JP2013246895A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2013246895A
JP2013246895A JP2012117777A JP2012117777A JP2013246895A JP 2013246895 A JP2013246895 A JP 2013246895A JP 2012117777 A JP2012117777 A JP 2012117777A JP 2012117777 A JP2012117777 A JP 2012117777A JP 2013246895 A JP2013246895 A JP 2013246895A
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
separator
spring function
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012117777A
Other languages
Japanese (ja)
Other versions
JP5958746B2 (en
Inventor
Yosuke Fukuyama
陽介 福山
Keita Irizuki
桂太 入月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012117777A priority Critical patent/JP5958746B2/en
Priority to EP12875418.1A priority patent/EP2843741B1/en
Priority to US14/394,365 priority patent/US9929426B2/en
Priority to CN201280072678.XA priority patent/CN104247116B/en
Priority to CA2869840A priority patent/CA2869840C/en
Priority to PCT/JP2012/083790 priority patent/WO2013161130A1/en
Publication of JP2013246895A publication Critical patent/JP2013246895A/en
Application granted granted Critical
Publication of JP5958746B2 publication Critical patent/JP5958746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve such a problem of a conventional fuel cell stack that it is difficult to make a single cell thin, while maintaining a displacement absorption function, and thereby it is difficult to make the fuel cell stack compact.SOLUTION: In a fuel cell stack FS where a plurality of single cells C, each consisting of a membrane electrode assembly 1 held by a pair of separators 2, are laminated, a circulation space F of cooling liquid is formed between adjoining single cells C, and a displacement absorption member 10 is placed in the space F. The separator 2 has an uneven cross-sectional shape continuously in the circulation direction of the cooling liquid. The displacement absorption member 10 is such a member that, when it deforms in the thickness direction, the contact part with the separator 2 moves in the in-plane direction. Moving direction of the contact part is the continuous direction of the uneven shape of the separator 2, and the displacement absorption member 10 is in contact with the protrusions 2A of the separator 2. The fuel cell stack is thereby made compact while maintaining excellent displacement absorption function between the single cells C.

Description

本発明は、固体高分子型燃料電池(PEFC)などの燃料電池に関し、とくに、積層した単セル同士の間に冷却液を流通させる構造を有する燃料電池スタックに関するものである。   The present invention relates to a fuel cell such as a polymer electrolyte fuel cell (PEFC), and more particularly to a fuel cell stack having a structure in which a coolant is circulated between stacked single cells.

従来において、上記したような燃料電池スタックとしては、例えば特許文献1に燃料電池として記載されているものがある。特許文献1に記載の燃料電池は、複数枚の燃料電池セルを積層したものである。燃料電池セルは、MEA(膜電極接合体)の両側に、断面凹凸形状を有する水素極と、同じく断面凹凸形状の排水層を含む酸素極とを備えると共に、水素極及び酸素極との間に水素流路及び酸素流路を夫々形成する平板セパレータを備えている。また、燃料電池は、酸素極側に冷媒流路部を備えている。   Conventionally, as a fuel cell stack as described above, for example, there is one described in Patent Document 1 as a fuel cell. The fuel cell described in Patent Document 1 is a stack of a plurality of fuel cells. The fuel cell includes a hydrogen electrode having a concavo-convex shape on both sides of an MEA (membrane electrode assembly) and an oxygen electrode including a drainage layer having a concavo-convex shape, and between the hydrogen electrode and the oxygen electrode. A flat plate separator for forming a hydrogen channel and an oxygen channel is provided. Further, the fuel cell includes a refrigerant flow path portion on the oxygen electrode side.

冷媒流路部は、2枚の平板セパレータと、その間に挟まれた予圧プレートを備え、両平板セパレータの間を冷却水の流路としている。予圧プレートは、断面波形状を成しており、燃料電池の各構成部品の形状誤差により局所的に生じた荷重を分散することによって、各構成部品に均等な荷重を印加するものである。   The refrigerant flow path section includes two flat plate separators and a preload plate sandwiched therebetween, and a cooling water flow path is formed between the two flat plate separators. The preload plate has a cross-sectional wave shape, and applies a uniform load to each component by dispersing a load generated locally due to a shape error of each component of the fuel cell.

特許第4432518号公報Japanese Patent No. 4432518

ところで、この種の燃料電池スタックは、自動車等の車両の電源として用いる場合、搭載スペースが狭く限られているので小型化も非常に重要である。ところが、上記したような従来の燃料電池スタック(燃料電池)では、単セル(燃料電池セル)が、断面凹凸形状を有する電極と、平板セパレータと、与圧プレートの組み合わせであることから、変位吸収機能を維持しつつ単セルを薄型にすることが難しく、燃料電池スタックの小型化を困難にしていた。   By the way, when this type of fuel cell stack is used as a power source for a vehicle such as an automobile, the mounting space is limited and the miniaturization is very important. However, in the conventional fuel cell stack (fuel cell) as described above, a single cell (fuel cell) is a combination of an electrode having an uneven cross-sectional shape, a flat plate separator, and a pressurizing plate. It has been difficult to reduce the thickness of a single cell while maintaining its function, making it difficult to reduce the size of the fuel cell stack.

本発明は、上記従来の状況に鑑みて成されたもので、積層した単セル同士の間に冷却液を流通させる構造を有する燃料電池スタックであって、単セル間の変位吸収機能を良好に維持しつつ小型化を実現することができる燃料電池スタックを提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and is a fuel cell stack having a structure in which a coolant is circulated between stacked single cells, and has a good displacement absorbing function between the single cells. It aims at providing the fuel cell stack which can implement | achieve size reduction, maintaining.

本発明に係る燃料電池スタックは、膜電極接合体を一対のセパレータで挟持して成る単セルを複数枚積層して構成される。この燃料電池スタックは、隣接する単セル同士の間に、冷却液の流通空間を形成すると共に、この流通空間に配置して単セル間の変位を吸収する変位吸収部材を備え、セパレータが、断面凹凸形状を冷却液の流通方向に連続的に有している。   The fuel cell stack according to the present invention is configured by laminating a plurality of single cells formed by sandwiching a membrane electrode assembly between a pair of separators. The fuel cell stack includes a displacement absorbing member that forms a coolant circulation space between adjacent single cells and absorbs the displacement between the single cells arranged in the circulation space. Convex and concave shapes are continuously provided in the flow direction of the coolant.

そして、燃料電池スタックは、変位吸収部材が、厚さ方向の変形に伴ってセパレータとの接触部分が面内方向に移動する部材であって、接触部分の移動方向がセパレータの凹凸の連続方向となるように配置してあると共に、セパレータの凸部に接触している構成としており、上記構成を従来の課題を解決するための手段としている。   In the fuel cell stack, the displacement absorbing member is a member in which the contact portion with the separator moves in the in-plane direction with deformation in the thickness direction, and the moving direction of the contact portion is a continuous direction of the unevenness of the separator. The arrangement is such that it is in contact with the convex portion of the separator, and the above arrangement is used as a means for solving the conventional problems.

本発明に係る燃料電池スタックは、積層した単セル同士の間に冷却液を流通させる構造を有する燃料電池スタックにおいて、単セル間の変位吸収機能を良好に維持しつつ小型化を実現することができる。   The fuel cell stack according to the present invention is a fuel cell stack having a structure in which a coolant is circulated between stacked single cells, and can achieve downsizing while maintaining a good displacement absorbing function between the single cells. it can.

本発明に係る燃料電池スタックの一実施形態を説明する凹凸幅方向の断面図(A)、及び凹凸形状の連続方向の断面図(B)である。It is sectional drawing (A) of the uneven | corrugated width direction explaining one Embodiment of the fuel cell stack concerning this invention, and sectional drawing (B) of the continuous direction of uneven | corrugated shape. 変位吸収部材を説明する斜視図(A)、及びばね機能部の動作を説明する側面図(B)である。It is the perspective view (A) explaining a displacement absorption member, and the side view (B) explaining operation | movement of a spring function part. 本発明に係る燃料電池スタックのさらに他の実施形態を説明する各々断面図(A)(B)である。FIG. 6 is a cross-sectional view (A) (B) for explaining still another embodiment of the fuel cell stack according to the present invention. 本発明に係る燃料電池スタックのさらに他の実施形態を説明する各々断面図(A)(B)である。FIG. 6 is a cross-sectional view (A) (B) for explaining still another embodiment of the fuel cell stack according to the present invention. 本発明に係る燃料電池スタックのさらに他の実施形態を説明する斜視図である。It is a perspective view explaining further another embodiment of the fuel cell stack concerning the present invention. 本発明に係る燃料電池スタックのさらに他の実施形態を説明する凹凸形状の連続方向の断面図(A)及び斜視図(B)である。It is sectional drawing (A) and the perspective view (B) of the continuous direction of uneven | corrugated shape explaining further another embodiment of the fuel cell stack concerning this invention.

図1(A)(B)に示す燃料電池スタックFSは、発電要素である単セルCを複数枚積層したものである。この燃料電池スタックFSは、隣接する単セルC同士の間に、冷却液の流通空間Fを形成すると共に、前記流通空間Fに配置して単セルC間の変位を吸収する変位吸収部材10を備えている。   A fuel cell stack FS shown in FIGS. 1A and 1B is formed by stacking a plurality of single cells C that are power generation elements. The fuel cell stack FS includes a displacement absorbing member 10 that forms a coolant circulation space F between adjacent unit cells C and that is disposed in the circulation space F to absorb displacement between the unit cells C. I have.

単セルCは、膜電極接合体1を一対のセパレータ2,2で挟持した構造を有している。膜電極構造体1は、一般に、MEA(Membrane Electrode Assembly)と呼ばれるものであって、詳細な図示を省略したが、固体高分子膜から成る電解質層を一対の電極層であるアノード層及びカソード層で挟持したものである。アノード層及びカソード層は、触媒層や適数のガス拡散層を積層した構造である。   The single cell C has a structure in which the membrane electrode assembly 1 is sandwiched between a pair of separators 2 and 2. The membrane electrode structure 1 is generally called a MEA (Membrane Electrode Assembly), and detailed illustration is omitted. However, an electrolyte layer made of a solid polymer membrane is formed of a pair of electrode layers, an anode layer and a cathode layer. Is sandwiched between. The anode layer and the cathode layer have a structure in which a catalyst layer and an appropriate number of gas diffusion layers are laminated.

セパレータ2,2は、例えばステンレス製であって、少なくとも膜電極接合体1に対応する部分が断面凹凸形状に形成してある。セパレータ2,2は、その断面凹凸形状を冷却液の流通方向(図1Bにおける矢印A方向)に連続的に有しており、膜電極接合体1との間に、波形の凹部によりアノードガス(水素含有ガス)及びカソードガス(酸素含有ガス:空気)のガス流路3,3を形成する。また、図示例のセパレータ2は、いずれも断面四角形の凸部2A及び凹部2Bを有している。よって、凸部2Aの上面は平面である。   The separators 2 and 2 are made of, for example, stainless steel, and at least a portion corresponding to the membrane electrode assembly 1 is formed in a concavo-convex shape. The separators 2 and 2 have the cross-sectional irregularities continuously in the flow direction of the coolant (the direction of arrow A in FIG. 1B), and the anode gas (between the membrane electrode assembly 1 and the anode gas ( Gas flow paths 3 and 3 for hydrogen-containing gas) and cathode gas (oxygen-containing gas: air) are formed. In addition, the separator 2 in the illustrated example has a convex portion 2A and a concave portion 2B each having a square cross section. Therefore, the upper surface of the convex portion 2A is a plane.

そして、燃料電池スタックFSでは、流通空間Fにおける冷却液の流通方向(矢印A方向)と、各ガス流路3,3におけるアノードガスの流通方向(矢印B方向)及びカソードガスの流通方向(矢印C方向)とが、同一方向になっている。   In the fuel cell stack FS, the coolant flow direction (arrow A direction) in the flow space F, the anode gas flow direction (arrow B direction), and the cathode gas flow direction (arrows) in the gas flow paths 3 and 3. C direction) is in the same direction.

上記のセパレータ2は、表裏反転形状を有している。したがって、セパレータ2は、流通空間F側に突出した凸部2Aが、その反対側では凹部となり、流路空間F側に開放した凹部2Bが、その反対側では凸部となる。このようなセパレータ2は、例えばプレス加工によって製造することができ、その凹凸形状により、機械的強度が増すうえに、両面側に流路を形成することができるので、膜電極接合体1の薄型化や単セルCの薄型化を実現し得るものである。   The separator 2 has an inverted shape. Therefore, in the separator 2, the convex portion 2A protruding to the flow space F side becomes a concave portion on the opposite side, and the concave portion 2B opened to the flow path space F side becomes a convex portion on the opposite side. Such a separator 2 can be manufactured by, for example, press working, and the uneven shape can increase the mechanical strength and form channels on both sides, so that the membrane electrode assembly 1 is thin. And thinning of the single cell C can be realized.

なお、膜電極接合体1と各セパレータ2との間や、隣接する単セルC同士の間すなわち流路空間Fは、外周部に適宜のガスシールが施してあり、各層間には、図示しない供給路及び排出路を通して、アノードガス、カソードガス及び冷却液を流通させる。   In addition, between the membrane electrode assembly 1 and each separator 2 or between adjacent single cells C, that is, the flow path space F, an appropriate gas seal is applied to the outer periphery, and is not shown between the layers. Anode gas, cathode gas and coolant are circulated through the supply path and the discharge path.

変位吸収部材10は、概略的には、厚さ方向の変形に伴ってセパレータ2との接触部分が面内方向(図1Bにおいて左右方向)に移動する部材である。この変位吸収部材10は、接触部分の移動方向がセパレータ2の凹凸形状の連続方向となるように配置してある。なお、凹凸形状の連続方向とは、凹凸形状の断面が連続している方向(凸部2A及び凹部2Bの長手方向)であり、凹凸が順に連なる方向ではない。   In general, the displacement absorbing member 10 is a member in which a contact portion with the separator 2 moves in an in-plane direction (left-right direction in FIG. 1B) with deformation in the thickness direction. The displacement absorbing member 10 is arranged so that the moving direction of the contact portion is the continuous direction of the uneven shape of the separator 2. In addition, the uneven | corrugated continuous direction is a direction (longitudinal direction of the convex part 2A and the recessed part 2B) where the uneven | corrugated shaped cross section continues, and is not a direction where an unevenness | corrugation continues in order.

この実施形態の変位吸収部材10は、図2(A)にも示すように、薄い金属プレートを素材とし、単セルC間のコネクタを兼用するために導電性を有し、基板10Aの片面に多数のばね機能部10Bを縦横に配列した構造である。これにより、変位吸収部材10は、流通空間Fを介して相対向する一対のセパレータ2,2のうちの一方のセパレータ2(図1中で単セルCの下側のセパレータ)に基板10Aが接触し、他方のセパレータ2(図1中で単セルCの上側のセパレータ)にばね機能部10Bが接触する。   As shown in FIG. 2A, the displacement absorbing member 10 of this embodiment is made of a thin metal plate and has conductivity to serve as a connector between the single cells C, and is provided on one side of the substrate 10A. This is a structure in which a large number of spring function portions 10B are arranged vertically and horizontally. As a result, the displacement absorbing member 10 has the substrate 10A in contact with one separator 2 (the lower separator of the single cell C in FIG. 1) of the pair of separators 2 and 2 facing each other through the flow space F. Then, the spring function portion 10B contacts the other separator 2 (the upper separator of the single cell C in FIG. 1).

ばね機能部10Bは、基端を基板10Aへの固定端とし且つ先端側を自由端とした片持ち梁構造の舌片状を成している。このばね機能部10Bは、図2(B)に示すように、厚さ方向の変形に伴って基板10Aとの角度が変化し、セパレータ2との接触部分である自由端の先端が、矢印で示す如く面内方向である凹凸形状の連続方向に変位する。   The spring function portion 10B has a tongue-like shape with a cantilever structure in which a base end is a fixed end to the substrate 10A and a distal end side is a free end. As shown in FIG. 2 (B), the spring function portion 10B changes its angle with the substrate 10A in accordance with the deformation in the thickness direction, and the tip of the free end that is a contact portion with the separator 2 is indicated by an arrow. As shown, it is displaced in the continuous direction of the concavo-convex shape which is the in-plane direction.

また、変位吸収部材10は、各ばね機能部10Bが、基板10Aから切り起した状態に形成してある。これにより、基板10Aは、各ばね機能部10Bの下側に、ばね機能部10Bの切り起しにより形成された開口部10Cを有している。さらに、変位吸収部材10は、各ばね機能部10Bのうちの少なくとも一つが、自由端を冷却液の流通方向下流側に向けた状態で配置してあり、図示例では全てのばね機能部10Bが同じ向きである。   Further, the displacement absorbing member 10 is formed in a state in which each spring function portion 10B is cut and raised from the substrate 10A. Thereby, 10 A of board | substrates have the opening part 10C formed by the raising and lowering of the spring function part 10B below each spring function part 10B. Further, in the displacement absorbing member 10, at least one of the spring function portions 10B is arranged with the free end directed downstream in the flow direction of the coolant, and in the illustrated example, all the spring function portions 10B are arranged. The same direction.

上記構成を備えた燃料電池スタックFSは、単セルCが、断面凹凸形状を有するセパレータ2と、変位吸収部材10の組合わせであるから、ガス流路3や冷却液の流通空間Fが所定の流路面積で効率的に配置され、単セルCの薄型化を実現する。   In the fuel cell stack FS having the above-described configuration, the single cell C is a combination of the separator 2 having the concavo-convex shape of the cross section and the displacement absorbing member 10, so that the gas flow path 3 and the circulation space F of the coolant are predetermined. It is efficiently arranged with the flow path area, and the single cell C is thinned.

また、燃料電池スタックFSは、変位吸収部材10によって単セルC間の変位を吸収する。この際、燃料電池スタックFSは、変位吸収部材10のばね機能部10Bの向きと、セパレータ2の凹凸形状の連続方向とを合わせて配置すると共に、ばね機能部10Bが接触するセパレータ2の凸部2Aの上面が平面である。   Further, the fuel cell stack FS absorbs the displacement between the single cells C by the displacement absorbing member 10. At this time, the fuel cell stack FS is arranged so that the direction of the spring function portion 10B of the displacement absorbing member 10 matches the continuous direction of the uneven shape of the separator 2, and the convex portion of the separator 2 that the spring function portion 10B contacts. The upper surface of 2A is a plane.

これにより、燃料電池スタックFSでは、変位吸収部材10の厚さ方向の変形に伴って、図1(B)に示す如くばね機能部10Bの自由端とセパレータ2との接触部分が移動しても、ばね機能部10Bの自由端が、常に凸部2Aの上面に接触して、凹部2Bに落ち込むことがないので、変位吸収部材10の変位吸収機能を充分に発揮させることができる。しかも、ばね機能部10Bの自由端とセパレータ2の凸部2Aとが面接触しているので、セパレータ2と変位吸収部材10との間の接触抵抗を低減することができる。   Thereby, in the fuel cell stack FS, even if the contact portion between the free end of the spring function portion 10B and the separator 2 moves as shown in FIG. Since the free end of the spring function portion 10B is always in contact with the upper surface of the convex portion 2A and does not fall into the concave portion 2B, the displacement absorbing function of the displacement absorbing member 10 can be sufficiently exhibited. Moreover, since the free end of the spring function portion 10B and the convex portion 2A of the separator 2 are in surface contact, the contact resistance between the separator 2 and the displacement absorbing member 10 can be reduced.

このようにして、燃料電池スタックFSは、積層した単セルC同士の間に冷却液を流通させる構造を有すると共に、単セルC間の変位吸収機能を良好に維持しつつ小型化を実現することができる。   In this way, the fuel cell stack FS has a structure that allows the coolant to flow between the stacked single cells C, and realizes downsizing while maintaining a good displacement absorbing function between the single cells C. Can do.

また、燃料電池スタックFSは、流通空間Fにおいて、変位吸収部材10が、各ばね機能部10Bの自由端を冷却液の流通方向下流側に向けた状態にして配置してあるので、冷却液が流れやすくなり、冷却液の圧力損失を低減することができる。   Further, in the fuel cell stack FS, in the flow space F, the displacement absorbing member 10 is disposed with the free ends of the spring function portions 10B facing the downstream side in the flow direction of the cooling liquid. It becomes easy to flow and the pressure loss of the coolant can be reduced.

さらに、燃料電池スタックFSは、流通空間Fにおける冷却液の流通方向(矢印A方向)と、ガス流路3,3におけるガスの流通方向(矢印A,B方向)とが同一方向であり、とくに、冷却液の流通方向(矢印A方向)とアノードガスの流通方向(矢印B方向)とを同一方向にしたので、膜電極接合体1の反応面の温度制御、すなわち反応面のガス流れ方向の温度場の制御を容易にすることができる。   Further, in the fuel cell stack FS, the flow direction of the coolant in the flow space F (the direction of the arrow A) and the flow direction of the gas in the gas flow paths 3 and 3 (the directions of the arrows A and B) are the same direction. Since the flow direction of the coolant (arrow A direction) and the flow direction of the anode gas (arrow B direction) are the same direction, the temperature control of the reaction surface of the membrane electrode assembly 1, that is, the gas flow direction of the reaction surface Control of the temperature field can be facilitated.

図3〜図6は、本発明の燃料電池スタックの他の実施形態を説明する図である。なお、以下の各実施形態において、先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。   3-6 is a figure explaining other embodiment of the fuel cell stack of this invention. In the following embodiments, the same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3(A)に示す燃料電池スタックの変位吸収部材10は、ばね機能部10Bの自由端の幅Waが、同ばね機能部10Bが接触するセパレータ2の凸部2Aの幅Wbよりも大きいものとなっている。    In the displacement absorbing member 10 of the fuel cell stack shown in FIG. 3A, the width Wa of the free end of the spring function portion 10B is larger than the width Wb of the convex portion 2A of the separator 2 with which the spring function portion 10B contacts. It has become.

上記構成を備えた燃料電池スタックは、先の実施形態と同様の効果を得ることができるうえに、ばね機能部10Bの自由端が、凸部2Aの上面に必ず接触することになり、凹部2Bへの落ち込みが阻止され、しかも、電気的な接触面積を大きく得ることができる。   The fuel cell stack having the above-described configuration can obtain the same effects as those of the previous embodiment, and the free end of the spring function portion 10B always comes into contact with the upper surface of the convex portion 2A, so that the concave portion 2B It is possible to obtain a large electrical contact area.

図3(B)に示す燃料電池スタックの変位吸収部材10は、ばね機能部10Bの自由端の幅Waが、同ばね機能部10Bが接触するセパレータ2の凹部2Bの幅Wcよりも大きいものとなっている。   In the displacement absorbing member 10 of the fuel cell stack shown in FIG. 3B, the width Wa of the free end of the spring function portion 10B is larger than the width Wc of the recess 2B of the separator 2 with which the spring function portion 10B contacts. It has become.

上記構成を備えた燃料電池スタックにあっても、先の実施形態と同様の効果を得ることができるうえに、ばね機能部10Bの自由端が、凸部2Aの上面に必ず接触することになり、凹部2Bへの落ち込みが阻止され、しかも、電気的な接触面積を大きく得ることができる。   Even in the fuel cell stack having the above-described configuration, the same effect as in the previous embodiment can be obtained, and the free end of the spring function portion 10B always comes into contact with the upper surface of the convex portion 2A. Further, the depression into the recess 2B is prevented, and the electrical contact area can be increased.

図4(A)に示す燃料電池スタックの変位吸収部材10は、ばね機能部10Bの自由端が、同ばね機能部10Bが接触するセパレータ2の複数の凸部2Aに接触している。図示例では、隣接する二つの凸部2A,2Aにばね機能部10Bの自由端が接触している。   In the displacement absorbing member 10 of the fuel cell stack shown in FIG. 4A, the free end of the spring function portion 10B is in contact with the plurality of convex portions 2A of the separator 2 with which the spring function portion 10B contacts. In the example of illustration, the free end of the spring function part 10B is contacting the two adjacent convex parts 2A and 2A.

上記構成を備えた燃料電池スタックは、先の実施形態と同様の効果を得ることができるうえに、冷却液の圧力損失を低減することができる。つまり、燃料電池スタックでは、先述したように、各ばね機能部10Bの自由端を冷却液の流通方向下流側に向けた状態にして、冷却液を流し易くしているが、冷却液の流通にばね機能部10Bが干渉すること自体は避けられない。   The fuel cell stack having the above configuration can obtain the same effects as those of the previous embodiment, and can reduce the pressure loss of the coolant. That is, in the fuel cell stack, as described above, the free end of each spring function portion 10B is directed to the downstream side in the flow direction of the coolant to facilitate the flow of the coolant. It is inevitable that the spring function part 10B interferes itself.

そこで、燃料電池スタックでは、セパレータ2の複数の凸部2Aにばね機能部10Bの自由端を接触させることで、ばね機能部10Bの配置部分にセパレータ2の凹部2Bによる流路を確保する。すなわち、ばね機能部10Bが接触する複数の凸部2A,2A間の凹部2Bを、同ばね機能部10Bの配置部分の流路として確保する。これにより、燃料電池スタックは、ばね機能部10Bの配置部分に冷却液を分配して、同配置部分での流通性を高め、全体として冷却液の圧力損失を低減することができる。   Therefore, in the fuel cell stack, the free end of the spring function portion 10B is brought into contact with the plurality of convex portions 2A of the separator 2 to secure a flow path by the recess portion 2B of the separator 2 in the portion where the spring function portion 10B is disposed. That is, the concave portions 2B between the plurality of convex portions 2A and 2A with which the spring function portion 10B comes into contact are ensured as a flow path of the arrangement portion of the spring function portion 10B. Thereby, the fuel cell stack can distribute the coolant to the arrangement portion of the spring function unit 10B, improve the flowability in the arrangement portion, and reduce the pressure loss of the coolant as a whole.

図4(B)に示す燃料電池スタックの変位吸収部材10は、図2(A)に基づいて先述したように、変位吸収部材10の基板10Aが、各ばね機能部10Bの下側に開口部10Cを有している。そして、燃料電池スタックは、基板10Aが接触するセパレータ2の凹部2Bと前記開口部10Cとが連通したものとなっている。   As described above with reference to FIG. 2A, the displacement absorbing member 10 of the fuel cell stack shown in FIG. 4B has a substrate 10A of the displacement absorbing member 10 having an opening portion below each spring function portion 10B. 10C. In the fuel cell stack, the recess 2B of the separator 2 with which the substrate 10A comes into contact is communicated with the opening 10C.

上記の燃料電池スタックは、基板10Aが接触するセパレータ2側において、ばね機能部10Bの配置部分に凹部2B及び開口部10Cによる流路を確保する。これにより、燃料電池スタックは、ばね機能部10Bの配置部分に冷却液を分配して、同配置部分での流通性を高め、全体として冷却液の圧力損失を低減することができる。   In the fuel cell stack described above, on the side of the separator 2 with which the substrate 10A comes into contact, a flow path by the recess 2B and the opening 10C is secured in the arrangement portion of the spring function portion 10B. Thereby, the fuel cell stack can distribute the coolant to the arrangement portion of the spring function unit 10B, improve the flowability in the arrangement portion, and reduce the pressure loss of the coolant as a whole.

なお、図4(A)(B)に示す実施形態を組合わせれば、変位吸収部材10の上下両側のセパレータ2,2において、上下の凹部2B,2B及び開口部10Cにより流路が確保され、ばね機能部10Bの配置部分での流通性をより一層高めることができる。   4A and 4B, in the separators 2 and 2 on the upper and lower sides of the displacement absorbing member 10, a flow path is secured by the upper and lower recesses 2B and 2B and the opening 10C. The flowability in the arrangement part of the spring function part 10B can be further enhanced.

図5に示す燃料電池スタックの変位吸収部材10は、基板10Aに、セパレータ2の凹凸形状の連続方向(図中で上方向)とこれに交差する幅方向(図中で左右方向)に各ばね機能部10Bを配列すると共に、幅方向に隣接するばね機能部10B同士が、凹凸形状の連続方向にオフセット(矢印OS)してある。図示例のオフセット量は、おおよそばね機能部10B一つ分である。セパレータ2の凹凸形状の連続方向は、冷却液の流通方向と同じである。   The displacement absorbing member 10 of the fuel cell stack shown in FIG. 5 includes springs on the substrate 10A in the continuous direction of the concavo-convex shape of the separator 2 (upward in the figure) and in the width direction (left and right in the figure) intersecting this. The functional units 10B are arranged, and the spring functional units 10B adjacent in the width direction are offset (arrow OS) in the continuous direction of the concavo-convex shape. The offset amount in the illustrated example is approximately one spring function portion 10B. The continuous direction of the uneven shape of the separator 2 is the same as the flow direction of the coolant.

上記の燃料電池スタックでは、面内方向においては、図中の矢印で示すように、冷却液がばね機能部10Bを左右に迂回して流通することとなり、冷却液の淀む点が少なくなるので、冷却液の圧力損失を低減することができる。また、上記の燃料電池スタックは、例えば、図4に示す変位吸収部材10及びセパレータ2の構成と組合わせれば、面内方向及び厚さ方向の流通性を低減して、全体として冷却液の圧力損失を大幅に低減し得るものとなる。   In the above fuel cell stack, in the in-plane direction, as indicated by the arrows in the figure, the coolant flows around the spring function unit 10B to the left and right, and the number of points where the coolant stagnates is reduced. The pressure loss of the coolant can be reduced. Further, when the fuel cell stack described above is combined with the configuration of the displacement absorbing member 10 and the separator 2 shown in FIG. 4, for example, the in-plane direction and thickness direction flowability is reduced, and the coolant pressure as a whole is reduced. Loss can be greatly reduced.

図6(A)(B)に示す燃料電池スタックFSは、先の実施形態では、基板10Aの片側に多数のばね機能部10Bを配列した変位吸収部材10を採用したのに対して、断面波形状の変位吸収部材20を採用している。この変位吸収部材20にあっても、厚さ方向の変形に伴ってセパレータ2との接触部分が面内方向(波形の進行方向)に移動する。なお、図6(B)には、変位吸収部材20の波形状のみを示している。   In the fuel cell stack FS shown in FIGS. 6 (A) and 6 (B), in the previous embodiment, the displacement absorbing member 10 in which a large number of spring function portions 10B are arranged on one side of the substrate 10A is employed. A shape-shaped displacement absorbing member 20 is employed. Even in the displacement absorbing member 20, the contact portion with the separator 2 moves in the in-plane direction (waveform traveling direction) with deformation in the thickness direction. In FIG. 6B, only the wave shape of the displacement absorbing member 20 is shown.

上記の燃料電池スタックFSは、隣接する単セルC同士の間に、冷却液の流通空間Fを形成すると共に、この流通空間Fに上記の変位吸収部材20を備え、セパレータ2が、断面凹凸形状を冷却液の流通方向(図1Aで左右方向)に連続的に有している。そして、変位吸収部材20は、接触部分の移動方向がセパレータ2の凹凸形状の連続方向、すなわち図6(A)に示す如く波形の進行方向がセパレータ2の凹凸形状の連続方向となるように配置してあり、上下のセパレータ2の凸部2Aに夫々接触している。   The fuel cell stack FS forms a coolant circulation space F between adjacent single cells C, and includes the displacement absorbing member 20 in the circulation space F. The separator 2 has a concave-convex shape in cross section. In the flow direction of the coolant (left and right in FIG. 1A). The displacement absorbing member 20 is arranged so that the moving direction of the contact portion is the continuous direction of the uneven shape of the separator 2, that is, the traveling direction of the waveform is the continuous direction of the uneven shape of the separator 2 as shown in FIG. It is in contact with the convex portions 2A of the upper and lower separators 2, respectively.

上記の変位吸収部材20を備えた燃料電池スタックにあっても、先の実施形態と同様に、積層した単セルC同士の間に冷却液を流通させる構造を有すると共に、単セルC間の変位吸収機能を良好に維持しつつ小型化を実現することができる。   Even in the fuel cell stack provided with the displacement absorbing member 20 described above, similarly to the previous embodiment, it has a structure in which the coolant flows between the stacked single cells C, and the displacement between the single cells C. Miniaturization can be realized while maintaining the absorption function well.

なお、本発明に係る燃料電池スタックは、その構成が上記実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することが可能である。   The configuration of the fuel cell stack according to the present invention is not limited to the above-described embodiment, and details of the configuration can be changed as appropriate without departing from the gist of the present invention.

C 単セル
F 流通領域
FS 燃料電池スタック
1 膜電極接合体
2 セパレータ
2A 凸部
2B 凹部
10 変位吸収部材
10A 基板
10B ばね機能部
10C 開口部
20 変位吸収部材
C single cell F distribution area FS fuel cell stack 1 membrane electrode assembly 2 separator 2A convex part 2B concave part 10 displacement absorbing member 10A substrate 10B spring function part 10C opening part 20 displacement absorbing member

Claims (11)

膜電極接合体を一対のセパレータで挟持して成る単セルを複数枚積層して構成される燃料電池スタックであって、
隣接する単セル同士の間に、冷却液の流通空間を形成すると共に、この流通空間に配置して単セル間の変位を吸収する変位吸収部材を備え、
セパレータが、断面凹凸形状を冷却液の流通方向に連続的に有しており、
変位吸収部材が、厚さ方向の変形に伴ってセパレータとの接触部分が面内方向に移動する部材であって、接触部分の移動方向がセパレータの凹凸形状の連続方向となるように配置してあると共に、セパレータの凸部に接触していることを特徴とする燃料電池スタック。
A fuel cell stack configured by laminating a plurality of single cells formed by sandwiching a membrane electrode assembly with a pair of separators,
Between the adjacent single cells, a cooling liquid flow space is formed, and a displacement absorbing member that is disposed in the flow space and absorbs the displacement between the single cells is provided.
The separator has an uneven cross-sectional shape continuously in the flow direction of the coolant,
The displacement absorbing member is a member whose contact portion with the separator moves in the in-plane direction with deformation in the thickness direction, and is arranged so that the moving direction of the contact portion is a continuous direction of the uneven shape of the separator. A fuel cell stack characterized by being in contact with a convex portion of the separator.
セパレータの凸部は、上面が平面であることを特徴とする請求項1に記載の燃料電池スタック。   The fuel cell stack according to claim 1, wherein the convex portion of the separator has a flat upper surface. 前記変位吸収部材が、相対向するセパレータのうちの一方に接触する基板の片面に、他方に接触する多数のばね機能部を配列した構造を有すると共に、ばね機能部が、基端を基板への固定端とし且つ先端を自由端とした片持ち梁構造であって、
ばね機能部の自由端の幅が、同ばね機能部が接触するセパレータの凸部の幅よりも大きいことを特徴とする請求項1又は2に記載の燃料電池スタック。
The displacement absorbing member has a structure in which a large number of spring function parts in contact with the other are arranged on one side of the substrate in contact with one of the opposing separators, and the spring function part has a base end to the substrate. A cantilever structure with a fixed end and a free end at the end,
The fuel cell stack according to claim 1 or 2, wherein the width of the free end of the spring function part is larger than the width of the convex part of the separator with which the spring function part contacts.
前記ばね機能部の自由端の幅が、同ばね機能部が接触するセパレータの凹部の幅よりも大きいことを特徴とする請求項3に記載の燃料電池スタック。   4. The fuel cell stack according to claim 3, wherein a width of a free end of the spring function part is larger than a width of a recess of a separator with which the spring function part contacts. 前記ばね機能部の自由端が、同ばね機能部が接触するセパレータの複数の凸部に接触していることを特徴とする請求項3又は4に記載の燃料電池スタック。   5. The fuel cell stack according to claim 3, wherein the free end of the spring function portion is in contact with a plurality of convex portions of the separator with which the spring function portion is in contact. 前記変位吸収部材の基板が、各ばね機能部の下側に開口部を有しており、基板が接触するセパレータの凹部と前記開口部とが連通していることを特徴とする請求項3〜5のいずれか1項に記載の燃料電池スタック。   4. The substrate of the displacement absorbing member has an opening below each spring function portion, and the recess of the separator that contacts the substrate communicates with the opening. The fuel cell stack according to any one of 5. 前記変位吸収部材が、基板に、セパレータの凹凸形状の連続方向とこれに交差する幅方向に各ばね機能部を配列すると共に、幅方向に隣接するばね機能部同士が、凹凸形状の連続方向にオフセットしてあることを特徴とする請求項3〜6のいずれか1項に記載の燃料電池スタック。   The displacement absorbing member arranges the spring function parts on the substrate in the continuous direction of the uneven shape of the separator and the width direction intersecting the separator, and the spring function parts adjacent in the width direction are in the continuous direction of the uneven shape. The fuel cell stack according to any one of claims 3 to 6, wherein the fuel cell stack is offset. 前記変位吸収部材の各ばね機能部のうちの少なくとも一つが、自由端を冷却液の流通方向下流側に向けた状態で配置してあることを特徴とする請求項3〜7のいずれか1項に記載の燃料電池スタック。   8. At least one of the spring function portions of the displacement absorbing member is disposed with the free end facing downstream in the coolant flow direction. The fuel cell stack described in 1. 流通空間における冷却液の流通方向と、膜電極接合体とセパレータの間に形成したガス流路におけるガスの流通方向とが、同一方向であることを特徴とする請求項1〜8のいずれか1項に記載の燃料電池スタック。   The flow direction of the coolant in the flow space and the flow direction of the gas in the gas flow path formed between the membrane electrode assembly and the separator are the same direction. The fuel cell stack according to item. 前記ガスが、アノードガスであることを特徴とする請求項9に記載の燃料電池スタック。   The fuel cell stack according to claim 9, wherein the gas is an anode gas. セパレータが、表裏反転形状を有していることを特徴とする請求項1〜10のいずれか1項に記載の燃料電池スタック。   The fuel cell stack according to any one of claims 1 to 10, wherein the separator has an inverted shape.
JP2012117777A 2012-04-25 2012-05-23 Fuel cell stack Expired - Fee Related JP5958746B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012117777A JP5958746B2 (en) 2012-05-23 2012-05-23 Fuel cell stack
EP12875418.1A EP2843741B1 (en) 2012-04-25 2012-12-27 Fuel cell stack
US14/394,365 US9929426B2 (en) 2012-04-25 2012-12-27 Fuel cell stack
CN201280072678.XA CN104247116B (en) 2012-04-25 2012-12-27 Fuel cell stack
CA2869840A CA2869840C (en) 2012-04-25 2012-12-27 Fuel cell stack with spring plate in cooling channel
PCT/JP2012/083790 WO2013161130A1 (en) 2012-04-25 2012-12-27 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117777A JP5958746B2 (en) 2012-05-23 2012-05-23 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2013246895A true JP2013246895A (en) 2013-12-09
JP5958746B2 JP5958746B2 (en) 2016-08-02

Family

ID=49846529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117777A Expired - Fee Related JP5958746B2 (en) 2012-04-25 2012-05-23 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP5958746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602220A (en) * 2018-09-07 2021-04-02 日本碍子株式会社 Current divider, cell stack device and electrochemical cell

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
JPH02160371A (en) * 1988-12-13 1990-06-20 Toshiba Corp Gas channel of fuel battery
JPH05335024A (en) * 1992-03-31 1993-12-17 Toshiba Corp Fuel cell
JPH0982344A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JP2000504140A (en) * 1996-01-23 2000-04-04 シーメンス アクチエンゲゼルシヤフト Fluid-cooled fuel cell with distribution passage
JP2001068132A (en) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd Current collecting plate and solid electrolyte fuel cell using same
JP2002298902A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Fuel cell
JP2005505890A (en) * 2001-03-08 2005-02-24 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア Flexible interconnection for fuel cell stacks
JP2006156048A (en) * 2004-11-26 2006-06-15 Toyota Motor Corp Fuel cell and its manufacturing method
JP2006318863A (en) * 2005-05-16 2006-11-24 Toyota Motor Corp Separator for fuel cell
JP2007265896A (en) * 2006-03-29 2007-10-11 Ngk Insulators Ltd Conductive connection member, and electrochemical device
JP2009266533A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Fuel cell unit
JP2010140656A (en) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd Collector for fuel battery, and solid oxide fuel battery
JP2012059380A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Fuel cell stack and deformation absorbing member used in fuel cell stack
JP2012059383A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Fuel cell stack

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
JPH02160371A (en) * 1988-12-13 1990-06-20 Toshiba Corp Gas channel of fuel battery
JPH05335024A (en) * 1992-03-31 1993-12-17 Toshiba Corp Fuel cell
JPH0982344A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JP2000504140A (en) * 1996-01-23 2000-04-04 シーメンス アクチエンゲゼルシヤフト Fluid-cooled fuel cell with distribution passage
JP2001068132A (en) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd Current collecting plate and solid electrolyte fuel cell using same
JP2005505890A (en) * 2001-03-08 2005-02-24 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア Flexible interconnection for fuel cell stacks
JP2002298902A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Fuel cell
JP2006156048A (en) * 2004-11-26 2006-06-15 Toyota Motor Corp Fuel cell and its manufacturing method
JP2006318863A (en) * 2005-05-16 2006-11-24 Toyota Motor Corp Separator for fuel cell
JP2007265896A (en) * 2006-03-29 2007-10-11 Ngk Insulators Ltd Conductive connection member, and electrochemical device
JP2009266533A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Fuel cell unit
JP2010140656A (en) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd Collector for fuel battery, and solid oxide fuel battery
JP2012059380A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Fuel cell stack and deformation absorbing member used in fuel cell stack
JP2012059383A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Fuel cell stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602220A (en) * 2018-09-07 2021-04-02 日本碍子株式会社 Current divider, cell stack device and electrochemical cell

Also Published As

Publication number Publication date
JP5958746B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP4899339B2 (en) Fuel cell separator
JP6085946B2 (en) Fuel cell and fuel cell stack
JP5261440B2 (en) Fuel cell stack
JP6656999B2 (en) Porous separator for fuel cell
JP6064027B2 (en) Fuel cell stack
JPWO2007105740A1 (en) Cell stack and fuel cell having the same
JP5226431B2 (en) Fuel cell stack
WO2013161130A1 (en) Fuel cell stack
WO2015049864A1 (en) Separator and fuel cell
JP5449838B2 (en) Fuel cell stack
JP5454301B2 (en) Fuel cell stack
JP5144226B2 (en) Fuel cell
JP2015069968A (en) Separator for fuel cell and fuel cell
JP6150040B2 (en) Fuel cell and fuel cell stack
JP2005093095A (en) Fuel cell
JP5958746B2 (en) Fuel cell stack
JP5292947B2 (en) Fuel cell
JP2015015235A (en) Fuel cell
JP5915971B2 (en) Fuel cell stack
JP5422992B2 (en) Fuel cell
JP2019186052A (en) Fuel cell separator
JP5886739B2 (en) Fuel cell stack
JP2012038569A (en) Fuel cell
JP5920594B2 (en) Fuel cell
JP6033198B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R151 Written notification of patent or utility model registration

Ref document number: 5958746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees