図1において第1導電型である、たとえば
+型半導体基板1aにn-型の低不純物濃度の半導体層
1bが形成されたコレクタ領域(第1導電型半導体層)
1に拡散またはエピタキシャル成長により第2導電型で
ある、たとえばp型の半導体層からなるベース領域(第
2導電型半導体層)2が形成され、ベース領域2とコレ
クタ領域1とのあいだにpn接合10が形成されてい
る。ベース領域2内にはさらに拡散またはイオン注入な
どにより第1導電型である、たとえばn+型のエミッタ
領域3が形成され、その表面には酸化ケイ素、チッ化ケ
イ素などからなる絶縁膜5が形成されている。ベース領
域2の側部はpn接合10より深くエッチングされてメ
サ形状(メサ部)にされ、その表面には鉛ガラスや酸化
アルミニウムを含むガラスなどからなるパッシベーショ
ン膜5aが形成されている。メサ部の底部のn-型半導
体層1bには該半導体層1bと同一導電型で高不純物濃
度であるn+型のチャネルストッパ6が形成されてい
る。半導体基板1aの裏面に金またはチタンなどからな
るコレクタ電極7、表面側にアルミニウムなどからなる
ベース電極8、エミッタ電極9がそれぞれベース領域
2、エミッタ領域3とオーミック接触がえられるように
設けられている。
In FIG. 1, a collector region (first conductivity type semiconductor layer) of the first conductivity type, for example, an n + type semiconductor substrate 1a on which an n type semiconductor layer 1b having a low impurity concentration is formed
1 is formed with a base region (second conductivity type semiconductor layer) 2 having a second conductivity type, for example, a p-type semiconductor layer by diffusion or epitaxial growth, and a pn junction 10 is formed between the base region 2 and the collector region 1. Are formed. In the base region 2, a first conductivity type, for example, n + type emitter region 3 is further formed by diffusion or ion implantation, and an insulating film 5 made of silicon oxide, silicon nitride or the like is formed on the surface thereof. Has been done. A side portion of the base region 2 is etched deeper than the pn junction 10 to have a mesa shape (mesa portion), and a passivation film 5a made of lead glass or glass containing aluminum oxide is formed on the surface thereof. An n + type channel stopper 6 having the same conductivity type as that of the semiconductor layer 1b and a high impurity concentration is formed in the n type semiconductor layer 1b at the bottom of the mesa portion. A collector electrode 7 made of gold or titanium or the like is provided on the back surface of the semiconductor substrate 1a, and a base electrode 8 and an emitter electrode 9 made of aluminum or the like are provided on the front surface side so as to make ohmic contact with the base region 2 and the emitter region 3, respectively. There is.

【0021】本実施例のトランジスタは、pn接合10
の耐圧を向上させるため、pn接合10より深い凹溝
(メサ部)を形成してメサ形構造にするとともに、メサ
形構造を形成する凹溝(メサ部)の底部に接してn-
半導体層1bにn+型のチャネルストッパ6が設けら
れ、その凹溝(メサ部)とチャネルストッパ6部でスク
ライブされチップ化されていることに特徴がある。本実
施例のトランジスタはこのような構造になっているた
め、ベース領域2とコレクタ領域1とのあいだに逆バイ
アスの高電圧が印加されてもpn接合10の両側に空乏
層12が広がり、その空乏層12がメサ部の下側まで延
びてもチャネルストッパ6に終端する。その結果、チッ
プ化のためメサ部でスクライブしてもスクライブされた
断面に空乏層の端部が直接現われることがなく、安定し
た高耐圧がえられる。なお、高耐圧にするためには、p
n接合10部のn-型半導体層1bの不純物濃度を低く
することにより空乏層12が広くなり高耐圧になるが、
本発明によればチャネルストッパ6が設けられているた
め、空乏層12の端部が直接スクライブにより切断され
た部分に露出することなく、高耐圧化を実現することが
できる。
The transistor of this embodiment has a pn junction 10
In order to improve the breakdown voltage of the n - type semiconductor, a groove (mesa portion) deeper than the pn junction 10 is formed to form a mesa structure, and an n -type semiconductor is formed in contact with the bottom of the groove (mesa portion) forming the mesa structure. The layer 1b is characterized in that an n + type channel stopper 6 is provided, and the groove (mesa portion) and the channel stopper 6 portion are scribed to form a chip. Since the transistor of this embodiment has such a structure, the depletion layer 12 spreads on both sides of the pn junction 10 even if a high reverse bias voltage is applied between the base region 2 and the collector region 1, and Even if the depletion layer 12 extends to the lower side of the mesa portion, it terminates in the channel stopper 6. As a result, even when scribing at the mesa portion for chip formation, the end portion of the depletion layer does not directly appear in the scribed cross section, and a stable high breakdown voltage can be obtained. It should be noted that in order to obtain a high breakdown voltage, p
By lowering the impurity concentration of the n type semiconductor layer 1b in the n junction 10 part, the depletion layer 12 becomes wider and the breakdown voltage becomes higher.
According to the present invention, since the channel stopper 6 is provided, the high breakdown voltage can be realized without exposing the end portion of the depletion layer 12 to the portion directly cut by the scribe.

