JPS5996669A - Fused-carbonate fuel cell - Google Patents

Fused-carbonate fuel cell

Info

Publication number
JPS5996669A
JPS5996669A JP57206213A JP20621382A JPS5996669A JP S5996669 A JPS5996669 A JP S5996669A JP 57206213 A JP57206213 A JP 57206213A JP 20621382 A JP20621382 A JP 20621382A JP S5996669 A JPS5996669 A JP S5996669A
Authority
JP
Japan
Prior art keywords
pipes
separator
fuel cell
bipolar
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57206213A
Other languages
Japanese (ja)
Other versions
JPH0218551B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Toshinori Terajima
敏憲 寺島
Takao Ishizaka
石坂 孝男
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57206213A priority Critical patent/JPS5996669A/en
Publication of JPS5996669A publication Critical patent/JPS5996669A/en
Publication of JPH0218551B2 publication Critical patent/JPH0218551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a fused-carbonate fuel cell which contains bipolar separators of a high absorptivity and a high electronic conductivity interposed between unit cells and which can be assembled efficiently by forming the bipolar separator by the use of a separator base body and pipes stucked to its both surfaces so as to provide gas paths. CONSTITUTION:In a fused-carbonate fuel cell, seal edge members 46a, 46b, 47a and 47b are provided on the surfaces of a metallic base body 45 for a bipolar separator 44. A number of metallic pipes 48a are stuck to the surface of the separator base body 45 located between the seal members 46a and 46b in such a manner that the pipes 48a are apart from each other thereby forming an oxydant gas path (B). A number of pipes 48b are provided on the surface of the separator base body 45 located between edge members 47a and 47b in such a manner that the pipes 48b are apart from each other thereby forming a fuel gas path (A). Such bipolar separators 44 are interposed between a number of unit cells to constitute the main part of the battery. Owing to such constitution as above, inhomogeneous distributions of the thickness of an electrolyte layer and gas-diffusing electrodes can be absorbed by the pipes 48.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、浴融炭酸塩型燃料電池に係り、特に、各単位
電池間に介挿される双極性隔離板を改良した燃料電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a bath-molten carbonate fuel cell, and more particularly to a fuel cell with an improved bipolar separator interposed between each unit cell.

〔発明の背景技術およびその問題点〕[Background technology of the invention and its problems]

従来、水素のように酸化され易いガスと、酸素のように
酸化力のあるガスとを電気化学反応プロセスを経て反応
させることによって直流電力を得るようにした燃料電池
が広く知られている。この燃料電池は、使用する電解質
によって、りん酸型、浴融炭酸塩型、固体電解質型等に
大別される。
2. Description of the Related Art Conventionally, fuel cells that obtain DC power by reacting a gas that is easily oxidized, such as hydrogen, and a gas that has oxidizing power, such as oxygen, through an electrochemical reaction process have been widely known. Fuel cells are broadly classified into phosphoric acid type, bath molten carbonate type, solid electrolyte type, etc. depending on the electrolyte used.

ところで、上記のような燃料電池のうち、溶融炭酸塩型
の燃料電池は、650C近辺の温度で動作させるように
したもので、その要部は通いる。
By the way, among the above-mentioned fuel cells, the molten carbonate type fuel cell is designed to operate at a temperature of around 650C, and its main parts are operated at a temperature around 650C.

各双極性隔離板4は、耐食性に富んだ厚さ6〜12■の
ステンレス鋼製の板体5の両面に図中穴矢印Pで示す如
く燃料ガスを通流させるだめの通路Aを構成する溝6と
、図中穴矢印Qで示す如く酸化剤ガスを通流させるため
の通路Bを構成する溝7とを互いに直交する関係に設け
たものとなっている。各#6,7は、板体5のすなわち
、上記ガス拡散種は、一方の面が電解質層、/−に接触
し、他方の面が上述した係止用段部8m、8bおよび溝
6(7)を構成する凸部に接触した状態で位置保持され
る大きさに形成されている。そして、−板体5の前記溝
の設けられて; (y’すIh 両’AH部°・0を使−v ? 9  
k t h x″にし゛ている。
Each bipolar separator 4 constitutes a passage A through which fuel gas flows, as shown by hole arrow P in the figure, on both sides of a corrosion-resistant stainless steel plate 5 having a thickness of 6 to 12 cm. The groove 6 and the groove 7 forming a passage B through which the oxidizing gas flows, as shown by the hole arrow Q in the figure, are provided in a relationship that is orthogonal to each other. Each #6 and #7 of the plate body 5, that is, the gas diffusion species, has one surface in contact with the electrolyte layer, and the other surface with the above-mentioned locking steps 8m and 8b and the groove 6 ( 7) is formed in a size that allows it to be held in position while in contact with the convex portion constituting part 7). And - the provision of the groove in the plate body 5;
k th x''.

1j ・ 、、、’Lかしながら、主要部が上記のように構成さな
問題があった。すなわち、双極性隔離板4として、ステ
ンレス鋼製の板体5に研削、放電加工等によって溝6,
7を形成したものを用いているので、製作に長時間を要
するばかシか、材る電池要素に過大な?’==J重が加
わり、これらを破損させてし1う虞れが多分にあり)こ
。さらに、上述した構成の双極性隔離板4は、ガス拡散
種2a、2bK接触する部分、つま9溝6,7を構成す
る凸部の剛性か大きいので、電解質層lやガス拡散種、
?a 、2bの厚みが不均一であったとき、これを吸収
することができず、この結果、これらに局部的に過荷重
が加わって、これらを破損させてしまう處れもあった。
However, there was a problem that the main part was not configured as described above. That is, as the bipolar separator 4, grooves 6,
7 is used, so does it take a long time to manufacture, or does it require too much material for the battery elements? There is a high possibility that the load will be applied and damage them. Furthermore, in the bipolar separator 4 having the above-described structure, the parts where the gas diffusion species 2a and 2bK contact each other, and the convex parts constituting the tabs 9 grooves 6 and 7, have high rigidity, so that the electrolyte layer l and the gas diffusion species,
? When the thicknesses of a and 2b are non-uniform, this cannot be absorbed, and as a result, there is a risk that overload will be locally applied to them, causing them to break.

そこで、最近、このような不具合を解消する側部に係止
用段部ga、8bを有したステンレス鋼製のシール用の
エツジ部材12 a 、 12 bおよびノJa、ノ3
bf溶接するとともにエツジ部材12aと12bとの間
およびエツジ部材ガス通路A、Bとした双極性隔離板4
aが提案また、波板14m、14bの弾性によって、電
解質層ノやガス拡散種2m、2bの厚みの不均一さをあ
る程度吸収することができるつじかし、波板14a、J
4bid電子の通路となるので、電子伝導性を向上させ
るために、波板14h、14bの谷の頂部と板材1ノと
を溶接によって接合させると波板14m、14bの弾力
性が低下し、前述した厚みの不均一さを吸収できない問
題がある。一方、上記のように波板14a、14bの谷
の頂部と板材1ノとを溶接等によって接合しない場合に
は、組立時の作業性、積JJ脂度が著しく悪化するのを
免れ得す、しかも運転中に絶縁性の被膜が形成されて波
板14a、14bと板材1ノとの間の電子伝導性が損な
われる虞れがあり、結局、一長一短があって必ずしも満
足できるものとは云えないものであった。
Therefore, recently, stainless steel sealing edge members 12a, 12b and No.Ja, No.3, which have locking step portions ga and 8b on the sides to eliminate such problems, have been developed.
Bipolar separator 4 with bf welding and between edge members 12a and 12b and edge member gas passages A and B
In addition, the elasticity of the corrugated plates 14m and 14b can absorb to some extent the non-uniformity of the thickness of the electrolyte layer and the gas diffusion species 2m and 2b, and the corrugated plates 14a and J
This becomes a path for 4-bit electrons, so if the tops of the valleys of the corrugated plates 14h and 14b and the plate 1 are joined by welding in order to improve electron conductivity, the elasticity of the corrugated plates 14m and 14b decreases, and as mentioned above, There is a problem in that it cannot absorb the unevenness of the thickness. On the other hand, if the tops of the valleys of the corrugated plates 14a and 14b and the plate material 1 are not joined by welding or the like as described above, it is possible to avoid a significant deterioration in the workability during assembly and the product JJ fatness. Moreover, there is a risk that an insulating film may be formed during operation, impairing the electronic conductivity between the corrugated plates 14a and 14b and the plate material 1.In the end, this method has its advantages and disadvantages and cannot be said to be necessarily satisfactory. It was something.

状不均一時の良好な吸収性、良好な′成子伝導性〔発明
の概資〕 本発明に係る溶融炭酸塩型燃料電池は双極性隔離板に特
徴を有している。すなわち、双極性隔離板は、金属材製
の隔離板本体と、この本体の両面に平行に固着され相互
間に存在する溝状空間で前述した各ガスの通路を構成す
る円筒状もしくは半円筒状の金属材製パイプとを備えた
構成になっている。つまり、第2図において説明した波
板を金属材製のパイプに置き代えた構成となっている。
Good absorbency and good polar conductivity when the shape is non-uniform [Summary of the Invention] The molten carbonate fuel cell according to the present invention is characterized by a bipolar separator. In other words, a bipolar separator consists of a separator body made of a metal material, and a cylindrical or semi-cylindrical shape that is fixed in parallel to both sides of this body and that forms the passage for each gas in the groove-like space between them. It is configured with a metal pipe. In other words, the corrugated plate explained in FIG. 2 is replaced with a metal pipe.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、金属材製・(イブとして薄肉のもの
を用いれば第2図に示したものと同様に十分に軽量化す
ることができ、しかも金属材製パイプに十分な弾性を発
揮させることができるので電解質層やガス拡散電極の厚
みの不均一外径のものを揃えることは容易であることか
らして各パイプとガス拡散極とを電子的に良好に接触さ
せることもできる。さらに、酸化剤極側に位置するパイ
プ内に酸化剤ガスを通流させることによって上記・母イ
ブを冷却パイプと兼用させることがでさ、結局、従来の
問題点を全て解消でき、その結果として勝れた電池特性
を発揮させることができる。
With the above configuration, if a thin-walled metal pipe is used, the weight can be sufficiently reduced as shown in Fig. 2, and the metal pipe can exhibit sufficient elasticity. Since it is easy to arrange electrolyte layers and gas diffusion electrodes with non-uniform outer diameters, it is also possible to make good electronic contact between each pipe and the gas diffusion electrode. By passing the oxidizing gas through the pipe located on the oxidizing electrode side, the mother tube can also be used as a cooling pipe, and as a result, all the problems of the conventional method can be solved, resulting in a successful result. It is possible to bring out the best battery characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参黒しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明に係る溶融炭酸塩型燃料電池に組込まれ
る双極性隔離板44を取シ出して示すものである。すな
わち、この双極性隔離板44は、たとえば厚さ0.5 
trrmのステンレス銅板で形成された隔離板本体45
と、この隔離板本、!7−!5の両面で、かつ平行する
両辺郁にそれぞれ固着されたステンレス鋼製のシール用
エツジ部材46a146bおよび47a 、47bと、
上、記エツジ部材46mと46bとの間に位置す線菌離
板本体7.の表面に上記−2ジ部材76・。
FIG. 3 shows a bipolar separator 44 incorporated in the molten carbonate fuel cell according to the present invention. That is, this bipolar separator 44 has a thickness of, for example, 0.5
Separator body 45 made of trrm stainless steel copper plate
And this isolation board book! 7-! Stainless steel sealing edge members 46a, 146b and 47a, 47b are respectively fixed to both parallel sides of 5.
Above, the fibril separating plate main body 7 located between the edge members 46m and 46b. The above-mentioned -2 ji member 76 is on the surface of the .

46bと平行に、かつ相互間に、たとえば1.5形成さ
れたステンレス鋼製のパイプ48aと、同じくエツジ部
材47mと47bとの間に位置する隔離板本体45の表
面に上記エツジ部材47 a # 47 bと平行に、
かつ相互間に上記と同様な間隔をあけて複数本固着され
、相互間に存在する溝状空間で燃料ガスの通路Aを構成
する前記と同様に形成された・fイノ48bとで構成さ
れている。なお、各エツジ部材46a。
46b and between them, a stainless steel pipe 48a formed, for example, 1.5 mm, and the edge member 47a # on the surface of the separator body 45, which is also located between the edge members 47m and 47b. 47 parallel to b,
and f-ino 48b formed in the same manner as described above, which are fixed to each other with the same spacing as above, and constitute the fuel gas passage A in the groove-like space between them. There is. Note that each edge member 46a.

46b 、47m 、47bの内側線部には図示しない
ガス拡散極の両側線部を係止するための係止用段部49
が形成されている。また、通路Aを形成する・ぐイf4
s&としては、第4図に示すように、その中途位置を押
しつぶして・母イゾ内に燃料ガスが通流しないようにし
たものが用いられている。また、上記のような双極性隔
離板44は、たとえば次のようにして製造される。
At the inner line portions of 46b, 47m, and 47b, there are locking step portions 49 for locking both side line portions of the gas diffusion electrode (not shown).
is formed. Also, forming passage A, Gui f4
As shown in FIG. 4, the s& is used by crushing its midway position to prevent the flow of fuel gas into the mother iso. Further, the bipolar separator 44 as described above is manufactured, for example, as follows.

すなわち、第5図に示すように隔離板本体45これらを
パイプ設置溝62ならびにエツジ部材面には各押え板と
エツジ部材および・母イブとが接合するのを防止するだ
めの窒化硼素の層65が形成されている。このようにし
て組合せたものに図中上方から約1 kji’/crn
 の荷重を与えた状態で真空炉(真空度I X 10 
 Torr以上)で1000℃、1時間加熱し、さらに
1150℃で30分加熱し、その後、徐冷することによ
って第3図に示すように一体化したものを得ることがで
きる。
That is, as shown in FIG. 5, a boron nitride layer 65 is provided on the separator main body 45, on the pipe installation groove 62, and on the edge member surface to prevent the respective holding plates from joining with the edge member and the mother tube. is formed. Approximately 1 kji'/crn from the top of the figure is combined in this way.
A vacuum furnace (vacuum degree I x 10
Torr or higher) for 1 hour at 1000° C., further heated at 1150° C. for 30 minutes, and then slowly cooled to obtain an integrated product as shown in FIG.

しかして、本発明に係る溶融炭酸塩型燃料電池は、上記
のように構成された双極性隔離板44を第1図に示した
複数の単位電池旦相互間に介在させて積層し、締付けて
一体化し、この積層体によって主要部が構成されている
Therefore, in the molten carbonate fuel cell according to the present invention, the bipolar separator 44 configured as described above is interposed between a plurality of unit cells shown in FIG. The main part is composed of this laminate.

このような構成であると、積層体の両端面間に負荷を接
続した状態で、各双極性隔離板44に形成された通路A
に燃料ガスを、また通路Bそして、この場合には、各双
極性隔離板44を形成したものに較べて双極性隔離板−
個当シの重量を軽量化することができる。また、各パイ
プ48a、48bは隔離板本体45にそれぞれ独立して
固着されているので、第6図に示すように矢印Cで示す
方向の荷重が加わると、各パイプ4.!la、(48b
)は図中48 a’ 。
With this configuration, when a load is connected between both end faces of the laminate, the passage A formed in each bipolar separator 44 is
and in this case, bipolar separators 44 compared to those forming each bipolar separator 44.
The weight of each piece can be reduced. Furthermore, since each pipe 48a, 48b is independently fixed to the separator body 45, when a load is applied in the direction shown by arrow C as shown in FIG. ! la, (48b
) is 48 a' in the figure.

48b′で示すようにそれぞれ独立して楕円形に撓む。As shown at 48b', each bends independently into an oval shape.

したがって、電解質層1やガス拡散極2a。Therefore, the electrolyte layer 1 and the gas diffusion electrode 2a.

2bに局部的に厚肉の部分があっても、これをパイf4
tta 、 4sbの変形によって吸収することができ
るので、上記のように局部的に厚肉部が存在したときに
起こり易い電′IN−質層1やガス拡散極2a、2bの
破損を防止することができる。また、パイプ41jg 
、48bを隔離板本体45に溶接等によって固着してい
るので組立きる。
Even if there is a locally thick part in 2b, it is
Since it can be absorbed by the deformation of tta and 4sb, damage to the electrolyte layer 1 and gas diffusion electrodes 2a and 2b, which tends to occur when locally thick parts exist as described above, can be prevented. I can do it. Also, pipe 41jg
, 48b are fixed to the separator body 45 by welding or the like, so that assembly is possible.

1−−=== が、第7図に示すよう忙半円筒状の・母イ!7Bを用い
るようにしてもよい。このよりなノぐイゾ′I訃を用い
ると、荷重方向の弾性は円筒状の場合より劣るが、荷重
によって変形したときの相互間の距T4L t’を大き
く保つことができるので、反応ガスの有効利用化を図る
ことができる。まだ、各実施例共に隔離板本体、エラ−
)部材およびパイプをステンレス鋼で形成しているが、
これに限られるものではなく、耐食性を有し、かつ良電
子伝導性を有している金属材であればよい。
1--=== is a busy semi-cylindrical mother as shown in Figure 7! 7B may also be used. By using this narrow shape, the elasticity in the load direction is inferior to that of a cylindrical shape, but the distance T4Lt' between them when deformed by a load can be kept large, so the reaction gas Effective utilization can be achieved. The main body of the separator and the error are still present in each embodiment.
) members and pipes are made of stainless steel,
The material is not limited to this, and any metal material may be used as long as it has corrosion resistance and good electronic conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶融炭酸塩型燃料電池の主要部の分解斜
視図、第2図は上記主要部に組込まれる双極性隔離板の
異なる例を示す斜視図、第3図は本発明に係る溶融炭酸
塩型燃料電池の主要部に組込まれる双極性隔離板の斜視
図、第4ニー: 図ば同隔離板に組込まれた・月ゾの一例を示す図−j第
゛1は間隔¥Ntl wco g造I89!le説明す
69.だめの図、第6図は同隔離板の作用を説明するだ
めの図、第7図は双極性隔離板の変形例を説明するため
の図である。 、クト・・・積層体、1・・・電解質層、2a + 2
 b・・・ガス拡散極、互・・・単位電池、44・・・
双極性隔離板、’pl!”: b・・・エツジ部材、4
8 a 、 48 b 、 7 B −=出願人 ]二
業技術院長  石 坂 誠 −s 1 ロ [12図 八 第3図 第4図 6rEi
Fig. 1 is an exploded perspective view of the main part of a conventional molten carbonate fuel cell, Fig. 2 is a perspective view showing a different example of a bipolar separator incorporated in the main part, and Fig. 3 is a perspective view of the main part of a conventional molten carbonate fuel cell. A perspective view of a bipolar separator incorporated into the main part of a molten carbonate fuel cell, No. 4: A diagram showing an example of a bipolar separator incorporated into the separator. wco g construction I89! 69. FIG. 6 is a diagram for explaining the action of the separator, and FIG. 7 is a diagram for explaining a modification of the bipolar separator. , kuto... laminate, 1... electrolyte layer, 2a + 2
b...Gas diffusion electrode, mutual...unit battery, 44...
Bipolar separator, 'pl! ”: b...edge member, 4
8 a, 48 b, 7 B -=Applicant] Makoto Ishizaka, Director of the Second Industrial Technology Agency -s 1 Ro [Figure 12 Figure 8 Figure 3 Figure 4 Figure 6 rEi

Claims (1)

【特許請求の範囲】[Claims] 燃料極と酸化剤極との間に溶融炭酸塩電解質層を介在さ
せてなる複数の単位電池を、各単位電池相互間に、両面
にそれぞれ溝状に形成され
A plurality of unit cells each having a molten carbonate electrolyte layer interposed between a fuel electrode and an oxidizer electrode are formed in grooves on both sides between each unit cell.
JP57206213A 1982-11-26 1982-11-26 Fused-carbonate fuel cell Granted JPS5996669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206213A JPS5996669A (en) 1982-11-26 1982-11-26 Fused-carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206213A JPS5996669A (en) 1982-11-26 1982-11-26 Fused-carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS5996669A true JPS5996669A (en) 1984-06-04
JPH0218551B2 JPH0218551B2 (en) 1990-04-25

Family

ID=16519637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206213A Granted JPS5996669A (en) 1982-11-26 1982-11-26 Fused-carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS5996669A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109262A (en) * 1984-11-01 1986-05-27 Hitachi Ltd Fuel cell
JPS61216257A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Separator for fuel cell
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
WO2000002274A3 (en) * 1998-07-01 2000-04-27 British Gas Plc Fuel cell stack made of tube cells, and internal cooling arrangement therefor
WO2000052777A1 (en) * 1999-03-03 2000-09-08 Forschungszentrum Jülich GmbH Fuel cell with modular, flexible gas distribution structures
JP2008078148A (en) * 2007-10-24 2008-04-03 Toyota Motor Corp Fuel cell
JP2020147817A (en) * 2019-03-14 2020-09-17 日鉄日新製鋼株式会社 Austenitic stainless steel for fuel cell separator and method for producing the same, fuel cell separator, and fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113968U (en) * 1982-01-29 1983-08-04 株式会社日立製作所 Molten carbonate fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113968U (en) * 1982-01-29 1983-08-04 株式会社日立製作所 Molten carbonate fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109262A (en) * 1984-11-01 1986-05-27 Hitachi Ltd Fuel cell
JPS61216257A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Separator for fuel cell
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
WO2000002274A3 (en) * 1998-07-01 2000-04-27 British Gas Plc Fuel cell stack made of tube cells, and internal cooling arrangement therefor
WO2000052777A1 (en) * 1999-03-03 2000-09-08 Forschungszentrum Jülich GmbH Fuel cell with modular, flexible gas distribution structures
JP2008078148A (en) * 2007-10-24 2008-04-03 Toyota Motor Corp Fuel cell
JP2020147817A (en) * 2019-03-14 2020-09-17 日鉄日新製鋼株式会社 Austenitic stainless steel for fuel cell separator and method for producing the same, fuel cell separator, and fuel cell

Also Published As

Publication number Publication date
JPH0218551B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US20180040907A1 (en) Fuel cell stack
US10297841B2 (en) Fuel cell and production apparatus for the fuel cell
US11302935B2 (en) Fuel cell stack, dummy cell for fuel cell stack, and method of producing dummy cell
JP2018085325A (en) Separator for fuel cell and unit cell of fuel cell
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
JP2007311074A (en) Fuel cell stack, fuel cell separator, and its manufacturing method
JP2008235009A (en) Separator for fuel cell
JPS5996669A (en) Fused-carbonate fuel cell
JP2008078148A (en) Fuel cell
JP2014186858A (en) Fuel cell and operation method thereof
JP5907053B2 (en) Fuel cell
JPS5975578A (en) Stack type fuel cell
JP6939522B2 (en) Terminal plate for fuel cells
US10608261B2 (en) Fuel cell
JP2016171006A (en) Fuel battery stack
JPH0151027B2 (en)
JPH08162146A (en) Solid electrolytic fuel cell
JP2018181422A (en) Terminal plate for fuel cell
JPH01246766A (en) Cooling plate for fuel cell
JP6659771B2 (en) Fuel cell stack
JP6185448B2 (en) Terminal plate and fuel cell for fuel cell
JP5729682B2 (en) Fuel cell separator
JP7104008B2 (en) Fuel cell stack
JP2012003936A (en) Fuel cell stack
JPH07135007A (en) Fuel cell