JPH0982344A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0982344A
JPH0982344A JP7232311A JP23231195A JPH0982344A JP H0982344 A JPH0982344 A JP H0982344A JP 7232311 A JP7232311 A JP 7232311A JP 23231195 A JP23231195 A JP 23231195A JP H0982344 A JPH0982344 A JP H0982344A
Authority
JP
Japan
Prior art keywords
gas
protrusion
gas flow
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7232311A
Other languages
Japanese (ja)
Other versions
JP2866034B2 (en
Inventor
Hidekazu Fujimura
秀和 藤村
Shoji Ito
昌治 伊藤
Michio Kunikata
道雄 国方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOYU TANSANENGATA NENRYO DENCH, YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOYU TANSANENGATA NENRYO DENCH
Priority to JP7232311A priority Critical patent/JP2866034B2/en
Publication of JPH0982344A publication Critical patent/JPH0982344A/en
Application granted granted Critical
Publication of JP2866034B2 publication Critical patent/JP2866034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To reduce the highest temperature in a cell, uniformize the temperature distribution, and improve the battery service life by arranging a first arrangement group whose projected area is the largest in the gas flow direction on the outlet side of fuel gas, and arranging a second arrangement group whose projected area becomes the smallest on the inlet side of the fuel gas. SOLUTION: Support materials 13 having projections 12 are arranged in fuel gas passages 9 and 10, and the projections 12 have a length in the same degree with a passage height 1.8mm, and contact with electrodes 4 and 5, and prevent a current collecting action and deformation of the electrodes and deformation of the gas passages 9 and 10. The support materials 13 are arranged in the anode side passage 9 so that side surfaces 14 of the support materials 13 face a gas flow. That is, they are arranged so that the projected area of the support materials 13 becomes the largest when viewed from the gas flow. The gas flow is disturbed by the side surface parts 14 of the support materials 13, and mixing of hydrogen of a reaction component, water of a generating component and CO2 is improved, and the hydrogen concentration on an electrode surface is improved. Next, on the cathode side, the side surface parts 14 of the support materials 13 are arranged so as to become parallel to the gas flow. A second passage constituting body is arranged in an inlet of fuel gas 7, and a first passage constituting body is arranged on the outlet side. Its area rate is 3:7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池に関し、特に溶
融炭酸塩型燃料電池の燃料ガスと酸化剤ガスとが直交方
向であるガス流路構造を有する燃料電池に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a fuel cell of a molten carbonate fuel cell having a gas flow path structure in which a fuel gas and an oxidant gas are orthogonal to each other.

【0002】[0002]

【従来の技術】燃料電池に供給するガス流量を調節する
ものとして、特開昭63−116368号,特開昭56−168364号
がある。前者の発明は、反応ガスの濃度面から燃料ガス
を反応の活発な領域、すなわち酸化剤ガス入口側に多く
流し、反応が比較的活発でない領域、すなわち酸化剤ガ
ス出口側には少ない流量を流すことにより、燃料の無駄
をなくし燃料の利用率を面内で均一にし、ガス不足領域
を生じないことを狙ったものが記載されている。後者は
酸化剤ガス側にも流量分布をつけ、反応分布を均一化し
ようとするものである。
2. Description of the Related Art JP-A-63-116368 and JP-A-56-168364 are used to adjust the flow rate of gas supplied to a fuel cell. In the former invention, a large amount of fuel gas flows from the concentration side of the reaction gas to the region where the reaction is active, that is, the oxidant gas inlet side, and a small flow rate is flowed to the region where the reaction is relatively inactive, that is, the oxidant gas outlet side. In this way, it is described that the waste of fuel is eliminated, the utilization factor of fuel is made uniform in the plane, and a gas shortage region is not generated. The latter is intended to make the reaction distribution uniform by providing a flow rate distribution also on the oxidant gas side.

【0003】特開平1−63272号はガス流路面内に設けら
れた流路構成要素であるリブの配置に関するもので、流
れ方向に対してリブに角度をつけることにより、任意の
方向にガスを流して温度の均一化や反応の均一化を図ろ
うとするものであり、また、流路抵抗を変化させて、ア
ノード,カソード両電極間の圧力差を低減するものであ
る。
Japanese Laid-Open Patent Publication No. 1-63272 relates to the arrangement of ribs, which are flow passage constituent elements, provided in the gas flow passage surface. By angling the ribs with respect to the flow direction, the gas can be directed in any direction. In order to make the temperature uniform and the reaction uniform, the flow resistance is changed to reduce the pressure difference between the anode and cathode electrodes.

【0004】[0004]

【発明が解決しようとする課題】特開昭63−116368号,
特開昭56−168364号等の発明では、温度分布を均一にす
ることは考慮されておらずセル内の温度差の低減には寄
与しない。すなわち温度分布は電流密度分布あるいは周
囲との熱伝達とガスの流路形式(特に酸化剤ガス側)に
よって定まる。そのうち電流密度分布は燃料ガスの流れ
方向に沿って変化し、その水素濃度の低下とともに電流
密度が低下することは避けられず、従って燃料ガス入口
側は出口側に比べて、電流密度は高くなり、また発熱密
度も入口ほど高くなる。また、共に燃料ガスに流量分布
をつけている記載がある。
[Problems to be Solved by the Invention] Japanese Patent Laid-Open No. 63-116368
In the inventions of JP-A-56-168364 and the like, making the temperature distribution uniform is not considered and it does not contribute to the reduction of the temperature difference in the cell. That is, the temperature distribution is determined by the current density distribution or the heat transfer with the surroundings and the gas flow path type (particularly the oxidant gas side). Among them, the current density distribution changes along the flow direction of the fuel gas, and it is unavoidable that the current density decreases as the hydrogen concentration decreases, so the fuel gas inlet side has a higher current density than the outlet side. Also, the heat generation density becomes higher at the entrance. In addition, there is a description that the flow rate distribution is attached to the fuel gas.

【0005】また、流量分布をつける手段として、流路
の断面積を流路幅や流路高さを変えることを提示してい
る。
Further, as a means for providing the flow rate distribution, it is proposed to change the cross-sectional area of the flow channel by changing the flow channel width and the flow channel height.