【0022】さらに、本発明の半導体装置によれば、メ
サ部の下部にチャネルストッパ6が形成され、空乏層1
2の端部がチャネルストッパ6で終端するため、メサ形
構造形成のための凹溝の形成を必要以上に深くしなくて
もよく、半導体ウェハのワレや破損などの問題がなく歩
留りが大幅に向上する。また、チップ化の際に凹溝部で
スクライブするため、凹溝と切断部のあいだに出張り部
ができず、取扱い中にカケたり、破損することがなく、
歩留りが大幅に向上する。従来の凹溝の外側でスクライ
ブするばあい(従来例)と比較して本実施例によるトラ
ンジスタの歩留りの分布を図4に示す。耐圧については
従来と同程度の耐圧がえられ、歩留りは図4から明らか
なように、50%程度から80%程度に大幅に上昇し
た。
Further, according to the semiconductor device of the present invention, the channel stopper 6 is formed below the mesa portion, and the depletion layer 1 is formed.
Since the end of 2 is terminated by the channel stopper 6, it is not necessary to form the concave groove for forming the mesa structure more than necessary, and there is no problem such as cracking or damage of the semiconductor wafer, and the yield is significantly increased. improves. In addition, since the groove is scribed during chip formation, no protrusion can be formed between the groove and the cut portion, and there is no chipping or damage during handling.
Yield is greatly improved. FIG. 4 shows the yield distribution of the transistor according to the present embodiment as compared with the conventional case of scribing outside the groove (conventional example). Regarding the breakdown voltage, a breakdown voltage similar to the conventional one was obtained, and the yield was significantly increased from about 50% to about 80%, as is clear from FIG.

【0023】つぎに、本発明の半導体装置の製法の一実
施例を図2を参照しながら説明する。本実施例は図1に
示されるトランジスタの製法の一実施例である。
Next, an embodiment of the method for manufacturing the semiconductor device of the present invention will be described with reference to FIG. This embodiment is one embodiment of a method of manufacturing the transistor shown in FIG.

【0024】まず、図2(a)に示されるように、不純
物濃度が1×1019〜1×1020/cm3程度で130
μm程度の厚さのn+型半導体基板1aの一方の面にエ
ピタキシャル成長などにより不純物濃度が5×1013
cm3程度のn-型半導体層1bを100μm程度の厚さ
に形成し、またはn-型半導体基板1bの一方の面に不
純物拡散などによりn+型半導体層1aを形成すること
によりコレクタ領域1を形成し、n-型半導体層1b上
に酸化ケイ素またはチッ化ケイ素などからなるマスク1
3を熱酸化またはCVD法などにより形成する。
First, as shown in FIG. 2A, when the impurity concentration is about 1 × 10 19 to 1 × 10 20 / cm 3, it is 130
The impurity concentration is 5 × 10 13 / on one surface of the n + type semiconductor substrate 1a having a thickness of about μm by epitaxial growth or the like.
The collector region 1 is formed by forming the n type semiconductor layer 1b having a thickness of about cm 3 to a thickness of about 100 μm, or by forming the n + type semiconductor layer 1a on one surface of the n type semiconductor substrate 1b by impurity diffusion or the like. And a mask 1 made of silicon oxide or silicon nitride on the n type semiconductor layer 1b.
3 is formed by thermal oxidation or a CVD method.

【0025】ついで、図2(b)に示されるように、半
導体素子形成領域の周囲に相当する場所のマスク13に
開口部13aを設け、たとえばリン、ヒ素などのn型不
純物をイオン注入法または拡散などにより導入してn+
型としてチャネルストッパ6を形成する。
Next, as shown in FIG. 2B, an opening 13a is formed in the mask 13 at a position corresponding to the periphery of the semiconductor element forming region, and an n-type impurity such as phosphorus or arsenic is ion-implanted or formed. Introduced by diffusion etc. n +
The channel stopper 6 is formed as a mold.

【0026】つぎに、図2(c)に示されるように、ベ
ース領域2を形成するため、たとえばp型の第2導電型
半導体層2aを20μm程度の厚さエピタキシャル成長
する。
Next, as shown in FIG. 2C, in order to form the base region 2, for example, a p-type second conductivity type semiconductor layer 2a is epitaxially grown to a thickness of about 20 μm.

【0027】そののち、ベース領域2内にリン、ヒ素な
どのn型不純物を拡散してエミッタ領域3を7〜10μ
m程度の厚さに形成し、さらに表面のマスクを形成し直
してチャネルストッパ6の上部のみを開口した絶縁膜5
を形成し、チャネルストッパ6まで到達するようにフッ
酸液を用いたウェットエッチングまたはドライエッチン
グなどによりエッチングをして凹溝11を形成する(図
2(d)参照)。
After that, n-type impurities such as phosphorus and arsenic are diffused in the base region 2 to form an emitter region 3 of 7 to 10 μm.
The insulating film 5 is formed to a thickness of about m, and the surface mask is re-formed to open only the upper part of the channel stopper 6.
Then, the groove 11 is formed by wet etching or dry etching using a hydrofluoric acid solution so as to reach the channel stopper 6 (see FIG. 2D).

【0028】そののち、図1に示されるように、凹溝1
1の表面に鉛ガラス、酸化アルミニウムを含むガラスな
どからなるパッシベーション膜5aを設けるとともに、
アルミニウムなどをスパッタ法または真空蒸着法などに
より被膜してベース電極8、エミッタ電極9を形成し、
さらに半導体基板1aの裏面側に金やチタンなどの金属
膜を同様に被膜してコレクタ電極7を形成し、半導体基
板1を凹溝11およびチャネルストッパ6の中心部でス
クライブすることにより、図1に示されるようなトラン
ジスタのチップがえられる。
After that, as shown in FIG.
1 is provided with a passivation film 5a made of lead glass, glass containing aluminum oxide, or the like on the surface of 1.
A base electrode 8 and an emitter electrode 9 are formed by coating aluminum or the like by a sputtering method or a vacuum deposition method,
Further, a metal film such as gold or titanium is similarly coated on the back surface side of the semiconductor substrate 1a to form a collector electrode 7, and the semiconductor substrate 1 is scribed at the central portions of the groove 11 and the channel stopper 6, so that the semiconductor substrate 1 shown in FIG. A transistor chip as shown in Fig. 3 is obtained.

【0029】図3は本発明の半導体装置の製法の他の実
施例の製造工程を示す図である。
FIG. 3 is a diagram showing a manufacturing process of another embodiment of the method for manufacturing a semiconductor device of the present invention.

【0030】本実施例は、前述の図2に示される実施例
の(c)工程でp型である第2導電型半導体層2aを形
成する前に、図3(e)に示されるようにn-型または
--型である第1導電型半導体層14を形成し、そのの
ち図3(f)に示されるように、その表面側をp型の第
2導電型半導体層2aとしたことに特徴があり、他の工
程、すなわち図2(a)〜(b)の工程、および図3
(g)のエミッタ領域3を形成するとともにメサ形状に
するためのチャネルストッパ6まで達するエッチングを
施すなどの以後の工程は前記実施例と同じである。
In this embodiment, as shown in FIG. 3E, before the p-type second conductivity type semiconductor layer 2a is formed in the step (c) of the embodiment shown in FIG. An n type or n type first conductivity type semiconductor layer 14 is formed, and then, as shown in FIG. 3 (f), the surface side thereof is used as a p type second conductivity type semiconductor layer 2a. 3 and the other steps, that is, the steps of FIGS. 2A to 2B, and FIG.
Subsequent steps such as (g) forming the emitter region 3 and performing etching to reach the channel stopper 6 for forming the mesa shape are the same as those in the above embodiment.

【0031】前述の第2導電型半導体層2aの形成は、
図3(e)(f)に示されるように第1導型(n型)半
導体層14を20〜80μm程度に厚く形成しておきそ
の表面側を不純物拡散などによりp型としてもよく、ま
た図3(e)でn-型またはn--型の第1導電型半導体
層14を10〜50μm程度に薄く形成し、引き続きド
ーパントをp型に変えて第2導電型半導体層2aを10
〜30μm程度の厚さになるように、エピタキシャル成
長してもよい。
The formation of the second conductivity type semiconductor layer 2a is as follows.
As shown in FIGS. 3 (e) and 3 (f), the first conductive type (n type) semiconductor layer 14 may be formed to have a thickness of about 20 to 80 μm and the surface side thereof may be made to be p type by impurity diffusion or the like. In FIG. 3E, the n -type or n -type first conductive type semiconductor layer 14 is thinly formed to a thickness of about 10 to 50 μm, and then the dopant is changed to p type and the second conductive type semiconductor layer 2 a is formed to 10 μm.
You may epitaxially grow so that it may become about 30 micrometers in thickness.

【0032】本実施例によれば、チャネルストッパ6を
形成したのちに、n-型またはn--型の第1導電型半導
体層14を形成してから第2導電型半導体層2aを形成
しているため、pn接合10が凹溝11の底面より高い
位置に形成され、pn接合10に高い逆バイアスが印加
されて広い空乏層が形成されても空乏層の端部は凹溝1
1の側壁に当り、さらに高耐圧を達成することができ
る。
According to this embodiment, after the channel stopper 6 is formed, the n -- type or n -- type first conductive type semiconductor layer 14 is formed, and then the second conductive type semiconductor layer 2a is formed. Therefore, even if a wide depletion layer is formed by applying a high reverse bias to the pn junction 10, the pn junction 10 is formed at a position higher than the bottom surface of the groove 11, and the end portion of the depletion layer has the groove 1
By hitting the side wall of No. 1, it is possible to achieve a higher breakdown voltage.

【0033】前記各実施例はnpn型トランジスタの例
で説明したが、pnp型トランジスタについても言うに
及ばず、またトランジスタ以外にもpn接合を有し、逆
バイアスに対して高耐圧を必要とする半導体装置、たと
えばダイオード、サイリスタ、トライアック、絶縁ゲー
トバイポーラトランジスタ(IGBT)、MOSFE
T、ICなどにも同様に本発明を適用することができ
る。
Although each of the above embodiments has been described by taking the example of the npn-type transistor, it goes without saying for the pnp-type transistor, and also has a pn junction other than the transistor and requires a high breakdown voltage against reverse bias. Semiconductor devices such as diodes, thyristors, triacs, insulated gate bipolar transistors (IGBT), MOSFE
The present invention can be similarly applied to T, IC and the like.

【0034】[0034]

【発明の効果】本発明によれば、メサ形状にして高耐圧
をうる半導体装置のメサ形状にする凹溝の底部の半導体
層にチャネルストッパが形成されているため、逆バイア
スの高電圧が印加されて空乏層が広がってもその端部は
チャネルストッパで終端する。したがって、凹溝部でス
クライブしても、その切断部に空乏層の端部が露出する
ことがなく、安定した高耐圧の半導体装置がえられる。
その結果、凹溝の外側でスクライブする必要がなく、小
型のチップで高耐圧の半導体装置がえられる。
According to the present invention, since the channel stopper is formed in the semiconductor layer at the bottom of the concave groove which is formed into a mesa shape of a semiconductor device having a mesa shape and high withstand voltage, a high reverse bias voltage is applied. Even if the depletion layer spreads, the end of the depletion layer terminates at the channel stopper. Therefore, even if the groove is scribed, the end portion of the depletion layer is not exposed at the cut portion, and a stable high breakdown voltage semiconductor device can be obtained.
As a result, it is not necessary to scribe outside the groove, and a high breakdown voltage semiconductor device can be obtained with a small chip.

【0035】さらに、凹溝部でスクライブできるため、
凹溝部とスクライブ面とのあいだに突出部が形成され
ず、カケやワレの発生を抑制することができ、歩留りが
大幅に向上し、コストダウンに大いに寄与する。
Further, since the groove can be scribed,
No protrusion is formed between the groove and the scribe surface, so that the occurrence of chips and cracks can be suppressed, the yield is greatly improved, and the cost is greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の一実施例の断面説明図で
ある。
FIG. 1 is a cross-sectional explanatory view of an embodiment of a semiconductor device of the present invention.

【図2】図1の半導体装置の製法の一実施例を示す図で
ある。
FIG. 2 is a diagram showing an example of a method of manufacturing the semiconductor device of FIG.

【図3】図1の半導体装置の製法の他の実施例を示す図
である。
FIG. 3 is a diagram showing another embodiment of the method for manufacturing the semiconductor device of FIG.

【図4】図1の半導体装置の歩留りを従来と比較して示
した図である。
FIG. 4 is a diagram showing a yield of the semiconductor device of FIG. 1 in comparison with a conventional one.

【図5】従来の高耐圧化した半導体装置の断面説明図で
ある。
FIG. 5 is a cross-sectional explanatory view of a conventional semiconductor device having a high breakdown voltage.

【図6】従来の高耐圧化した半導体装置の断面説明図で
ある。
FIG. 6 is a cross-sectional explanatory view of a conventional semiconductor device having a high breakdown voltage.

【符号の説明】[Explanation of symbols]

1 コレクタ領域(第1導電型半導体層) 2 ベース領域(第2導電型半導体層) 3 エミッタ領域 6 チャネルストッパ 10 pn接合 11 凹溝 1 collector region (first conductivity type semiconductor layer) 2 base region (second conductivity type semiconductor layer) 3 emitter region 6 channel stopper 10 pn junction 11 recessed groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体層に半導体素子形成の
ための第2導電型半導体層が設けられることによりpn
接合が形成され、該pn接合の深さより深い凹溝が前記
第2導電型半導体層に形成されることにより該第2導電
型半導体層がメサ形状に分離されてなる半導体装置であ
って、前記凹溝の底部に前記第1導電型半導体層と同じ
導電型で高不純物濃度のチャネルストッパが設けられて
なる半導体装置。
1. A pn formed by providing a second conductivity type semiconductor layer for forming a semiconductor element on the first conductivity type semiconductor layer.
A semiconductor device in which a junction is formed and a groove deeper than the depth of the pn junction is formed in the second conductivity type semiconductor layer to separate the second conductivity type semiconductor layer into a mesa shape. A semiconductor device in which a channel stopper having the same conductivity type as the first conductivity type semiconductor layer and a high impurity concentration is provided at the bottom of the groove.
【請求項2】 前記第1導電型半導体層がコレクタ領域
で、第2導電型半導体層がベース領域で、前記凹溝が該
ベース領域の外周に設けられて、前記ベース領域内に第
1導電型のエミッタ領域が設けられてなる請求項1記載
の半導体装置。
2. The first conductive type semiconductor layer is a collector region, the second conductive type semiconductor layer is a base region, and the groove is provided on an outer periphery of the base region, and the first conductive type semiconductor layer is provided in the base region. The semiconductor device according to claim 1, further comprising a mold emitter region.
【請求項3】 (a)第1導電型半導体層の素子形成領
域の周囲に第1導電型の高不純物濃度領域であるチャネ
ルストッパを形成し、(b)前記第1導電型半導体層の
表面側に第2導電型半導体層を形成し、(c)該第2導
電型半導体層の前記チャネルストッパの上部に位置する
部分をエッチングして前記チャネルストッパに達する凹
溝を形成し、(d)該凹溝にパッシベーション膜を形成
し、(e)前記チャネルストッパ部で切断してチップ化
することを特徴とする半導体装置の製法。
3. A channel stopper, which is a first-conductivity-type high-impurity-concentration region, is formed around an element forming region of the first-conductivity-type semiconductor layer, and (b) a surface of the first-conductivity-type semiconductor layer. A second conductivity type semiconductor layer is formed on the side, and (c) a portion of the second conductivity type semiconductor layer located above the channel stopper is etched to form a concave groove reaching the channel stopper. A method of manufacturing a semiconductor device, comprising forming a passivation film in the groove, and (e) cutting into a chip by the channel stopper portion.
【請求項4】 前記(b)工程の第2導電型半導体層を
形成する前に低不純物濃度の第1導電型半導体層をさら
にエピタキシャル成長する請求項3記載の半導体装置の
製法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the first conductivity type semiconductor layer having a low impurity concentration is further epitaxially grown before forming the second conductivity type semiconductor layer in the step (b).
【請求項5】 前記第2導電型半導体層内に第1導電型
半導体領域を形成してトランジスタ構造を形成する請求
項3または4記載の半導体装置の製法。
5. The method of manufacturing a semiconductor device according to claim 3, wherein a transistor structure is formed by forming a first conductivity type semiconductor region in the second conductivity type semiconductor layer.
JP15921295A 1995-06-26 1995-06-26 Manufacturing method of semiconductor devices Expired - Fee Related JP3917202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15921295A JP3917202B2 (en) 1995-06-26 1995-06-26 Manufacturing method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15921295A JP3917202B2 (en) 1995-06-26 1995-06-26 Manufacturing method of semiconductor devices

Publications (2)

Publication Number Publication Date
JPH098274A true JPH098274A (en) 1997-01-10
JP3917202B2 JP3917202B2 (en) 2007-05-23

Family

ID=15688782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15921295A Expired - Fee Related JP3917202B2 (en) 1995-06-26 1995-06-26 Manufacturing method of semiconductor devices

Country Status (1)

Country Link
JP (1) JP3917202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353230A (en) * 2001-05-25 2002-12-06 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
DE10321954A1 (en) * 2003-05-15 2004-12-02 Vishay Semiconductor Gmbh Single semiconductor element in flip-chip design
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
WO2008044801A1 (en) * 2006-10-13 2008-04-17 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
CN112133743A (en) * 2020-11-25 2020-12-25 浙江里阳半导体有限公司 Silicon controlled rectifier structure and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353230A (en) * 2001-05-25 2002-12-06 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
DE10321954A1 (en) * 2003-05-15 2004-12-02 Vishay Semiconductor Gmbh Single semiconductor element in flip-chip design
US7042096B2 (en) 2003-05-15 2006-05-09 Vishy Semiconductor Gmbh Single semiconductor element in a flip chip construction
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
WO2008044801A1 (en) * 2006-10-13 2008-04-17 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JPWO2008044801A1 (en) * 2006-10-13 2010-02-18 三洋電機株式会社 Semiconductor device and manufacturing method thereof
CN112133743A (en) * 2020-11-25 2020-12-25 浙江里阳半导体有限公司 Silicon controlled rectifier structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP3917202B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
US6426541B2 (en) Schottky diode having increased forward current with improved reverse bias characteristics and method of fabrication
US6882000B2 (en) Trench MIS device with reduced gate-to-drain capacitance
US9922864B2 (en) Trench separation diffusion for high voltage device
US6404033B1 (en) Schottky diode having increased active surface area with improved reverse bias characteristics and method of fabrication
US20020137264A1 (en) Method of fabrication thin wafer IGBT
US20050202637A1 (en) Recessed termination for trench schottky device without junction curvature
US6207974B1 (en) Process for manufacture of a p-channel MOS gated device with base implant through the contact window
US20060113624A1 (en) LOCOS-based Schottky barrier diode and its manufacturing methods
JP3917202B2 (en) Manufacturing method of semiconductor devices
JP3357804B2 (en) Semiconductor device and manufacturing method thereof
US20220181504A1 (en) Semiconductor device and production method for semiconductor device
JP2000312013A (en) Schottky barrier semiconductor device
CN113161238A (en) Manufacturing process of gate sensitive type trigger controlled silicon chip with high temperature characteristic
JPH05283520A (en) Manufacture of semiconductor device
CN110931548A (en) Semiconductor device structure and manufacturing method thereof
US20090309130A1 (en) Method of fabricating collector of igbt
US20240097015A1 (en) Semiconductor device and method of manufacturing the same
JP7034214B2 (en) Semiconductor device
US20240072132A1 (en) Semiconductor device and method of manufacturing the same
US11502190B2 (en) Vertical power semiconductor device, semiconductor wafer or bare-die arrangement, carrier, and method of manufacturing a vertical power semiconductor device
WO1988004472A1 (en) Method of fabricating self aligned semiconductor devices
KR100505561B1 (en) Manufacturing method of high breakdown voltage transistor
JP2000252457A (en) Mesa semiconductor device
US20220115532A1 (en) Power semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees