JPH0193061A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH0193061A
JPH0193061A JP62247862A JP24786287A JPH0193061A JP H0193061 A JPH0193061 A JP H0193061A JP 62247862 A JP62247862 A JP 62247862A JP 24786287 A JP24786287 A JP 24786287A JP H0193061 A JPH0193061 A JP H0193061A
Authority
JP
Japan
Prior art keywords
fuel cell
molten carbonate
plate
forming body
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62247862A
Other languages
Japanese (ja)
Inventor
Satoshi Kuroe
黒江 聡
Yoshio Iwase
岩瀬 嘉男
Masahito Takeuchi
将人 竹内
Hideo Okada
秀夫 岡田
Kazuo Iwamoto
岩本 一男
Koichi Mitsugi
三次 浩一
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62247862A priority Critical patent/JPH0193061A/en
Publication of JPH0193061A publication Critical patent/JPH0193061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent increase in the internal resistance of a fuel cell by flexibly forming a reaction gas passage forming body interposed between a current collector and a separator so as to press an electrolyte retainer, a gas diffusion electrode, and a current collector in the stacking direction. CONSTITUTION:Corrugated passage plates 4, 4' are interposed between current collectors 3, 3' and separators 5, 5' to form gas supply passages corresponding to gas diffusion electrodes 2, 2' respectively. By giving some flexibility to the passage forming structure, even if the thicknesses of an electrolyte retainer 1, electrodes 2, 2', and current collectors 3, 3' are not uniform and fastening pressure is not distributed uniformly, the flexible passage-forming body expands or contracts in the stacking direction to keep the compression between the electrolyte retainer 1 and the separators 5, 5'. Increase in the internal resistance of a fuel cell is prevented, and steady cell performance is retained for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に係り、特に溶融炭酸塩型燃料電池に
好適な締め付は構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fuel cells, and more particularly to a fastening structure suitable for molten carbonate fuel cells.

〔従来の技術〕[Conventional technology]

従来、燃料電池のガス供給路を構成する波形流路仮につ
いては、ナショナル・フューエル・セル・セミナー・ア
ブストラクッ、1000年第153頁(Nationa
l Fuel Ce1l Sem1nar/ Abst
racts(1980)P P 153 +、 )にお
いて論じられている。
Conventionally, the corrugated flow path constituting the gas supply path of a fuel cell has been described in National Fuel Cell Seminar Abstracts, p. 153, 1000 (National
l Fuel Ce1l Sem1nar/ Abst
(1980) P P 153 +, ).

溶融炭酸塩型燃料電池においても波形流路板がの 使用されているが、内部から締め付ける等の特別い工夫
はなされていなかった。
Corrugated channel plates are also used in molten carbonate fuel cells, but no special measures such as tightening them from the inside have been taken.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、溶融炭酸塩型燃料電池の電解質保持板
とセパレータとの間を内部で締め付ける構造に関して特
別な配慮がなされていなかったため、長時間の連続運転
に伴って、電解質保持板の変形、ガス拡散性電極の熱収
縮により電解質保持板、ガス拡散性電極、集電板、セパ
レータ間の接触状態が損なわれて抵抗が徐々に増大し電
池性能が低下していく問題があった。
In the above-mentioned conventional technology, no special consideration was given to the internal tightening structure between the electrolyte holding plate and the separator of the molten carbonate fuel cell, so the deformation of the electrolyte holding plate and There is a problem in that due to thermal contraction of the gas diffusive electrode, the contact between the electrolyte holding plate, the gas diffusive electrode, the current collector plate, and the separator is impaired, resulting in a gradual increase in resistance and a decrease in battery performance.

本発明の目的は、溶融炭酸塩型燃料電池において、集電
板とセパレータに挟んだ反応ガス流路形成体の構造を積
層方向に押し付ける可撓性を有する構造とすることで、
電池内部抵抗の増大を防止し長期的に安定した性能の溶
融炭酸塩型燃料電池を提供することにある。
An object of the present invention is to provide a molten carbonate fuel cell with a structure in which a reaction gas flow path forming body sandwiched between a current collector plate and a separator has flexibility to be pressed in the stacking direction.
The object of the present invention is to provide a molten carbonate fuel cell that prevents an increase in internal resistance of the cell and has stable performance over a long period of time.

〔問題点を解決するための手段〕 上記問題点は、溶融炭酸塩を電解質とする電解質保持板
と、該電解質保持板を挟んで対向する1対のガス拡散性
電極と、それぞれの該ガス拡散性電極の前記電解質保持
板と接する面の反対側に設けた1対の集電板及び、該集
電板の前記ガス拡散性電極と接する面の反対側に反応ガ
ス供給路を形成する流路形成体を備えた1対のセパレー
タを具備する溶融炭酸塩型燃料電池の単位電池を複数個
積層したものにおいて、前記流路形成体が前記電解質保
持板、1対の前記ガス拡散性電極、1対の前記集電板と
を積層する方向に可撓性を有するように構成することに
より解決される。
[Means for Solving the Problem] The above problem consists of an electrolyte holding plate using molten carbonate as an electrolyte, a pair of gas diffusive electrodes facing each other with the electrolyte holding plate in between, and the respective gas diffusing electrodes. a pair of current collector plates provided on the opposite side of the surface of the electrolyte holding plate that is in contact with the electrolyte holding plate; and a channel that forms a reactive gas supply path on the opposite side of the surface of the current collector plate that is in contact with the gas diffusive electrode. A plurality of unit cells of a molten carbonate fuel cell are stacked, each of which includes a pair of separators each having a forming body, wherein the flow path forming body includes the electrolyte retaining plate, the pair of gas diffusive electrodes, This problem can be solved by configuring the pair of current collector plates to have flexibility in the direction in which they are laminated.

〔作用〕[Effect]

集電板とセパレータとの間に挟んだ可撓性を有する反応
ガス流路形成体は、電解質保持板、1対のガス拡散性電
極、1対の集電板を積層する方向に押し付けられるよう
伸縮しそれぞれの有効な接触を維持する。
The flexible reaction gas flow path forming body sandwiched between the current collector plate and the separator is pressed in the direction in which the electrolyte holding plate, the pair of gas diffusive electrodes, and the pair of current collector plates are stacked. expand and contract to maintain effective contact with each other.

〔実施例〕〔Example〕

以下本発明の実施例を第1図〜第6図により説明する。 Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

本発明は、これらの実施例に限定されるものではない。The present invention is not limited to these examples.

第1図は本発明の第1実施例を示す図で溶融炭酸塩型燃
料電池の一断面を示している。本実施例は流路形成体と
して弾性を有する波形流路板4゜4′を用いた例で、電
解質保持板1と、これを挟んだ1対のガス拡散性電極(
陰電極、陽電極)2゜2′と1対の集電板3,3′とセ
パレータ5゜5′とを具備する溶融炭酸塩型燃料電池の
単位電池を所定数積層した構造を示している。波形流路
板4,4′は集電板3,3′とセパレータ5゜5′との
間に挟まれ、ガス拡散性電極2,2′にそれぞれ対応す
るガスを供給する流路を形成する。
FIG. 1 is a diagram showing a first embodiment of the present invention, and shows a cross section of a molten carbonate fuel cell. This example uses an elastic corrugated channel plate 4゜4' as a channel forming body, and includes an electrolyte holding plate 1 and a pair of gas diffusive electrodes (
It shows a structure in which a predetermined number of unit cells of a molten carbonate fuel cell are stacked, each of which has a negative electrode, a positive electrode) 2°2', a pair of current collector plates 3, 3', and a separator 5°5'. . The corrugated channel plates 4, 4' are sandwiched between the current collecting plates 3, 3' and the separator 5°5', and form channels for supplying gases corresponding to the gas diffusive electrodes 2, 2', respectively. .

波形流路板4,4′の両端a ”’−’ a ’間の長
さは。
The length between both ends a''-'a' of the corrugated channel plates 4, 4' is:

セパレータ5,5′の溝b−b’間よりも若干長籾 いものを用いる。組立時に波形流路A、4′を5〜57
間の長さまで押し縮めて組込むことで波形流路板4,4
′はe ”” e ’ のギャップが高くなり、かつe
 ”” e ’方向への抗力も増すので締め付けの際内
部からも積層する方向に確実な押し付けを行なうことが
できる。
Use rice grains that are slightly longer than the length between the grooves bb' of the separators 5 and 5'. When assembling, set the waveform channels A and 4' to 5 to 57.
The corrugated channel plates 4, 4 can be assembled by compressing them to the length between them.
′ has a higher gap of e ”” e ′ and
Since the resistance force in the ``e'' direction also increases, it is possible to reliably press from the inside in the direction of stacking when tightening.

第2図は、本発明の第2実施例を示す断面図である。本
実施例は波形流路板4の少なくとも一方の端部をfのよ
うなe ”’ e ’間よりも高いf′〜f′のギャッ
プをもった反り形状とする。f部は電池組立時に締め付
けにより押し締められるのでgの方向へ変位する。その
結果e ”” e ’が伸長するので電池内部からもフ
レキシビリティ−をもって締め付けることができる。本
説明では一方の波形流路板4について示しているが他の
一方の波形流路板4′も同じ構造とすることができる。
FIG. 2 is a sectional view showing a second embodiment of the invention. In this embodiment, at least one end of the corrugated channel plate 4 is curved with a gap of f' to f', which is higher than the gap between e'' and e', such as f. Since it is compressed by tightening, it is displaced in the direction of g. As a result, e ``'' e '' expands, so it can be tightened with flexibility from inside the battery.In this explanation, one corrugated channel plate 4 is shown. However, the other corrugated channel plate 4' can also have the same structure.

第3図は、本発明の第3実施例を示す断面図である。波
形流路板4,4′とセパレータ5,5′との間隔の少な
くとも1つ以上の部分に波形流路板4,4′を支持する
板バネ6.6′を具備する。
FIG. 3 is a sectional view showing a third embodiment of the present invention. A leaf spring 6,6' for supporting the corrugated flow path plates 4, 4' is provided in at least one portion of the interval between the waveform flow path plates 4, 4' and the separators 5, 5'.

板バネ6.6′を積層方向に押し付ける抗力をもたせて
組立てることにより常に、集電板3.3’ 。
The current collector plate 3.3' is always assembled by assembling the leaf spring 6.6' with a resistance force that presses it in the stacking direction.

ガス拡散性電極2.2’ 、電解質保持板1に対して内
部から積層方向に押し付けた状態を保つ。第3図では一
方の波形流路板4を図示しているが、他の一方の波形流
路板4′も同様である。
The gas diffusive electrode 2.2' is kept pressed against the electrolyte holding plate 1 from the inside in the stacking direction. Although FIG. 3 shows one waveform channel plate 4, the other waveform channel plate 4' is also the same.

第4図は、本発明の第4実施例を示す断面図で流路形成
体にL形流路板8を用いた例である。L形流路板8はL
字の切れ込みを有し切れ込みの上端部分で集電板3の方
向に押し上げる構造とする。
FIG. 4 is a sectional view showing a fourth embodiment of the present invention, and is an example in which an L-shaped channel plate 8 is used as the channel forming body. The L-shaped channel plate 8 is L
It has a structure in which it has a notch in the shape of a letter and is pushed up toward the current collector plate 3 at the upper end of the notch.

さらにL形溝下に可撓性のスポンヂメタル又はセラミッ
ク性のバネ7を置き常に一定圧以上で内部から積層方向
への押し付けを行なう。L字の流路リブは第5図に示す
ように交互に分布させ、圧力を面内で均一に分布させる
。本実施例では一方の流路形成体の構造について説明し
たが、他の一方の流路形成体の構造も同様とすることが
できる。
Further, a flexible sponge metal or ceramic spring 7 is placed under the L-shaped groove, and the spring 7 is always pressed from the inside in the stacking direction at a constant pressure or higher. The L-shaped channel ribs are distributed alternately as shown in FIG. 5 to uniformly distribute pressure within the plane. Although the structure of one channel forming body has been described in this embodiment, the structure of the other channel forming body may be similar.

第6図は本発明の第5実施例を示す断面図である。集電
板3とセパレータ5との間に可撓性を有するスボンヂメ
タル又は導電性のセラミックスのバネ等で支柱9を形成
するブリッヂ構造とする。
FIG. 6 is a sectional view showing a fifth embodiment of the present invention. A bridge structure is employed in which a support 9 is formed between the current collector plate 3 and the separator 5 using a flexible sponge metal or a conductive ceramic spring.

各支柱の間隔で反応ガス流路を形成するので流路板を用
いることなく簡便な構造とすることができるので生産工
程を簡略化できる。本実施例では一方の流路形成体の構
造について説明したが、他の一方の流路形成体の構造に
ついても同様とすることができる。
Since reaction gas channels are formed at intervals between the columns, a simple structure can be achieved without using a channel plate, and the production process can be simplified. Although the structure of one channel forming body has been described in this embodiment, the structure of the other channel forming body can be similarly applied.

以上、説明したように本実施例によれば、流路形成体の
構造を、積層方向に押し付ける可撓性を有するものとす
ることで、組立時に電解質保持板1、ガス拡散性電極2
.2’ 、集電板3,3′に厚みの不均一があり外部か
らの締め付は圧力が均一に分散しないことがあっても、
可撓性の流路形゛成体が積層方向に伸縮して電解質保持
板1とセパレータ5,5′間の押し付けを行なうことが
できる。さらに流路形成体は面内でフレキシブルなので
押し付は圧力は面内で均一に分布した状態を保つことが
できる。また電解質保持板1、ガス拡散性電極2,2′
が運転中に熱変形を生じても、可撓性流路形成体がこれ
に追従し変形するので、押し付は圧力は面内で均一な状
態を保持することができる。これにより電池内部での接
触抵抗の増大を防止し、電池性能の低下を低減すること
ができる。
As described above, according to this embodiment, the structure of the channel forming body is flexible enough to be pressed in the stacking direction, so that the electrolyte retaining plate 1, gas diffusive electrode 2,
.. 2', Even if the thickness of the current collector plates 3 and 3' is uneven, the pressure may not be distributed evenly when tightened from the outside.
The flexible channel-shaped body expands and contracts in the stacking direction and can press between the electrolyte holding plate 1 and the separators 5, 5'. Furthermore, since the channel forming body is flexible within the plane, pressure can be kept uniformly distributed within the plane. Also, the electrolyte holding plate 1, gas diffusive electrodes 2, 2'
Even if thermal deformation occurs during operation, the flexible flow path forming body follows and deforms, so that the pressing pressure can be maintained in a uniform state within the plane. This can prevent an increase in contact resistance inside the battery and reduce deterioration in battery performance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶融炭酸塩型燃料電池において、集電
板とセパレータとの間に挟んだ反応ガス流路形成体の構
造を電解質保持板、1対のガス拡散性電極、1対の集電
板とを積層する方向に押し付ける可撓性を有する構造と
することで、長時間運転にともなう電解質保持板とセパ
レータ間の接触抵抗の増大による電池内部抵抗の増大を
防止することができるので、溶融炭酸塩型燃料電池の電
懐 泡性能の継特に優れた効果がある。
According to the present invention, in a molten carbonate fuel cell, the structure of a reactive gas flow path forming body sandwiched between a current collector plate and a separator is an electrolyte holding plate, a pair of gas diffusive electrodes, and a pair of collectors. By having a flexible structure that presses the electric plates in the stacking direction, it is possible to prevent an increase in the internal resistance of the battery due to an increase in contact resistance between the electrolyte holding plate and the separator due to long-term operation. It has particularly excellent effects on the electrostatic foaming performance of molten carbonate fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、流路形成体の構造を波形流路板とする本発明
の第1実施例を示す断面図、第2図は第1図における波
形流路板の端部を反り形状とする本発明の第2実施例を
示す断面図、第3図は流路形成体の構造を波形流路板と
板バネとする本発明の第3実施例を示す断面図、第4図
は流路形成体の構造をL形流路板とバネとする本発明の
第4実施例を示す断面図、第5図は第4図のL字の流路
リブの配置を示す平面図、第6図は、流路形成体をバネ
状支柱でブリッヂ構造とする本発明の第5実施例を示す
断面図である。 1・・・電解質保持板、2.2’・・・ガス拡散性電極
、3.3′・・・集電板、4,4′・・・波形流路板、
5゜5′・・・セパレータ、6,6′・・・板バネ、7
・・・バネ、8・・・L形流路板、9・・・支柱。
FIG. 1 is a sectional view showing a first embodiment of the present invention in which the structure of the channel forming body is a corrugated channel plate, and FIG. 2 is a sectional view showing a first embodiment of the present invention in which the structure of the channel forming body is a corrugated channel plate, and FIG. A sectional view showing a second embodiment of the present invention, FIG. 3 is a sectional view showing a third embodiment of the present invention in which the structure of the channel forming body is a corrugated channel plate and a plate spring, and FIG. FIG. 5 is a cross-sectional view showing a fourth embodiment of the present invention in which the structure of the forming body is an L-shaped channel plate and a spring; FIG. 5 is a plan view showing the arrangement of the L-shaped channel ribs in FIG. 4; FIG. FIG. 5 is a cross-sectional view showing a fifth embodiment of the present invention in which the channel forming body has a bridge structure using spring-like struts. DESCRIPTION OF SYMBOLS 1... Electrolyte holding plate, 2.2'... Gas diffusive electrode, 3.3'... Current collector plate, 4, 4'... Corrugated channel plate,
5゜5'... Separator, 6,6'... Leaf spring, 7
... Spring, 8 ... L-shaped channel plate, 9 ... Support.

Claims (1)

【特許請求の範囲】 1、溶融炭酸塩を電解質とする電解質保持板と、該電解
質保持板を挟んで対向する1対のガス拡散性電極と、そ
れぞれの該ガス拡散性電極の前記電解質保持板と接する
面の反対側に設けた1対の集電板及び、該集電板の前記
ガス拡散性電極と接する面の反対側に反応ガス供給路を
形成する流路形成体を備えた1対のセパレータを具備す
る溶融炭酸塩型燃料電池の単位電池を複数個積層したも
のにおいて、前記流路形成体が前記電解質保持板、1対
の前記ガス拡散性電極、1対の前記集電板とを積層する
方向に可撓性を有することを特徴とする溶融炭酸塩型燃
料電池。 2、前記流路形成体の構造が、可撓性を有する波形流路
板であることを特徴とする特許請求の範囲第1項記載の
溶融炭酸塩型燃料電池。 3、前記流路形成体の構造が、波形流路板と、該波形流
路板と前記セパレータとの間に積層方向に働く板バネと
、から成ることを特徴とする特許請求の範囲第1項記載
の溶融炭酸塩型燃料電池。 4、前記流路形成体の構造が、弾性を有する複数の支柱
から成ることを特徴とする特許請求の範囲第1項記載の
溶融炭酸塩型燃料電池。
[Scope of Claims] 1. An electrolyte holding plate using molten carbonate as an electrolyte, a pair of gas diffusive electrodes facing each other with the electrolyte holding plate in between, and the electrolyte holding plate of each of the gas diffusive electrodes. a pair of current collector plates provided on the opposite side of the surface in contact with the gas diffusing electrode; and a pair of current collector plates provided with a flow path forming member forming a reaction gas supply path on the opposite side of the surface of the current collector plate in contact with the gas diffusive electrode. In the stacked unit cell of a molten carbonate fuel cell comprising a separator, the flow path forming body includes the electrolyte retaining plate, the pair of the gas diffusive electrodes, and the pair of current collecting plates. A molten carbonate fuel cell characterized by having flexibility in the direction of stacking. 2. The molten carbonate fuel cell according to claim 1, wherein the structure of the channel forming body is a flexible corrugated channel plate. 3. Claim 1, characterized in that the structure of the channel forming body is comprised of a corrugated channel plate and a leaf spring acting in the stacking direction between the corrugated channel plate and the separator. The molten carbonate fuel cell described in . 4. The molten carbonate fuel cell according to claim 1, wherein the structure of the flow path forming body is comprised of a plurality of elastic struts.
JP62247862A 1987-10-02 1987-10-02 Molten carbonate fuel cell Pending JPH0193061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62247862A JPH0193061A (en) 1987-10-02 1987-10-02 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62247862A JPH0193061A (en) 1987-10-02 1987-10-02 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH0193061A true JPH0193061A (en) 1989-04-12

Family

ID=17169745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62247862A Pending JPH0193061A (en) 1987-10-02 1987-10-02 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0193061A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059864A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2013161130A1 (en) * 2012-04-25 2013-10-31 日産自動車株式会社 Fuel cell stack
JP2013229159A (en) * 2012-04-25 2013-11-07 Nissan Motor Co Ltd Fuel cell stack
JP2013246895A (en) * 2012-05-23 2013-12-09 Nissan Motor Co Ltd Fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996669A (en) * 1982-11-26 1984-06-04 Agency Of Ind Science & Technol Fused-carbonate fuel cell
JPS61109262A (en) * 1984-11-01 1986-05-27 Hitachi Ltd Fuel cell
JPS61279068A (en) * 1985-06-05 1986-12-09 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996669A (en) * 1982-11-26 1984-06-04 Agency Of Ind Science & Technol Fused-carbonate fuel cell
JPS61109262A (en) * 1984-11-01 1986-05-27 Hitachi Ltd Fuel cell
JPS61279068A (en) * 1985-06-05 1986-12-09 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059864A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7205061B2 (en) 2000-02-08 2007-04-17 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2013161130A1 (en) * 2012-04-25 2013-10-31 日産自動車株式会社 Fuel cell stack
JP2013229159A (en) * 2012-04-25 2013-11-07 Nissan Motor Co Ltd Fuel cell stack
CN104247116A (en) * 2012-04-25 2014-12-24 日产自动车株式会社 Fuel cell stack
JP2013246895A (en) * 2012-05-23 2013-12-09 Nissan Motor Co Ltd Fuel cell stack

Similar Documents

Publication Publication Date Title
US7892695B2 (en) Fuel cell stack
US6040076A (en) One piece fuel cell separator plate
US6663996B2 (en) Compression mechanism for an electrochemical fuel cell assembly
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
JP2002042837A (en) Sealing structure for fuel cell
JPS61279068A (en) Molten carbonate fuel cell
US6017649A (en) Multiple step fuel cell seal
US5185220A (en) Fuel cell clamping force equalizer
JPS61109262A (en) Fuel cell
JPS6158176A (en) Fuel cell
JPH0193061A (en) Molten carbonate fuel cell
US7147956B2 (en) Fuel cell and separator therefor
GB1358243A (en) Fuel cell battery
US20100015505A1 (en) Compliant feed region in stamped metal flowfield of a fuel cell plate to eliminate bias
JPS58161268A (en) Cell stack of fuel cell
JP3420508B2 (en) Polymer electrolyte fuel cell
JPH07263013A (en) Fuel cell
JPH02160372A (en) Separator of fuel battery
AU2011267434A1 (en) Force distributor for a fuel cell stack or an electrolysis cell stack
JPH10302814A (en) Solid high polymer fuel cell
JPH02129857A (en) Separator of fuel cell
JPS6353857A (en) Fuel cell separator
JPH0624124B2 (en) Fuel cell
JPH06105617B2 (en) Molten salt fuel cell
JP2708500B2 (en) Stacked fuel cell