【0006】流路幅が面内で変わると電極と仕切板間の
接触面積が均一でなくなり、電流分布が変化する可能性
がある。また、流路高さを変えることは仕切板を含む流
路構造が製作上、非常に難しくなり、コスト増につなが
ってしまうし、電極に対して面内で均一な面圧を得るこ
とがより困難になる。
If the width of the flow path changes in the plane, the contact area between the electrode and the partition plate may not be uniform, and the current distribution may change. In addition, changing the flow path height makes it very difficult to manufacture a flow path structure including a partition plate, which leads to an increase in cost, and it is more effective to obtain a uniform surface pressure on the electrode. It will be difficult.

【0007】また、リブ角度により、面内のガス流れ方
向が異なるようにするとガス流れのよどみ部や低流速、
低流量領域の発生による反応ガス不足が生じやすくな
る。
If the in-plane gas flow direction is made different depending on the rib angle, the stagnation part of the gas flow, the low flow velocity,
The reaction gas shortage easily occurs due to the generation of the low flow rate region.

【0008】本発明は以上の点に鑑みなされたものであ
り、流路高さや電極との接触面積や接触面圧を面内で実
質均一に保ったまま、流量分布を作り出せ、セルの温度
分布の均一化を図る燃料電池を提供することを目的とす
る。他の目的として前記目的を同一の流路構成部材のみ
で前記燃料電池を達成することを目的とする。
The present invention has been made in view of the above points, and it is possible to create a flow rate distribution while maintaining the flow path height, the contact area with the electrode, and the contact surface pressure substantially uniform in the surface, and the temperature distribution of the cell. It is an object of the present invention to provide a fuel cell capable of achieving uniform fuel cell efficiency. Another object of the invention is to achieve the fuel cell with the same flow path forming member only.

【0009】[0009]

【課題を解決するための手段】前記目的は、電解質板、
該電解質板を挾持するアノード及びカソード極からなる
単位電池、該単位電池はセパレータを介して積層されて
なり、前記アノード或いはカソード極と隣接するセパレ
ータとの間には燃料ガス或いは酸化剤ガスが流通するガ
ス流路面が形成され、該ガス流路面には支持材が介在さ
れてなり、前記燃料ガスと酸化剤ガスとの流れ方向は実
質直交してなる燃料電池において、前記燃料ガス流路面
と酸化剤ガス流路面の少なくとも一方の前記支持材は突
起部を有する板からなり、該突起部は投影面積が大きい
方向と小さい方向とを有し、前記流路面に、ガス流れ方
向に対し前記投影面積が大きい方向を対向させた投影面
積大領域とを有し、前記投影面積が小さい方向を対向さ
せた投影面積小領域とを有し、前記投影面積大領域及び
前記投影面積小領域は酸化剤ガス流れ方向に対し平行に
区切られてなることで達成できる。本発明により、ガス
流路面を仕切板等で区切ることなく面内の流量を調整で
きる。また、ガスの実質の流れ方向を入口側から出口側
まで同じ方向にすることができる。ガス流れを湾曲させ
てガスを流すのに対し、面内の大きなガスのよどみ或い
は集中を防ぐことができるので積層した燃料電池におい
ても各電池ごとにガスの流量分布を調整することを容易
に行うことができる。
Means for Solving the Problems The above-mentioned object is to provide an electrolyte plate,
A unit battery composed of an anode and a cathode electrode sandwiching the electrolyte plate, wherein the unit batteries are stacked with a separator interposed therebetween, and a fuel gas or an oxidant gas flows between the anode or the cathode electrode and an adjacent separator. In the fuel cell in which a gas flow path surface is formed, and a support material is interposed in the gas flow path surface, and the flow directions of the fuel gas and the oxidant gas are substantially orthogonal to each other, the fuel gas flow path surface and the oxidation are At least one of the support surfaces of the agent gas flow path is made of a plate having a projection, and the projection has a direction in which the projected area is large and a direction in which the projected area is small. And a projected area large region in which the large area is opposed, and a small projected area region in which the small projected area is opposed, the large projected area region and the small projected area region. It can be achieved by comprising separated parallel to the oxidant gas flow direction. According to the present invention, the in-plane flow rate can be adjusted without dividing the gas flow path surface by a partition plate or the like. Further, the substantial flow direction of the gas can be the same from the inlet side to the outlet side. In contrast to flowing the gas by curving the gas flow, it is possible to prevent large stagnation or concentration of the gas in the plane, so that even in a stacked fuel cell, it is easy to adjust the gas flow distribution for each cell. be able to.

【0010】本発明の燃料電池は前記支持材を有するこ
とにより、所定のガス通路前を構成し、通路面の機械的
強度を保ち、かつ電極と仕切板間の電気的導通を良好に
するために、前記仕切板と電極の両方に充分な接触部を
持つことができる。
Since the fuel cell of the present invention has the above-mentioned supporting material, it constitutes a predetermined gas passage, maintains the mechanical strength of the passage surface, and makes good electrical continuity between the electrode and the partition plate. In addition, sufficient contact portions can be provided on both the partition plate and the electrodes.

【0011】通路の高さ、電極および仕切板との単位面
積あたりの接触面積を変えることなく前記突起部を有す
る支持材の配置をガス流れ方向からみた、前記支持材の
投影面積が大きくなる投影面積大領域と、小さくなる投
影面積小領域とを面内に少なくとも2つ組み合わせたこ
とを特徴とすることができる。
A projection in which the projected area of the support material is large when the arrangement of the support material having the protrusions is viewed from the gas flow direction without changing the height of the passage and the contact area per unit area with the electrodes and the partition plate. It can be characterized in that at least two large area areas and small projected area small areas are combined in a plane.

【0012】本発明は、前記燃料ガス流路面と酸化剤ガ
ス流路面の少なくとも一方の前記支持材は突起部を有す
る板からなり、該突起部は湾曲或いは屈曲部を有する板
状であり、且つ該突起部は正面と側面とで投影面積が異
なり、前記正面は実質突起部の幅及び高さで規定される
前記投影面積を有し、前記側面は実質突起部の幅及び板
厚で規定される前記投影面積を有し、前記流路面に、ガ
ス流れ方向に対し前記正面を向くように前記突起を配置
した正面突起領域(投影面積大領域、或いは第1の流路
構成体ともいう)、及び前記側面を向くように前記突起
を配置した側面突起領域(投影面積小領域、或いは第2
の流路構成体ともいう)を有することを特徴とする。
According to the present invention, the support member on at least one of the fuel gas flow path surface and the oxidant gas flow path surface is a plate having a protrusion, and the protrusion has a plate shape having a curved or bent portion, and The projections have different projected areas on the front and side surfaces, the front surface has the projected area defined by the width and height of the substantial projection, and the side surface is defined by the width and plate thickness of the substantial projection. Front projection region (also referred to as a large projection area region or a first flow channel structure body) having the above-mentioned projected area and having the above-mentioned projection on the flow channel surface so as to face the front with respect to the gas flow direction, And a side surface protrusion region (a small projected area or a second
(Also referred to as the flow path constituent body).

【0013】実質突起部の幅及び高さで規定される前記
投影面積は、前記突起部を横方向から投影した際に、例
えば最大の投影面積を有するものである。前記実質突起
部の幅及び板厚で規定される前記投影面積は、突起部を
横方向から投影した際に、例えば最小の投影面積を有す
るものである。
The projected area defined by the width and height of the substantial projection has, for example, the maximum projected area when the projection is laterally projected. The projected area defined by the width and plate thickness of the substantial protrusion has, for example, the smallest projected area when the protrusion is projected from the lateral direction.

【0014】これにより、簡単な構成で前記目的を達成
することができる。
As a result, the above object can be achieved with a simple structure.

【0015】また、前記酸化剤ガス流路面の前記正面突
起領域及び側面突起領域は酸化剤ガス流れ方向に対し平
行に区切られてなることを特徴とする。
Further, the front projection area and the side projection area of the oxidant gas flow path surface are divided in parallel to the flow direction of the oxidant gas.

【0016】本発明は、実質的なガス流れを、同一方向
にするものであり、ガス流路面内をガスが湾曲した流路
を有するものでない。また、ガス流路面内の反応を均一
にすることもできる。
According to the present invention, the gas flows are substantially in the same direction, and the gas flow path plane does not have a curved gas flow path. Further, the reaction within the gas flow channel surface can be made uniform.

【0017】また、前記側面突起領域は燃料ガスの入り
口側に配置したことを特徴とする。セル中心より燃料ガ
ス入口側寄りに酸化剤ガス入口から出口にわたり側面突
起領域を配置し、残りの部分を正面突起領域を配置する
ことができる。特に燃料ガス入口側付近にヒートスポッ
トができ易い場合に有効に作用する。
Further, the side projection region is arranged on the inlet side of the fuel gas. It is possible to arrange the side surface protruding region from the center of the cell toward the fuel gas inlet side from the oxidant gas inlet to the outlet, and arrange the front side protruding region in the remaining portion. This is particularly effective when a heat spot is likely to be formed near the fuel gas inlet side.

【0018】また、前記燃料ガス流路面は前記正面突起
領域からなり、前記酸化剤ガス流路面は前記正面突起領
域及び側面突起領域が酸化剤ガス流れ方向に対し平行に
区切られてなり、前記側面突起領域は燃料ガスの入り口
側に配置したことを特徴とする。
Further, the fuel gas flow channel surface is formed by the front projection region, and the oxidant gas flow channel surface is formed by dividing the front projection region and the side projection region in parallel to the oxidant gas flow direction. The protrusion region is arranged on the fuel gas inlet side.

【0019】基本的には反応ガス(燃料ガス)に流量分
布をつけると、多く流量が流れる領域では、反応量すな
わち電流は益々増加し、逆に流量の少ない流域では、反
応量が益々減少し結果的には電流密度分布が大きくなり
セル性能を低下させてしまうことになる。特に燃料側は
一般的には酸化剤側に比べて流量が少なく利用率が高い
ため、流量分布の不均一がセル性能低下に及ぼす影響は
より顕著となる。本願発明は特に酸化剤ガス流路面を制
御することにより前記不都合を回避することもできる。
Basically, when the reaction gas (fuel gas) is provided with a flow rate distribution, the reaction amount, that is, the current, increases more in a region where a large flow amount flows, and conversely, the reaction amount decreases more in a low flow amount region. As a result, the current density distribution becomes large and the cell performance deteriorates. In particular, since the fuel side generally has a smaller flow rate and a higher utilization rate than the oxidant side, the effect of non-uniformity of the flow rate distribution on the deterioration of cell performance becomes more remarkable. The present invention can avoid the above inconvenience by controlling the flow path of the oxidizing gas.

【0020】また、前記突起部は突起の上下方向に変形
可能であることを特徴とする。面内の接触を良好にし、
電極板と支持材を直接接触させるような電池構成である
場合にも電極板への応力集中を緩和し良好な電池となる
ことができる。
Further, the protrusion is deformable in the vertical direction of the protrusion. Good in-plane contact,
Even in the case of a battery configuration in which the electrode plate and the supporting material are in direct contact with each other, stress concentration on the electrode plate can be relaxed and a good battery can be obtained.

【0021】また、前記燃料ガス流路面は、何れか一方
の前記突起領域のみで構成された場合に最も温度の高く
なる領域に、前記側面突起領域が配置されたことを特徴
とする。例えば、ガス流路面内のガス流量に変化を持た
せない場合にヒートスポットのできる部分を前記側面突
起領域とすることにより、効率的に該領域を冷却でき、
温度均一化を図ることができる。
Further, the fuel gas passage surface is characterized in that the side surface protruding region is arranged in a region where the temperature becomes highest when it is constituted by only one of the protruding regions. For example, when the gas flow rate in the gas flow path surface is not changed, the side projection area is a portion where a heat spot can be formed, whereby the area can be efficiently cooled,
It is possible to make the temperature uniform.

【0022】具体的には、前記酸化剤ガス流路面を、何
れか一方の前記突起領域のみで構成された場合に最も温
度の高くなる領域に、前記側面突起領域が配置され、前
記酸化剤ガス流路面の他の部分に正面突起領域を有する
ようにすることができる。例えば、上記支持材の配列の
組み合わせを、酸化剤ガス通路側にのみ施し、均一にガ
スが流れたときの温度分布に対応させて最も温度の高い
領域を通過する通路には、ガス流れに対し側面を向くよ
うに配置された突起の割合が最も多くなるように領域を
形成し、通過する領域の温度に対応して温度が低い通路
ほど徐々に正面を向くように配置された突起の占める割
合が側面を向くように配置された突起の割合より大きく
なることを特徴とし、燃料ガス側は正面を向くように配
置された突起からなる正面突起領域で構成されているこ
とができる。
Specifically, the side surface protruding region is arranged in a region where the temperature becomes highest when the oxidizing gas passage surface is constituted by only one of the protruding regions, and the side surface protruding region is arranged. It is possible to have a front protrusion region on another portion of the flow path surface. For example, the combination of the arrangement of the above support materials is applied only to the oxidant gas passage side, and the passage that passes through the region with the highest temperature corresponding to the temperature distribution when the gas flows uniformly has a Proportion occupied by protrusions that are formed so that the proportion of the protrusions that are arranged to face the side is the largest, and that passages that have a lower temperature corresponding to the temperature of the passing region gradually face toward the front Is larger than the proportion of the projections arranged so as to face the side surface, and the fuel gas side can be configured by a front projection region composed of the projections arranged so as to face the front surface.

【0023】本発明に適応する突起は、例えば図10の
ような形状にすることもできる。例えば、(a)のよう
な形状にすることができる。他にも(b)に示すように
C型(半円型),S(逆S)字型,椀型(アーチ型),
一部平面形状を有する半円型、その他の形状が使用でき
る。図中の矢印は矢印方向(突起の上下方向)に変形可
能であることを示している。
The protrusions applicable to the present invention can be formed in a shape as shown in FIG. 10, for example. For example, the shape as shown in FIG. In addition, as shown in (b), C type (semicircular type), S (inverted S) type, bowl type (arch type),
A semi-circular shape having a partially planar shape, or another shape can be used. The arrow in the figure indicates that the material can be deformed in the arrow direction (the vertical direction of the protrusion).

【0024】C型(半円型),S(逆S)字型では、矢
印方向の剛性をより低くできるので電極との面接触が良
好にできる。例えば圧縮変形量は40μm以上にするこ
とができる。
In the C type (semi-circular type) and S (reverse S) type, the rigidity in the direction of the arrow can be further lowered, so that good surface contact with the electrode can be achieved. For example, the amount of compressive deformation can be 40 μm or more.

【0025】板厚は、例えば0.3〜0.4mm程度のもの
が使用できる。材質は一般にステンレス製のものが使用
できる。例えば、酸化剤ガス側:SUS316、燃料ガス側:
Niクラッド(Ni+SUS310S+Ni)を使用することが
できる。これらの突起は剛性が低いものが使用できる。
これにより、電極との接触が良好となることができる。
圧縮変形量は40μm以上変形することが好ましい。例
えば、圧縮変形量は3kg/cm2 で40μm程度か、或い
は以上であることが好ましい。
A plate having a thickness of, for example, about 0.3 to 0.4 mm can be used. Generally, stainless steel can be used. For example, oxidant gas side: SUS316, fuel gas side:
Ni clad (Ni + SUS310S + Ni) can be used. Those protrusions having low rigidity can be used.
Thereby, good contact with the electrodes can be achieved.
The amount of compressive deformation is preferably 40 μm or more. For example, the amount of compressive deformation is preferably about 40 μm at 3 kg / cm 2 or more.

【0026】[0026]

【作用】本発明により、積層電池の各単位電池にガスを
効率良く流しつつ、各流路において、明確な流量差を任
意につけることができる。面圧の分布等を均一にして、
面内のガス流量差を任意につけることができる。
According to the present invention, a clear flow rate difference can be arbitrarily established in each flow path while efficiently flowing a gas to each unit cell of a laminated battery. Make the distribution of surface pressure uniform,
The in-plane gas flow rate difference can be set arbitrarily.

【0027】また、実質同一形状の突起を有する支持材
が流路面内にほぼ均一に分散しているので、支持材の剛
性が面内で均一にすることができ、電極等との接触面圧
を均一にできる。このため、接触抵抗を均一でき、均一
な集電を図ることができるので、面内に電流集中が起こ
ることを抑制できる。また、ガス流路面内のガス流量を
流路幅や深さで調整するには、かなりの幅等を変える必
要があるが、本発明では、幅等を大きく変えることによ
る電流集中やセパレータの剛性不均一になるおそれや、
接触面圧が不均一になるおそれがなく良好な電池ができ
る。
Further, since the support material having the protrusions of substantially the same shape is dispersed almost uniformly in the flow path surface, the rigidity of the support material can be made uniform in the surface, and the contact surface pressure with the electrode etc. Can be made uniform. Therefore, the contact resistance can be made uniform, and uniform current collection can be achieved, so that current concentration in the plane can be suppressed. Further, in order to adjust the gas flow rate in the gas flow passage surface by the flow passage width and depth, it is necessary to change a considerable width and the like, but in the present invention, current concentration and separator rigidity due to a large change in width and the like. There is a risk of unevenness,
A good battery can be obtained without the contact surface pressure becoming uneven.

【0028】また、本発明では、実質的にガス流路面の
ガス入口側と出口側とでガス流れ方向が同じなので、ガ
ス流路面内を湾曲した流路を構成するもののように、大
きな低流速部(よどみ部)を作らないので、濃度低下や
反応ガス不足による性能低下を防ぐことができる。
Further, in the present invention, the gas flow direction is substantially the same on the gas inlet side and the gas outlet side of the gas flow path surface, so that a large low flow velocity is obtained as in the case of forming a curved flow path in the gas flow path surface. Since no part (stagnation part) is formed, it is possible to prevent performance deterioration due to concentration decrease or reaction gas shortage.

【0029】直交流タイプの電池の場合、電流密度分布
あるいは発熱密度分布からみて燃料ガスの入口側近傍に
高温部が生じやすく、燃料ガス出口側に向かって温度は
低くなる。従って、高温部を通過することになる酸化剤
ガス通路に投影面積の小さい、すなわち流路抵抗の小さ
い第2の流路構成体を設けることにより、そこにはより
多くのガスが流れることにより、セル温度の冷却効果が
高くなり、最高温度が低くなる。逆に温度が低くなる酸
化剤ガス出口側近傍には流路抵抗の大きい第1の流路構
成体が配置されているため、通過ガス量も少なくなり温
度低下が防げる。これにより結果的には最高温度が下が
り最低温度は上がり、面内の温度差が小さくなる。ま
た、温度を均一化するためには相当大きい流量差が必要
であり、そのため流路抵抗差を大きくするための最適な
流路構造は、ガス流れ方向からみた流路構成支持材の投
影面積が大きく異なっていることが必要であり、本発明
の薄板で作られた支持材を用いることによって、初めて
その配置方向及び支持材の突起部幅を変えるだけで、非
常に小さなものから、大きな面積まで容易に形成するこ
とができる。
In the case of a cross flow type cell, a high temperature portion is likely to occur near the fuel gas inlet side in view of the current density distribution or heat generation density distribution, and the temperature decreases toward the fuel gas outlet side. Therefore, by providing a second flow path structure having a small projected area, that is, a low flow path resistance, in the oxidant gas passage that will pass through the high temperature portion, a larger amount of gas flows therethrough, The cooling effect of the cell temperature becomes high, and the maximum temperature becomes low. On the contrary, since the first flow path structure having a large flow path resistance is arranged in the vicinity of the oxidant gas outlet side where the temperature becomes low, the amount of passing gas becomes small and the temperature decrease can be prevented. As a result, the maximum temperature decreases and the minimum temperature increases, and the in-plane temperature difference decreases. Further, in order to make the temperature uniform, a considerably large flow rate difference is required. Therefore, the optimal flow channel structure for increasing the flow channel resistance difference is that the projected area of the flow channel constituent support material when viewed from the gas flow direction is It is necessary to make a big difference, and by using the support material made of the thin plate of the present invention, it is only necessary to change the arrangement direction and the width of the protrusion of the support material, and from very small to large area. It can be easily formed.

【0030】本発明により、同一の流路構成部材を使用
して流路高さ、電極との接触面積や接触面圧を面内で均
一に保ったまま、しかも面内のガス流れ方向は実質的に
同一方向であり、面内によどみ部を作ることなく、任意
の流量分布を作り出せ、セルの温度分布の均一化を図る
燃料電池を提供することができる。
According to the present invention, the same flow path constituent member is used to keep the flow path height, the contact area with the electrode and the contact surface pressure uniform in the surface, and the gas flow direction in the surface is substantially the same. It is possible to provide a fuel cell which is in the same direction, can generate an arbitrary flow rate distribution without forming a stagnation portion in the surface, and can make the temperature distribution of the cells uniform.

【0031】[0031]

【実施例】以下、実施例に基づいて本発明を説明する。EXAMPLES The present invention will be described below based on examples.

【0032】(実施例1)図1〜図4に本発明の一実施
例が示されている。図1〜図2に示す燃料電池の単位セ
ル1において、電池を構成する各単位セルに反応ガスを
供給するため、燃料ガスを供給する内部マニホールド
2,酸化剤ガスを供給する内部マニホールド3が単位セ
ル1の周囲に設けられている。単位セルは対向配置され
た電極アノード4,カソード5と、これら電極4,5間
に設けられた電解質板6とを有し、アノード4,カソー
ド5の非電解質板側には、燃料ガス7,酸化剤ガス8を
通す、空間が設けられている。すなわち、アノード4,
カソード5の電解質板6と反対側にガス通路9,10が
それぞれ設けられ、内部マニホールド2によって燃料ガ
ス7をアノード4の各ガス通路9に供給し、内部マニホ
ールド3によって酸化剤ガス8をカソード5の各ガス通
路10に供給している。また、両ガスを分離する仕切板
11が両ガス通路9,10の間に設けられている。この
ように構成された単位セルで本実施例では、前記両ガス
通路9,10両通路の強度を確保して通路の変形を防止
し、さらに該電極で発生した電流を仕切板11側に伝え
る導電作用を行うため、図3に示す厚さ0.3mm の薄板
で作られた突起部12を有する支持材13が設けられて
いる。
(Embodiment 1) FIGS. 1 to 4 show an embodiment of the present invention. In the unit cell 1 of the fuel cell shown in FIGS. 1 and 2, an internal manifold 2 for supplying a fuel gas and an internal manifold 3 for supplying an oxidant gas are used as a unit in order to supply a reaction gas to each unit cell constituting the battery. It is provided around the cell 1. The unit cell has electrode anodes 4 and cathodes 5 arranged to face each other, and an electrolyte plate 6 provided between these electrodes 4 and 5, and fuel gas 7, A space is provided for passing the oxidant gas 8. That is, the anode 4,
Gas passages 9 and 10 are provided on the opposite side of the cathode 5 from the electrolyte plate 6, and the internal manifold 2 supplies the fuel gas 7 to each gas passage 9 of the anode 4, and the internal manifold 3 supplies the oxidant gas 8 to the cathode 5. Is supplied to each gas passage 10. Further, a partition plate 11 for separating both gases is provided between both gas passages 9 and 10. In the present embodiment, the unit cell configured as described above secures the strength of both the gas passages 9 and 10 to prevent the passages from being deformed, and further transmits the current generated in the electrode to the partition plate 11 side. In order to carry out a conductive action, a supporting member 13 having a projection 12 made of a thin plate having a thickness of 0.3 mm shown in FIG. 3 is provided.

【0033】突起部12は通路の高さである1.8mm 程
度の長さがあり電極と接触しており、集電作用及び、電
極の変形やガス通路9,10の空間が変形しないよう、
強度面からみた支持材の役割を果たす。ここでアノード
側通路9に対しては、前記支持材13が図3に示すよう
に、ガス流れに対して、支持材13の側面14が直面す
るように配置される。すなわちガス流れからみて前記支
持材13の投影面積が最も大きくなるように配置され
る。これを第1の流路構成体と呼ぶ。燃料ガスをセル全
面にわたってよく拡散されるようにするため配慮された
ものであり、支持材の側面部14によってガス流れが乱
され、反応成分である水素と生成成分である水,炭酸ガ
スの混合がよくなり、電極面上の水素濃度が向上する。
またセル面内の流れの偏流も少なくなり、ガス不足領域
がなくなり、セル性能が向上する。次にカソード側につ
いては、図3の配置に加えて図4に示す配置がさらに組
み合わされる。図4に示すように、支持材13の側面部
がガス流れと平行するように配置されている。すなわち
図3の配置を90°回転したものである。これを第2の
流路構成体と呼ぶ。そして、図1に示すように、燃料ガ
ス7の入口側に第2の流路構成体を配置し、燃料ガス7
の出口側に第1の流路構成体を配置する。本実施例で
は、第1と第2の流路構成体の占める面積割合は3:7
としている。
The protrusion 12 has a length of about 1.8 mm, which is the height of the passage, and is in contact with the electrode, so as to prevent current collection, deformation of the electrode, and deformation of the space of the gas passages 9 and 10.
It plays the role of a support material from the viewpoint of strength. Here, as shown in FIG. 3, the support member 13 is arranged in the anode side passage 9 so that the side surface 14 of the support member 13 faces the gas flow. That is, it is arranged so that the projected area of the support member 13 is the largest as seen from the gas flow. This is called a first flow path structure. This was taken into consideration to ensure that the fuel gas was well diffused over the entire surface of the cell, and the gas flow was disturbed by the side surface portion 14 of the support material, and the reaction component hydrogen and the product components water and carbon dioxide were mixed. Is improved and the hydrogen concentration on the electrode surface is improved.
In addition, the drift of the flow in the cell plane is reduced, the gas shortage region is eliminated, and the cell performance is improved. Next, on the cathode side, the arrangement shown in FIG. 4 is further combined with the arrangement shown in FIG. As shown in FIG. 4, the side surface portion of the support member 13 is arranged so as to be parallel to the gas flow. That is, the arrangement of FIG. 3 is rotated by 90 °. This is called a second flow path structure. Then, as shown in FIG. 1, the second flow path forming body is arranged on the inlet side of the fuel gas 7 to
The first flow path structure is disposed on the outlet side of the. In this embodiment, the area ratio occupied by the first and second flow path forming bodies is 3: 7.
And

【0034】第1と第2の流路構成体の決定的な違い
は、流路抵抗である。図5に流量と通路を流れる時の圧
力損失の関係を比較して示す。これより、第1の流路構
成体の方は、第2の流路構成体よりも、同じ流量が流れ
ても、大きな圧力損失が生じており、流路抵抗が大き
い。本実施例の支持材13を電池に適用した場合におけ
る第1の流路構成体を流れるガス流量と第2の流路構成
体を流れるガス流量の比は1:3〜1:4となる。
The decisive difference between the first and second flow path components is the flow path resistance. FIG. 5 shows a comparison between the flow rate and the pressure loss when flowing through the passage. As a result, the first flow path component has a larger pressure loss and a larger flow path resistance than the second flow path component, even if the same flow rate flows. When the support material 13 of this example is applied to a battery, the ratio of the gas flow rate flowing through the first flow path forming body and the gas flow rate flowing through the second flow path forming body is 1: 3 to 1: 4.

【0035】マニホールド3から入った酸化剤ガス8
は、出口に向かって流れるが第1の流路構成体及び第2
の流路構成体を流れるガスは同一方向であり、わずかに
第1と第2の境界部で流れが乱れるだけであり、殆どま
っ直に流れるため、面内に低流速領域やよどみ部の発生
は生じない。
Oxidant gas 8 entered from the manifold 3
Flow toward the outlet, but the first flow path structure and the second flow path structure
The gas flowing through the flow passage structure in the same direction is in the same direction, and the flow is only slightly disturbed at the first and second boundary portions, and since it flows almost straight, a low flow velocity region and a stagnation portion are generated in the surface. Does not occur.

【0036】従来のようにカソード側を単一な流路構成
体で形成されたセルの温度分布例を図6に示す。最高温
度領域が燃料ガスの入口側寄りに存在している。これに
対し、図1の本実施例の場合の温度分布例を図7に示
す。温度が高くなる領域を通る酸化剤ガス通路部に第2
の流路構成体を、比較的温度が低い燃料ガス7の出口側
を通る酸化剤ガス通路部に第1の流路構成体を設けるこ
とにより、セル内の温度分布が改善され、最高温度の低
減、セル面内の温度差が低減される。
FIG. 6 shows an example of the temperature distribution of a cell formed on the cathode side with a single flow path forming body as in the conventional case. The highest temperature region exists near the fuel gas inlet side. On the other hand, FIG. 7 shows an example of the temperature distribution in the case of the present embodiment of FIG. The oxidant gas passage that passes through the area where the temperature rises
By providing the first flow path component in the oxidant gas passage portion passing through the outlet side of the fuel gas 7 having a relatively low temperature, the temperature distribution in the cell is improved and the maximum temperature Reduction, the temperature difference in the cell plane is reduced.

【0037】これにより、最高温度が低くなるため、腐
食による電解質の消耗や、蒸発量が抑制され、電池寿命
が向上する。また、温度分布が小さくなることにより、
熱応力も低減し、電池信頼性が向上する。
As a result, the maximum temperature is lowered, the consumption of the electrolyte due to corrosion and the evaporation amount are suppressed, and the battery life is improved. Also, due to the smaller temperature distribution,
Thermal stress is also reduced and battery reliability is improved.

【0038】(実施例2)実施例2では、さらにセル内
の酸化剤ガス流量分布をより細かく制御するものであ
る。図8に示すように、酸化剤ガス通路側を燃料ガスの
入口から出口側に向けて複数に分割するとともに、先の
図6の温度分布に対応させて最も温度の高い領域を通過
する通路には第2の流路構成体のみとし、温度が低くす
るにつれて、第1の流路構成体の割合が増えるようにし
たことである。図9に理想的な流量分布が形成されたと
きの温度分布を示す。表1に従来例,実施例1、および
実施例2における理想的な流量分布が実現できた場合の
温度分布結果を比較して示す。実施例2によりさらに温
度分布が改善されることがわかる。
(Second Embodiment) In the second embodiment, the oxidant gas flow rate distribution in the cell is controlled more finely. As shown in FIG. 8, the oxidant gas passage side is divided into a plurality of portions from the fuel gas inlet side toward the outlet side, and the oxidant gas passage side is divided into a passage that passes through the highest temperature region corresponding to the temperature distribution in FIG. Means that only the second flow path structure is used, and the ratio of the first flow path structure increases as the temperature decreases. FIG. 9 shows the temperature distribution when the ideal flow rate distribution is formed. Table 1 shows a comparison of the temperature distribution results when the ideal flow rate distributions were realized in the conventional example, the first example, and the second example. It can be seen that the temperature distribution is further improved by Example 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】上述のように、本発明は同一の流路構成
部材を使用して、流路高さ、電極との接触面積や接触面
圧を面内で一定に保ったまま、セルの温度分布をより均
一にできる。
As described above, according to the present invention, the same flow path forming member is used, and the flow path height, the contact area with the electrode and the contact surface pressure are kept constant within the surface of the cell. The temperature distribution can be made more uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一実施例のカソード側表面
を上から見た横断面図。
FIG. 1 is a transverse cross-sectional view of a cathode-side surface of an embodiment of a fuel cell of the present invention as seen from above.

【図2】一実施例の単位セル縦断面図。FIG. 2 is a vertical sectional view of a unit cell according to an embodiment.

【図3】本発明の支持材の鳥観図。FIG. 3 is a bird's eye view of the support material of the present invention.

【図4】本発明の支持材の鳥観図。FIG. 4 is a bird's eye view of the support material of the present invention.

【図5】図3,図4の支持材を使用したときの流路抵抗
比較を示す図。
FIG. 5 is a view showing a flow path resistance comparison when the support materials of FIGS. 3 and 4 are used.

【図6】従来の温度分布を示す図。FIG. 6 is a diagram showing a conventional temperature distribution.

【図7】実施例1の温度分布を示す図。FIG. 7 is a diagram showing a temperature distribution of Example 1.

【図8】実施例2の支持材配置を示す概念図。FIG. 8 is a conceptual diagram showing a support material arrangement of Example 2.

【図9】本発明による温度分布を示す図。FIG. 9 is a diagram showing a temperature distribution according to the present invention.

【図10】本発明の支持材の突起を示す図。FIG. 10 is a view showing protrusions of the support material of the present invention.

【図11】本発明の酸化剤ガス流路面内の支持材の分布
の一例の図。
FIG. 11 is a diagram showing an example of the distribution of the support material in the oxidant gas flow channel surface of the present invention.

【符号の説明】[Explanation of symbols]

1…単位セル、2,3…内部マニホールド、4…アノー
ド、5…カソード、6…電解質板、7…燃料ガス、8…
酸化剤ガス、9…アノード側通路、10…カソード側通
路、11…仕切板、12…突起部、13…支持材、21
…高温部。
1 ... Unit cell, 2, 3 ... Internal manifold, 4 ... Anode, 5 ... Cathode, 6 ... Electrolyte plate, 7 ... Fuel gas, 8 ...
Oxidant gas, 9 ... Anode side passage, 10 ... Cathode side passage, 11 ... Partition plate, 12 ... Projection portion, 13 ... Support material, 21
… High temperature part.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電解質板、該電解質板を挾持するアノード
及びカソード極からなる単位電池、該単位電池はセパレ
ータを介して積層されてなり、前記アノード或いはカソ
ード極と隣接するセパレータとの間には燃料ガス或いは
酸化剤ガスが流通するガス流路面が形成され、該ガス流
路面には支持材が介在されてなり、前記燃料ガスと酸化
剤ガスとの流れ方向は実質直交してなる燃料電池におい
て、前記燃料ガス流路面と酸化剤ガス流路面の少なくと
も一方の前記支持材は突起部を有する板からなり、該突
起部は湾曲或いは屈曲部を有する板状であり、且つ該突
起部は正面と側面とで投影面積が異なり、前記正面は実
質突起部の幅及び高さで規定される前記投影面積を有
し、前記側面は実質突起部の幅及び板厚で規定される前
記投影面積を有し、前記流路面にガス流れ方向に対し、
前記正面を向くように前記突起を配置した正面突起領
域、及び前記側面を向くように前記突起を配置した側面
突起領域を有することを特徴とする燃料電池。
1. A unit battery comprising an electrolyte plate, an anode and a cathode electrode sandwiching the electrolyte plate, the unit batteries being laminated with a separator interposed between the anode or cathode electrode and an adjacent separator. In a fuel cell in which a gas channel surface through which a fuel gas or an oxidant gas flows is formed, and a support material is interposed in the gas channel surface, and the flow directions of the fuel gas and the oxidant gas are substantially orthogonal to each other. The support member on at least one of the fuel gas flow channel surface and the oxidant gas flow channel surface is formed of a plate having a protrusion, and the protrusion has a plate shape having a curved or bent portion, and the protrusion has a front surface. The projected area is different from the side surface, the front surface has the projected area defined by the width and height of the substantial protrusion, and the side surface has the projected area defined by the width and the plate thickness of the substantial protrusion. Then To the gas flow direction in the serial flow path surface,
A fuel cell, comprising: a front protrusion region in which the protrusion is arranged so as to face the front face, and a side protrusion region in which the protrusion is arranged so as to face the side face.
【請求項2】請求項1の燃料電池において、前記酸化剤
ガス流路面の前記正面突起領域及び側面突起領域は酸化
剤ガス流れ方向に対し平行に区切られてなることを特徴
とする燃料電池。
2. The fuel cell according to claim 1, wherein the front projection region and the side projection region of the oxidant gas flow channel surface are partitioned in parallel to the flow direction of the oxidant gas.
【請求項3】請求項2の燃料電池において、前記側面突
起領域は燃料ガスの入り口側に配置したことを特徴とす
る燃料電池。
3. The fuel cell according to claim 2, wherein the side surface protruding region is arranged on the fuel gas inlet side.
【請求項4】請求項1の燃料電池において、前記燃料ガ
ス流路面は前記正面突起領域からなり、前記酸化剤ガス
流路面は前記正面突起領域及び側面突起領域が酸化剤ガ
ス流れ方向に対し平行に区切られてなり、前記側面突起
領域は燃料ガスの入り口側に配置したことを特徴とする
燃料電池。
4. The fuel cell according to claim 1, wherein the fuel gas flow path surface comprises the front projection area, and the oxidant gas flow path surface has the front projection area and the side projection area parallel to the oxidant gas flow direction. The fuel cell is characterized in that the side surface protruding region is arranged on the fuel gas inlet side.
【請求項5】請求項1〜4の燃料電池において、前記突
起部は突起の上下方向に変形可能であることを特徴とす
る燃料電池。
5. The fuel cell according to claim 1, wherein the protrusion is deformable in the vertical direction of the protrusion.
【請求項6】請求項1〜4の燃料電池において、前記酸
化剤ガス流路面は、何れか一方の前記突起領域のみで構
成された場合に最も温度の高くなる領域に、前記側面突
起領域が配置され、前記酸化剤ガス流路の他の部分に正
面突起領域を有することを特徴とする燃料電池。
6. The fuel cell according to any one of claims 1 to 4, wherein the side surface protruding area is formed in the area where the temperature becomes highest when the oxidizing gas passage surface is constituted by only one of the protruding areas. A fuel cell, wherein the fuel cell is disposed and has a front protrusion region in another portion of the oxidant gas flow channel.
JP7232311A 1995-09-11 1995-09-11 Fuel cell Expired - Fee Related JP2866034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7232311A JP2866034B2 (en) 1995-09-11 1995-09-11 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7232311A JP2866034B2 (en) 1995-09-11 1995-09-11 Fuel cell

Publications (2)

Publication Number Publication Date
JPH0982344A true JPH0982344A (en) 1997-03-28
JP2866034B2 JP2866034B2 (en) 1999-03-08

Family

ID=16937220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7232311A Expired - Fee Related JP2866034B2 (en) 1995-09-11 1995-09-11 Fuel cell

Country Status (1)

Country Link
JP (1) JP2866034B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313372A (en) * 2001-04-09 2002-10-25 Ishikawajima Harima Heavy Ind Co Ltd Separator for use in fuel cell
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
JP2006107968A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Gas passage forming member for fuel cell, and fuel cell
JP2007265896A (en) * 2006-03-29 2007-10-11 Ngk Insulators Ltd Conductive connection member, and electrochemical device
WO2009008534A1 (en) * 2007-07-10 2009-01-15 Toyota Shatai Kabushiki Kaisha Separator for fuel cell
JP2009277390A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Flow passage plate for fuel cell, and fuel cell using the same
JP2012124018A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat-plate solid electrolyte fuel cell
JP2013246895A (en) * 2012-05-23 2013-12-09 Nissan Motor Co Ltd Fuel cell stack
KR101359157B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Fluid-distributing plate and fuel cell having thereof
EP2879217A4 (en) * 2012-07-27 2016-03-23 Ngk Spark Plug Co Fuel cell, and fuel cell stack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
JP2002313372A (en) * 2001-04-09 2002-10-25 Ishikawajima Harima Heavy Ind Co Ltd Separator for use in fuel cell
JP2006107968A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Gas passage forming member for fuel cell, and fuel cell
JP4639744B2 (en) * 2004-10-07 2011-02-23 トヨタ自動車株式会社 Fuel cell
JP2007265896A (en) * 2006-03-29 2007-10-11 Ngk Insulators Ltd Conductive connection member, and electrochemical device
WO2009008534A1 (en) * 2007-07-10 2009-01-15 Toyota Shatai Kabushiki Kaisha Separator for fuel cell
JP2009277390A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Flow passage plate for fuel cell, and fuel cell using the same
JP2012124018A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat-plate solid electrolyte fuel cell
KR101359157B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Fluid-distributing plate and fuel cell having thereof
JP2013246895A (en) * 2012-05-23 2013-12-09 Nissan Motor Co Ltd Fuel cell stack
EP2879217A4 (en) * 2012-07-27 2016-03-23 Ngk Spark Plug Co Fuel cell, and fuel cell stack

Also Published As

Publication number Publication date
JP2866034B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US7691511B2 (en) Fuel cell having coolant flow field wall
US7022430B2 (en) Compact fuel cell with improved fluid supply
US8778553B2 (en) Fuel cell
US9214682B2 (en) Fuel cell
JP4585737B2 (en) Fuel cell
US9590254B2 (en) Fuel cell stack
JP2866034B2 (en) Fuel cell
JP2009059513A (en) Fuel cell
JPWO2013005300A1 (en) Fuel cell
US10854892B2 (en) Fuel cell stack having improved joining strength between separators
JP5301406B2 (en) Fuel cell
US10511036B2 (en) Fuel cell module with arranged ridge segments
JP2019179759A (en) Cell group for power adaptation of electrochemical reactor
JPH11176457A (en) Solid high polymer electrolyte fuel cell
JP2009140672A (en) Fuel cell
JP2006221896A (en) Fuel cell and separator for fuel cell
JP7044564B2 (en) Fuel cell stack
JP2007234405A (en) Fuel cell stack
JPH081806B2 (en) Fuel cell separator and fuel cell using the same
JPS5830074A (en) Fuel cell
JP6981317B2 (en) Fuel cell stack
JPS6217959A (en) Molten carbonate type fuel cell
CN113161567B (en) Single cell for fuel cell and fuel cell
JPH0650639B2 (en) Fuel cell
US11605822B2 (en) Fuel cell separator and single fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees