WO2009008534A1 - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
WO2009008534A1
WO2009008534A1 PCT/JP2008/062661 JP2008062661W WO2009008534A1 WO 2009008534 A1 WO2009008534 A1 WO 2009008534A1 JP 2008062661 W JP2008062661 W JP 2008062661W WO 2009008534 A1 WO2009008534 A1 WO 2009008534A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
concave
concavo
gas
forming
Prior art date
Application number
PCT/JP2008/062661
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Hashimoto
Kazunari Moteki
Original Assignee
Toyota Shatai Kabushiki Kaisha
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Shatai Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Shatai Kabushiki Kaisha
Publication of WO2009008534A1 publication Critical patent/WO2009008534A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator, and more particularly to a fuel cell separator employed in a polymer electrolyte fuel cell. Background art.
  • a polymer electrolyte fuel cell includes an electrode structure including an anode electrode layer formed on one side of an electrolyte membrane and a force sword electrode layer formed on the other side.
  • a fuel gas for example, hydrogen gas
  • an oxidant gas for example, air
  • a separator for supplying the fuel gas and the oxidant gas supplied from the outside separately to the anode electrode layer and the force sword electrode layer is provided.
  • the power generation efficiency of a polymer electrolyte fuel cell has been improved by improving the supply efficiency of fuel gas and oxidant gas by a separator.
  • Japanese Laid-Open Patent Publication No. 2 005-2 0 9 4 70 discloses a fuel cell that uses a separator composed of a thin flat plate-like substrate and a mesh-like conductor.
  • the mesh-like conductor in this conventional fuel cell is made of, for example, expanded metal or metallases having diamond-shaped slits.
  • the mesh-like conductor is formed with a plurality of gas flow paths in which a cross-sectional shape perpendicular to the flow direction of the fuel gas or air (oxidant gas) introduced from the outside is formed into a substantially rectangular shape. Yes.
  • Japanese Patent Laid-Open No. 2002-184422 discloses a fuel cell separator that can improve the gas supply efficiency of the separator.
  • the fuel cell separator has a flat plate-shaped first member (carbon), and is laminated on the first member to elastically contact the anode electrode layer and the force sword electrode layer and to form a gas flow path.
  • a second member metal plate on which a plurality of protrusions are formed.
  • the fuel gas and the oxidant gas passing therethrough are caused to flow by passing through the gas flow path formed by the plurality of protrusions of the second member. It is like that.
  • the fuel gas and the oxidant gas supplied into the gas flow path can be diffused well by three-dimensionally passing in all directions, and the gas supply efficiency to the anode electrode layer and the force sword electrode layer is improved. It has come to improve. Disclosure of invention
  • the gas flow having a substantially rectangular cross section is formed.
  • the gas flow path formed by the projecting piece is substantially parallel to the direction connecting the introduction port for introducing the fuel gas and the oxidant gas into the inside and the outlet port for introducing the introduced gas to the outside. There is ⁇ . For this reason, the inlet and outlet can communicate linearly with the formed gas flow path.
  • a polymer electrolyte fuel cell when an electrode reaction using a fuel gas and an oxidant gas proceeds in the electrode structure, water is generated in the anode electrode layer or the force sword electrode layer according to the ion exchange characteristics of the electrolyte membrane. Produces.
  • the generated water covers, for example, the surface of the anode electrode layer or the force sword electrode layer, the mesh of conductors disclosed in the above-mentioned JP-A-2005-209470, and the above-mentioned JP-A Good supply of fuel gas or oxidant gas is impaired by adhering to the projecting piece of the second member disclosed in the 2002-184422 publication. There is a possibility.
  • the power generation efficiency in the fuel cell may decrease as the electrode reaction progresses.
  • the polymer electrolyte fuel cell is installed in an environment having a low temperature atmosphere, for example, the generated water remaining inside freezes, so that the fuel gas or the oxidizing agent gas is not sufficiently supplied.
  • the low temperature startability of the fuel cell may deteriorate.
  • the water produced by the electrode reaction must be efficiently discharged to the outside.
  • the present invention has been made in order to solve the above-described problems, and its purpose is to provide a good supply performance of fuel gas and oxidant gas and a good drainage performance of generated water generated by electrode reaction.
  • the object is to provide a fuel cell separator that is compatible.
  • a feature of the present invention is that a fuel cell separator that supplies an externally introduced fuel gas and an oxidant gas to an electrode layer that constitutes an electrode structure of a fuel cell.
  • the fuel gas and the oxidant gas are separated to prevent mixed flow, and the fuel gas or the oxidant gas separated by the separator body is dispersed to disperse the electrode structure.
  • a collector that collects electricity generated by an electrode reaction in the electrode structure, the gap for allowing the separated fuel gas or oxidant gas to flow three-dimensionally
  • a plurality of concave portions and convex portions formed between the separator main body and the electrode structure are linearly and continuously molded; and a concave portion and a concave portion of the first concave / convex molded portion.
  • a gap is formed between the separator body and the electrode structure so that the separated fuel gas or oxidant gas flows three-dimensionally with respect to the molding period of the convex portion.
  • a plurality of concave portions and convex portions that are formed linearly and continuously, and formed between the first concave-convex molded portion and the second concave-convex molded portion.
  • the concavo-convex molded portion and the second concavo-convex molded portion are connected to each other, and the second concavo-convex molded portion is formed from a gap formed by the recessed portion of the first concavo-convex molded portion of the separated fuel gas or oxidant gas.
  • the flow path to the gap formed by the concave portion of the first concave and convex portion and the flow path to the gap formed by the convex portion of the second concave and convex molded portion from the gap formed by the flange portion of the first concave and convex molded portion are formed.
  • a collector with a flow path forming section There is.
  • a fuel cell separator can be constituted by a collector for collecting current.
  • the collector forms a gap for three-dimensional distribution of fuel gas or oxidant gas.
  • the first concave-convex molded portion and the second concave-convex molded portion have different molding periods of the plurality of concave portions and convex portions by a half cycle.
  • the fuel gas or the oxidant gas that has passed through the formed gap may have a flow path forming portion that forms a flow path that flows toward the gap formed by the uneven portion of the second uneven formed portion.
  • the flow path forming part is formed by the recessed part of the second concavo-convex forming part from the gap formed by the recessed part of the first concave ridge forming part in which the separated fuel gas or oxidant gas differs by a half cycle.
  • the flow path forming portion forms the flow path of the fuel gas or the oxidant gas, so that the concave portion (convex portion) is opposed to the gap formed by the concave portion (convex portion) of the first concave-convex forming portion.
  • the flow of fuel gas or oxidant gas toward the gap formed by the convex part (concave part) of the second concave-convex molded part can be hindered. That is, the fuel gas or the oxidant gas is linearly directed from the gap formed by the concave portion (convex portion) of the first concave-convex forming portion toward the gap formed by the convex portion (concave portion) of the second concave-convex forming portion.
  • the fuel gas or the oxidant gas is well diffused by meandering from the first concavo-convex molded portion to the second concavo-convex formed portion, and is sufficiently diffused to the electrode layer constituting the electrode structure. Fuel gas or oxidant gas can be supplied. Therefore, good gas supply performance can be ensured, and the amount of unreacted fuel gas or oxidant gas that is not consumed by the electrode structure can be reduced.
  • the fuel gas or the oxidant gas separated by the separator main body has a gap formed by the concave or convex portion of the first concavo-convex molded portion and a gap formed by the concave or convex portion of the second concavo-convex molded portion. It passes through across and is supplied to the electrode layer constituting the electrode structure. For this reason, for example, when the generated water generated near the collector due to the action of surface tension, the generated water can be discharged together with the unreacted gas on the flow of fuel gas or oxidant gas. As a result, as long as the fuel gas and the oxidant gas are supplied, in other words, as long as the solid polymer ⁇ -ion battery is used, the generated water can be drained continuously. Therefore, it is possible to ensure good drainage performance of generated water.
  • the arrangement direction of the first concavo-convex molded portion and the second concavo-convex molded portion is the separator. It is said that it is substantially parallel to the flow direction of the fuel gas or oxidant gas separated by the generator body. .
  • the introduced fuel gas or oxidant gas inevitably has a gap formed by the concave and convex portions of the first concavo-convex molded portion and the concave and convex portions of the second concavo-convex molded portion. It is possible to circulate so as to cross the gap formed. As a result, fuel gas or oxidant gas circulates through the collector, which is inevitably diffused to ensure good gas supply performance, and inevitably secure good drainage performance of the generated water as the gas is discharged. it can.
  • the shape in the forming direction of the concave and convex portions that respectively form the first concavo-convex molded portion and the second concavo-convex molded portion may be each rectangular shape. According to this, the first concavo-convex molded part and the second concavo-convex molded part can be formed very easily without any special processing. Therefore, the manufacturing cost of the fuel cell separator can be reduced.
  • the collector has a plurality of the first concavo-convex forming part, the flow path forming part, and the second concavo-convex forming part sequentially and continuously formed. According to this, the number of times that the fuel gas or the oxidizing agent gas passes through the gap formed by the second concavo-convex molded portion from the gap formed by the first concavo-convex molded portion, that is, the number of times of meandering Can do. In addition, since there is a portion where the first concavo-convex molded portion and the second concavo-convex molded portion are arranged adjacent to each other, the separated fuel gas or oxidant gas is passed between the separator body and the electrode structure.
  • the flow path forming part includes a flat surface including a bottom part of a concave part forming the first concave-convex molded part and a bottom part of a concave part forming the second concave-convex molded part, and the first It may be formed between the top of the convex part forming the concave-convex molded part and a plane including the top part of the convex part forming the second concave-convex molded part.
  • the flow path forming portion includes a concave portion that forms the first concave-convex molded portion and a molding direction of the concave portion that forms the second concave-convex molded portion, and a convex portion that forms the first concave-convex molded portion, and A flat plate including at least a neutral surface with respect to the molding direction of the convex portions forming the second rib molding portion It may be formed into a shape.
  • the bottom of the concave portion forming the second concave-convex forming portion and the bottom portion of the concave portion forming the first molding portion with respect to the flow path forming portion molded into the flat plate shape are shown in this figure.
  • a plate-shaped flow path forming part can be formed. More specifically, the plate-shaped flow path forming part is formed with the forming direction of the recesses forming the first uneven forming part and the second uneven forming part, and the first uneven forming part and the second uneven forming part.
  • Neutral surface with respect to the molding direction of the convex part that is, the bottom part of the concave part forming the first concave and convex part and the second convex part and the top part of the flange part forming the first concave and convex part It can shape
  • mold so that the neutral surface in the approximate middle may be included.
  • the flow path of the fuel gas or the oxidant gas from the first concavo-convex molded portion to the second concavo-convex molded portion formed by the concave portion or the convex portion is formed as a flat plate-like flow passage in the molding direction of the concave portion and the convex portion.
  • a fuel gas or an oxidant gas flows from the convex portion of the first concave-convex molded portion to the opposing second concave-convex molded portion, it flows with the top of the convex portion in the first concave-convex molded portion.
  • the space between the passage forming portion is narrowed and fuel gas or oxidant gas is less likely to flow.
  • the part where the fuel gas or the oxidant gas is more likely to flow specifically, the lower part of the convex part or the upper part of the concave part in the first concave-convex molding part among the gaps divided by the flow path forming part.
  • the fuel gas or the oxidant gas is more easily circulated, specifically, in the gaps divided by the flow path forming portion, The upper part of the recess is preferentially distributed.
  • the fuel gas or the oxidant gas is formed by the flow path forming part by the upper part of the gap formed by the concave part of the first concave / convex molding part and the concave part of the second concave / convex molding part which are different from each other by a half cycle. Formed Between the upper side of the gap or the lower side of the gap formed by the convex part of the first concave / convex molding part and the lower side of the gap formed by the convex part of the second concave / convex molding part can do . Therefore, the fuel gas or the oxidant gas can be more meandered, the gas supply performance can be improved, and the good drainage performance of the generated water can be secured.
  • the bottom of the concave portion of the first concave / convex molding portion and the concave portion of the second concave / convex molding portion is projected by the plate thickness with respect to the flat plate-shaped flow path forming portion, and the convex portion of the first concave / convex molding portion and the second concave / convex portion
  • the top part of the convex part of the molded part can be projected by the thickness.
  • the fuel gas or the oxidant gas that has flowed through the lower side of the gap formed by the convex portion in the first concave / convex molding portion reaches the concave portion in the second concave / convex molding portion that is molded at a position facing it.
  • fuel gas or oxidant gas collides with the bottom side surface of the recess. That is, it is effective that the fuel gas or the oxidant gas flowing through the lower side of the gap formed by the convex portion in the first concave-convex molded portion passes linearly through the concave portion in the second four convex molded portion facing each other. Can be prohibited.
  • the flow path forming part includes a bottom part of the concave part and the top part of the convex part forming the first concave and convex part, and a top part of the convex part that forms the second concave and convex part and faces the concave part of the first concave and convex part. And it is good to shape
  • the flow path forming part formed into a three-dimensional curved surface connects the top part of the convex part of the second concave-convex molding part formed at a position facing the bottom part of the concave part in the first ridge convex molding part.
  • the bottom of the concave portion of the second concave-convex molded portion formed at a position facing the top of the convex portion of the first concave-convex molded portion can be coupled.
  • the flow of the fuel gas or the oxidant gas from the gap formed by the concave portion in the first concave-convex molded portion to the gap formed by the convex portion in the second concave-convex molded portion, and the convex in the first concave-convex molded portion It is possible to reliably inhibit the flow of fuel gas or oxidant gas from the gap formed by the portion to the gap formed by the recess in the second concavo-convex molded portion.
  • the fuel gas or the gas from the gap formed by the concave part of the first concave / convex molding part to the gap formed by the concave part of the second concave / convex molding part Indicates the flow of oxidant gas and the flow of fuel gas or oxidant gas from the gap formed by the convex part of the first concave / convex molding part to the gap formed by the convex part of the second concave / convex molding part. It can be reliably formed.
  • the fuel gas or the oxidant gas is formed by the flow path forming portion between the concave portion of the first concave-convex molding portion and the concave portion of the second concave-convex molding portion, which differ from each other by a half cycle, or
  • the gap formed by the convex part of the first concave and convex molding part and the convex part of the second concave and convex molding part can meander and circulate. Therefore, the fuel gas or the oxidant gas can be meandered more reliably, the gas supply performance can be improved, and the good drainage performance of the generated water can be secured.
  • FIG. 1 is a schematic view showing a part of a fuel cell stack configured by adopting a fuel cell separator according to the first and second embodiments of the present invention.
  • FIG. 2 is a schematic perspective view showing a separator main body constituting the separator of FIG.
  • FIG. 3 is a schematic diagram for explaining the collector of FIG.
  • FIG. 4 is a schematic diagram for explaining the molding cycle of the concave and convex portions of the first concave and convex portion and the second concave and convex portion in the collector of FIG. 3, and (a) is a diagram of the collector of FIG. (B) shows the molding cycle of the concave and convex portions of the second concave-convex molding portion with respect to the first concave-convex molding portion of (a). .
  • FIG. 5 is a schematic diagram for explaining the flat plate portion in the collector of FIG. 3. (a) shows a cross section in the longitudinal direction of the collector, and (b) shows a cross section in the width direction of the collector. Is.
  • FIG. 6 is a schematic exploded perspective view for explaining the assembled state of the frame and ME A shown in FIG.
  • FIG. 7 is a schematic diagram for explaining three-dimensional meandering of fuel gas or oxidant gas by the collector of FIG.
  • FIG. 8 is a schematic diagram for explaining a collector according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining the three-dimensional curved surface in the collector of FIG.
  • FIG. 10 is a schematic diagram for explaining three-dimensional meandering of fuel gas or oxidant gas by the collector of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a part of a polymer electrolyte fuel cell stack configured by using a fuel cell separator 10 (hereinafter simply referred to as a separator 10) according to a first embodiment of the present invention.
  • FIG. The fuel cell stack is a single unit composed of two separators 10 and a frame 20 and ME A 30 (Membrane-Electrode Assembly) that are stacked between the separators 10. A plurality of cells are stacked.
  • the separator 10 includes a separator body 11 that prevents mixed flow of gas introduced into the fuel cell stack, and an externally supplied fuel gas or oxidant gas to the ME A 30. It consists of a collector 12 and a collector that collect the electricity generated by the reaction while spreading uniformly.
  • the separator body 11 is made of a thin metal plate (for example, a stainless steel plate having a thickness of about 0.1 mm) as a material.
  • a material for forming the separator body 11 for example, a steel plate subjected to anticorrosion treatment such as gold plating can be employed.
  • a non-metallic material having conductivity for example, carbon
  • the separator body 11 is formed in a substantially square flat plate shape, and a gas introduction port 1 1a and a gas introduction port 1 1a are opposed to the peripheral portion thereof. Two pairs of gas outlets 1 1 b are formed. Each pair is formed so as to be substantially orthogonal to each other.
  • the gas inlet 1 1 a is formed as a substantially oblong through hole, and introduces fuel gas or oxidant gas supplied from the outside of the fuel cell stack into the single cell and is laminated. In addition, fuel gas or oxidant gas supplied to another single cell is circulated.
  • the gas outlet port 1 1 b is also formed as an elliptical through-hole, and out of the gas introduced into the single cell, ME A 3 0 discharges unreacted gas to the outside, and is stacked. Unreacted gas from other single cells is circulated.
  • the collector 12 is made of a flat material (for example, a stainless steel plate having a thickness of about 0.1 mm). Then, as schematically shown in FIG. 3, the collector 12 is formed by continuously cutting a part of the material so that a concave portion and a convex portion having a substantially rectangular cross section are continuously formed in the plate width direction of the material.
  • the plate width direction of the material by the molding cycle that differs by a half cycle with respect to the molding cycle of the first concave and convex molding portion 12a and the concave and convex molding portions of the first concave and convex molding portion 12a.
  • a second concavo-convex molded portion 12 b in which a concave portion and a convex portion having a substantially rectangular cross section are continuously formed. More specifically, for example, as shown in FIG. 4 (a), the concave and convex portions in the first concave-convex molded portion 12 a become concave, convex, concave, convex from the left side of the figure. In the case of molding at a molding cycle, the concave and convex portions in the second concave and convex molded portion 1 2 b become convex portions, concave portions, convex portions, concave portions from the left side of the drawing as shown in FIG. 4 (b). Molded with a molding cycle.
  • the collector 12 connects the first concavo-convex formed portion 12 a and the second concavo-convex formed portion 1 2 b formed with a predetermined interval in the longitudinal direction of the material to each other, and the first concavo-convex portion
  • the flat plate portion 1 2 c has a flat plate portion 1 2 c as a flow path forming portion that forms a gas flow path from the molded portion 1 2 a to the second concave convex molded portion 1 2 b.
  • the distance between the virtual plane including the bottom of the concave portion and the virtual plane including the top of the convex portion in the first concave-convex molded portion 12a and the second concave-convex molded portion 12b (i.e., molding) It is molded to include a surface (neutral surface) located approximately in the middle of the height dimension.
  • the tops of the convex portions in the first concavo-convex molded portion 1 2 a and the second concavo-convex molded portion 1 2 b are, for example, as thick as the plate thickness It is only protruding.
  • the bottoms of the recesses in the first concavo-convex molded part 12 a and the second concavo-convex molded part 12 b protrude from the lower surface of the flat plate part 12 c by the thickness of the plate, for example.
  • the material characteristics of the material are the same as the molding height of the first uneven part 1 2 a and the second uneven part 1 2 b.
  • it may be formed to a molding height of about 3 times or less with respect to the thickness of the material.
  • the collector 12 is composed of a first concavo-convex molded part 1 2 a, a flat plate part 1 2 c and The second concavo-convex formed portion 1 2 b is formed by sequentially forming in the longitudinal direction of the material in order.
  • the collector 12 configured in this way is integrally fixed to the separator body 11 to form the separator 10.
  • the fixing of the collector 12 will be briefly described below.
  • the collector 12 is disposed at a substantially central portion of the separator body 11. Then, the contact portion between the separator body 11 and the collector 12 is metallically joined and fixed integrally by, for example, a brazing method.
  • a paste-like brazing material such as copper or nickel is thinly applied to one side of the collector 12.
  • the collector 12 coated with the brazing material is temporarily fixed at a predetermined position of the separator body 11.
  • the collector 12 includes the arrangement direction of the pair of gas inlets 1 1 a and gas outlets 1 1 b formed in the separator main body 1 1, and the first concavo-convex molded portion 1 2 a and the first 2Temporarily fixed so that it is aligned with the arrangement direction of the concavo-convex molded part 1 2 b.
  • the temporarily fixed separator body 11 and the collector 12 are heated at a predetermined temperature for a predetermined time, and then cooled.
  • the separator main body 11 and the collector 12 are joined metallically and fixed integrally.
  • the joining method for metallically joining the separator body 11 and the collector 12 is not limited to the brazing method described above. That is, other methods that can metallically join the separator body 11 and the collector 12, such as a welding method or a diffusion bonding method, can be employed.
  • the frame 20 is composed of a pair of two resin plate bodies 2 1 and 2 2 having the same structure, and includes two separators 10 (more specifically, the separator body 1 1) Each side is fixed to 1).
  • the resin plate main bodies 2 1 and 2 2 have substantially the same external dimensions as the separator main body 11 1 and a thickness slightly smaller than the molding height of the collector 12. Then, the resin plate main body 2 2 is rotated and arranged approximately 90 degrees in the same plane direction with respect to the resin plate main body 21 and laminated.
  • Various resin materials can be used for the resin plate main bodies 2 1 and 2 2, and it is preferable to use glass epoxy resin.
  • the resin plate main bodies 2 1 and 2 2 have a peripheral portion.
  • the gas inlet port 1 1 a and gas outlet port 1 1 b formed in the separator body 11 in a state where a single cell is formed correspond to the through holes in the separator body 11.
  • the resin plate main bodies 21 and 22 are formed with accommodating holes 21 c 22 c for accommodating the collectors 12 joined to the separator main body 11 at substantially central portions thereof.
  • the accommodating holes 21 c and 22 c are formed by a pair of gas inlet 11 a and gas outlet 11 b formed in the separator body 11 to be fixed, and the other resin board body 21 or resin board body 22 stacked.
  • the through-holes 21a and 21b or the through-holes 22a and 22b formed in the inner wall are accommodated.
  • the receiving holes 21 c and 22 c By forming the receiving holes 21 c and 22 c, the lower surface (or upper surface) of the separator body 11 to be fixed, the inner peripheral surface of the receiving hole 21 c (or the receiving hole 22 c), and the ME A
  • a space (hereinafter referred to as a gas conduction space) is formed by the upper surface (or lower surface) of 30. Then, for example, fuel gas can be introduced into the gas conduction space from one gas introduction port 11a, and oxidant gas can be introduced from the other gas introduction port 11a and through-hole 21a force. . In addition, unreacted gas that has passed through the gas conduction space can be led out to the outside through one gas outlet 11 b and through the other gas outlet 11 b and through hole 21 b. it can.
  • ME A 30 as an electrode structure is formed by laminating an electrolyte membrane EF and a predetermined catalyst on the electrolyte membrane EF in layers as shown in FIGS. 1 and 6, and fuel gas is introduced.
  • the main components are an anode electrode layer AE arranged in the gas conduction space and a force sword electrode layer CE arranged in the gas conduction space into which the oxidant gas is introduced. Note that the actions (electrode reactions) of these electrolytes moon EF, anode electrode layer AE, and force sword electrode layer CE are well known and not directly related to the present invention. Is omitted.
  • the electrolyte membrane EF may be an ion exchange membrane that selectively permeates cations (more specifically, hydrogen ions (H +)) (for example, Nafion (registered trademark) manufactured by DuPont), or anion (from Specifically, an ion exchange membrane (for example, Tokama Neoceptor (registered trademark)) that selectively transmits hydroxide ions (OH) is formed.
  • the electrolyte membrane EF is larger than the substantially square opening formed when the resin board main bodies 21 and 22 of the frame 20 are laminated, and the resin film main bodies 21 and 22 are laminated.
  • the through holes 21 a and 21 b and the through holes 22 a and 22 b are formed in a size that does not block the through holes.
  • the electrolyte By forming the membrane EF, it is possible to prevent the gas introduced into the gas conduction space from leaking into the gas conduction space formed on the other side (so-called cross leak).
  • the anode electrode layer AE and the cathode electrode layer CE as electrode layers are mainly composed of carbon (supported carbon) supporting a noble metal catalyst (for example, platinum (Pt)) or a hydrogen storage alloy.
  • the electroangular membrane is formed in layers on the surface of EF.
  • the anode electrode layer AE and the cathode electrode layer CE formed in layers are slightly smaller than the substantially square opening formed when the resin plate bodies 21 and 2 of the frame 20 are laminated, and the outer shape. It is a dimension.
  • the anode electrode layer AE and the force sword electrode layer CE are configured such that each surface side is covered with carbon cloth CC formed of conductive fibers.
  • This carbon cross CC uniformly supplies the fuel gas or oxidant gas supplied into the gas conduction space to each electrode layer, and the electricity generated by the electrode reaction is applied to the collector 12. It will be supplied efficiently. That is, since the carbon cloth CC is in a fibrous form, the supplied gas is more uniformly diffused by conducting between the fibers. In addition, since the carbon cloth CC has electrical conductivity, the generated electricity can flow efficiently to the collector 12. If necessary, the carbon cross CC can be omitted.
  • the single cell is formed by sequentially laminating the separator body 11, the collector 12, the frame 20, and the ME A 30. More specifically, as shown in FIG. 6, ME A 30 is placed between two upper and lower frames 20 that are rotated approximately 90 degrees in the same plane, and an adhesive or the like is used, for example. By coating, the ME A 30 electrolyte membrane EF is sandwiched between the frames 20 and fixed together.
  • the collector 12 is housed in the housing holes 21 c and 22 c of each frame 20 with respect to the integrally fixed frame 20 and ME A 30. At this time, the collector 12 is disposed in the collector 12 in the direction of arrangement of the pair of through holes 21 a and 21 b (through holes 22 a and 22 b) formed in the frame 20 to be accommodated, that is, the conduction direction of the introduced gas.
  • the first concave and convex portions 12 a and the second concave and convex portions 12 b are accommodated in the accommodating holes 21 c and 22 c of the frame 20 so as to coincide with the arrangement direction of the second concave and convex portions 12 b.
  • the separator body 11 is fixed to the frame 20 integrally.
  • the plate thickness of the resin plate main bodies 2 1 and 2 2 is slightly smaller than the molding height of the collector 12 2
  • the collector 12 is slightly pressed to the ME A 3 0 side by the separator main body 1 1. It is assembled in the state.
  • the contact state between the collector 12 and ME A 30 (more specifically, carbon cloth CC) can be kept good.
  • a plurality of single senores formed in this way are stacked according to the required output to constitute a fuel cell stack.
  • the gas inlets 1 1 a of the separator main body 1 1 and the gas outlets 1 1 b of the separator body 11 are flared between the stacked single cells.
  • all the holes 20 1 a and 2 1 b and the through holes 2 2 a and 2 2 b are connected to each other.
  • the gas passages formed by the gas inlet 11a of each unit cell and the through holes 21a, 22a of the frame 20 is called a gas exhaust liner two-hold.
  • the supplied fuel gas or oxidant gas is introduced into the gas conduction space.
  • the fuel gas or oxidant gas introduced in this way is circulated by being uniformly diffused in the gas conduction space by the collector 12.
  • the gas introduced from the gas supply inner hold into the gas conduction space flows toward the gas discharge inner hold while contacting the collector 12 arranged in the gas conduction space.
  • the collector 12 has the first concavo-convex molded portion 1 2 a, the flat plate portion 1 2 c and the second concavo-convex molded portion 1 2 b with respect to the arrangement direction of the gas supply inner manifold and the gas discharge inner manifold hold. Is going to be self-contained continuously.
  • the fuel gas or oxidant gas introduced into the gas conduction space from the gas supply inner hornored is, as shown schematically in FIG.
  • the flow is formed in a three-dimensional manner by meandering the flow path formed by the flat plate portion 1 2 c toward the second concavo-convex molded portion 1 2 b. This will be specifically described below.
  • this gap is referred to as ME A side passage
  • the lower surface (or upper surface) of the separator body 11 the first concavo-convex molded portion 1 2 a, and the second concavo-convex component. It circulates in a gap formed by the concave portion (or convex portion) in the shape portion 1 2 b (hereinafter, this gap is referred to as a separator main body side passage).
  • this gap is referred to as a separator main body side passage.
  • the convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b have their respective top portions protruding from the upper surface of the flat plate portion 12 c by the thickness. For this reason, the fuel gas that has flowed in the vicinity of the top of the convex portion in the first concave-convex shaped portion 12a collides with the side surface of the flat plate portion 12c, and the second concave-convex shaped portion 12b is linearly distributed in the b direction. Is prohibited.
  • the fuel gas that has flowed into the ME A-side passage formed by the first concavo-convex molded portion 12 a is ME A 30 side, that is, the convex portion in the convex portion of the first concavo-convex molded portion 12 a.
  • the fuel gas circulates in a space formed between the ME A 30 and the flat plate portion 12 c (hereinafter, this space is referred to as a gap space).
  • the molding cycle of the concave and convex portions in the first concave and convex molded portion 12 a and the molding cycle of the concave and convex portions in the second concave and convex molded portion 12 b differ from each other by a half cycle.
  • their respective bottom portions protrude from the lower surface of the flat plate portion 12 c by the plate thickness.
  • the fuel gas that has flowed into the gap space across the convex portion of the first concave-convex molded portion 12 a collides with the side surface of the bottom of the concave portion in the second concave-convex molded portion 12 b, and the adjacent first fourth Convex forming part 1 2 Distribution in the a direction is prohibited. Therefore, the fuel gas that has passed through the MEA-side passage formed by the convex portions of the first concave / convex molded portion 12 a is formed by the convex portions of the second concave / convex molded portion 12 b through the gap space. It circulates while meandering towards the ME A side passage.
  • the convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b protrude from the upper surface of the flat plate portion 12 c by the thickness of the plate. For this reason, the fuel gas that has passed through the separator body side passage formed by the concave portion of the first concave portion molding portion 12a collides with the side surface of the top portion of the convex portion in the second concave / convex molding portion 12b, Second concavo-convex molded part 1 2 Distribution in the b direction is prohibited.
  • the fuel gas that has flowed into the space formed between the separator body 11 and the flat plate portion 1 2 c passes through the second concavo-convex molded portion 1 2 b formed on both sides of the collided convex portion. It flows toward.
  • the collector 12 as shown in FIG. 7, there is a portion where the first uneven formed portion 12 a is formed adjacent to the second uneven formed portion 12 b.
  • the convex part of the first concave / convex molding part 12a is formed adjacent to the concave part of the second concave / convex molding part 12b, and the convex part of the second concave / convex molding part 12b is formed. Adjacent to this, a concave portion of the first concave-convex forming portion 12 2 a is formed.
  • the concave portion and the convex portion (the convex portion and the concave portion ) Forms a relatively large opening. For this reason, when the fuel gas flowing through the separator body side passage passes through the second concavo-convex molded portion 12 b, it passes through the formed opening in the direction of the ME side passage (below the collector 12 shown in FIG. 7). Direction) and merge with the fuel gas flowing through the ME A side passage.
  • the separator body-side passage direction (upper side of the collector 12 shown in FIG. 7) passes through the formed opening. Direction) and merge with the fuel gas flowing through the separator body side passage.
  • the fuel gas introduced into the gas conduction space passes through the collector 12 and circulates in a three-dimensional meandering in the vertical and horizontal directions.
  • the fuel gas can be diffused well in the gas conduction space, and is efficiently supplied to the anode electrode layer AE.
  • the case where the collector gas 12 and the separator body 11 are laminated on the upper surface side of the ME A 30 and the fuel gas is conducted is described as an example.
  • the case where the oxidant gas is conducted is explained. Even so, it is exactly the same.
  • the collector 12 and the separator body 11 are stacked on the lower surface side of the ME A 30, the first unevenness of the collector 12 in the above example is formed.
  • the fuel gas or the oxidant gas flows in exactly the same way, except that the shape portion 12a and the second concavo-convex molded portion 12b are different in the concave or convex portions.
  • the anode electrode layer AE or the force sword electrode layer CE is formed by an electrode reaction using a fuel gas and an oxidant gas! Water is produced at More specifically, for example, ME A 30 electrolyte membrane EF is formed from an ion exchange membrane that selectively permeates cation. 3 ⁇ 4 ⁇ is a force sword electrode according to the following chemical reaction formulas 1 and 2. Water is produced in layer CE.
  • Node electrode layer H 2 ⁇ 2H + + 2e— ⁇ ⁇ 'Chemical reaction formula 1
  • the electrolyte membrane EF of MEA 30 in order for the electrolyte membrane EF of MEA 30 to be formed from an ion exchange membrane that selectively permeates anion, water is generated in the anode electrode layer A E according to the following chemical reaction formulas 3 and 4.
  • Anode electrode layer H 2 + 20H— ⁇ 2H 2 0 + 2e—
  • the generation water covers the surface of the anode electrode layer AE or the force sword electrode layer CE, and passes through the carbon cross CC to reach the collector 12 1 ”.
  • the generated water that has reached the concave portion and the convex portion in the first concave-convex molded portion 12 a or the second concave-convex molded portion 12 b formed in the collector 12 due to the surface tension forms a water film. It becomes like this.
  • the collector 12 can conduct the gas introduced into the gas conduction space three-dimensionally as described above. That is, the collector 12 has a first concavo-convex molded portion 12a, a second concavo-convex molded portion 12b and a flat plate portion 12c continuously formed, and the first concavo-convex molded portion 12a and The second concavo-convex molded portion 12 b is accommodated in the frame 20 so that the arrangement direction thereof is substantially parallel to the gas conduction direction.
  • the fuel gas or the oxidant gas introduced into the gas conduction space inevitably has the concave or convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b formed on the collector 12. Pass across the section.
  • the electrode reaction in ME A 30 progresses, and the first concavo-convex molded part 1 2 a and the second Even in a situation where a flooding state occurs to such an extent that the concave or convex portion in the concavo-convex molded portion 12 b is blocked by the water film of the generated water, it is introduced into the gas conduction space from the gas supply inner hold.
  • the formation of a water film is prevented by the flow of gas discharged from the gas discharge inner manifold.
  • the fuel gas or oxidant gas is introduced at a predetermined pressure, the generated water that has reached the collector 12 is discharged together with some unreacted gas into a single cell, that is, outside the fuel cell stack. .
  • the generated water that has reached the collector 12 is drained to the outside, so that, for example, the electrolyte membrane EF is retained in the generated water existing in the vicinity of the anode electrode layer AE or the force sword electrode layer CE.
  • Excess water other than water reaches continuously near the collector 12 via the carbon cloth CC, and this generated water (surplus water) force S is discharged.
  • Such water film formation prevention and generated water drainage are continuously performed when the fuel cell is in operation, that is, as long as fuel gas and oxidizer gas are supplied.
  • the flat plate portion 1 2 c formed on the collector 12 2 forms the flow path of the fuel gas or the oxidant gas.
  • the flow of gas or oxidant gas can be hindered. That is, the fuel gas or the oxidant gas is projected from the gap formed by the concave portion (convex portion) of the first concave-convex molded portion 12 a by the flat plate portion 12 c.
  • the fuel gas or the oxidant gas separated by the separator main body 1 1 is a gap formed by the concave portion or the convex portion of the first rib convex molding portion 12 a and the concave portion of the second concave and convex molding portion 12 b. Passes across the gap formed by the convex portion and is supplied to the anode electrode layer AE or the force sword electrode layer CE. For this reason, for example, when the generated water generated by the action of surface tension reaches the vicinity of the collector 12, the generated water can be discharged together with unreacted gas on the flow of fuel gas or oxidant gas. it can. As a result, as long as the fuel gas and the oxidizing gas are supplied, in other words, as long as the solid polymer battery is operating, the generated water can be drained continuously. Therefore, it is possible to ensure good drainage performance of the generated water.
  • first concavo-convex molded part 1 2 a, the flat plate part 1 2 c and the second concavo-convex molded part 1 b are successively formed in this order so that the fuel gas or the oxidant gas can be applied to the first concavo-convex molded part 1 2 a
  • the water generated by the electrode reaction in ME A 30 can be more easily brought near collector 12. Since it reaches a low level, it is possible to ensure better drainage performance of the generated water.
  • the flat plate portion 12 c is used as the flow path forming portion, and the first concavo-convex forming portion 1 2 a of the fuel gas or the oxidant gas is used. The flow path to b was formed.
  • the first uneven formed portion 1 2 a and the second uneven formed portion 1 2 are selected for the flat plate-shaped material. Therefore, the forming heights of the first uneven portion 12 a and the second uneven portion 12 b are limited. That is, in the first embodiment, the shearing process is locally applied to the material. Further, the degree of processing increases because of the stretching process. For this reason, in order to perform good molding, the material characteristics of the raw materials for these processes (for example, the flow characteristics of the material) must be taken into account, and the molding height must be limited.
  • a three-dimensional curved surface as a three-dimensionally formed flow path forming portion Part 1 2 d differs in that it is adopted.
  • the three-dimensional curved surface portion 1 2 d includes a convex portion in the first uneven portion 12 a and a bottom portion of the concave portion in the second uneven portion 1 2 b.
  • such a three-dimensional curved surface portion 12 d can be formed simultaneously with the formation of the concave portion and the convex portion in the first concave-convex molding portion 12 a and the concave portion and the convex portion in the second concave-convex molding portion 12 b. it can. That is, in the second embodiment, the processing area for the material can be increased. For this reason, for example, the fluidity of the raw material at the time of processing can be sufficiently secured, and good molding can be performed. Therefore, it is not necessary to strictly set restrictions associated with the molding of the first concavo-convex molded part 1 2 a, the second concavo-convex molded part 1 2 b, and the three-dimensional curved surface part 1 2 d.
  • the collector 12 having such a three-dimensional curved surface portion 12 d is also integrally joined to the separator body 11 and fixed integrally as in the first embodiment.
  • the frame 20 and the ME A 30 are accommodated in the accommodation holes 21c and 22c to form a single cell.
  • the collector 12 in the second embodiment also has the first concavo-convex molded portion 1 2 a and the second concavo-convex molded portion 1 2 b with respect to the arrangement direction of the gas supply inner manifold and the gas discharge inner manifold hold.
  • the receiving holes 2 1 c and 2 2 c of the frame 20 so that the arrangement directions of the two are substantially parallel to each other. .
  • the fuel gas or the oxidant gas introduced into the gas conduction space from the gas supply inner hold is the first of the collector 12 as schematically shown in FIG.
  • the uneven formed portion 1 2 a flows in a three-dimensional manner by meandering the flow path formed by the three-dimensional curved surface portion 1 2 d toward the second uneven formed portion 1 2 b from the force. This will be explained in detail below. .
  • the collector 12 and the separator body 11 are laminated on the upper surface side of the ME A 30 and the fuel gas flows. explain.
  • the three-dimensional curved surface portion 1 2 d has a curved surface connecting the top of the convex portion of the first concave-convex molded portion 1 2 a and the bottom portion of the concave portion of the second concave-convex molded portion 1 2 b and the first concave-convex molded portion 1 2 It is formed from a curved surface connecting the bottom of the concave portion of a and the top of the convex portion of the second four-convex molded portion 1 2 b. For this reason, the fuel gas that has flowed into the convex portion of the first ridge convex molding portion 12 a flows in the ME A 30 direction along the lower surface of the three-dimensional curved surface portion 12 d in FIG.
  • the fuel gas that has flowed into the convex portion of the first concave-convex shaped portion 12 a is connected to the bottom of the concave portion of the three-dimensional curved surface portion 1 2 d force S second concave-convex molded portion 12 b, so that the second Unevenness forming part 1 2 Distribution in the b direction is prohibited.
  • the fuel gas that has reached ME A 30 flows toward the convex portions formed on both sides of the concave portion of the second concave-convex molded portion 12 b.
  • the fuel gas that has passed through the MEA-side passage formed by the convex portions of the first concave-convex molded portion 12 a is transferred to the MEA-side passage formed by the convex portions of the second concave-convex molded portion 12 b. It circulates while meandering.
  • the fuel gas flows into the separator main body side passage formed by the concave portion of the first concavo-convex molded portion 12 2a, as shown by the actual spring in FIG. It flows toward the separator body 11 along the upper surface of the three-dimensional curved surface portion 1 2 d shown in 0. That is, the fuel gas that has flowed into the concave portion of the first concave-convex molded portion 12 a is connected to the top of the convex portion of the second concave-convex molded portion 1 2 b because the three-dimensional curved surface portion 1 2 d is connected to the second concave-convex portion. Molding part 1 2 Distribution in the b direction is prohibited. Then, the fuel gas that has reached the separator body 11 flows toward the recesses formed on both sides of the top of the second concavo-convex molded part 1 2.
  • a portion where the first concavo-convex molded portion 1 2 a is formed as the second concavo-convex molded portion 12 b is formed.
  • the convex portion of the first concave / convex molded portion 12a is formed adjacent to the concave portion of the second concave / convex molded portion 12b, and the first concave / convex molded portion adjacent to the convex portion of the second concave / convex molded portion 12b.
  • Recessed part 1 2 a is formed .
  • the concave portion and the convex portion in the portion where the second concavo-convex molded portion 1 2 b and the first concavo-convex molded portion 1 2 a are adjacent to each other, the concave portion and the convex portion (the convex portion and A relatively large opening is formed by the recess).
  • the ME A side passage is formed through the formed opening. It flows three-dimensionally in the direction (downward direction of collector 12 shown in FIG. 10) and merges with the fuel gas flowing through the ME A side passage.
  • the separator body-side passage direction (upper side of the collector 12 shown in FIG. 10) passes through the formed opening. Direction) and merge with the fuel gas flowing through the separator body side passage.
  • the fuel gas introduced into the gas conduction space passes through the collector 12 and circulates in a three-dimensional meandering in the vertical and horizontal directions.
  • the fuel gas can diffuse well in the gas conduction space, and is efficiently supplied to the anode electrode layer AE.
  • the collector 12 in the above example is used.
  • the other parts are exactly the same except that the first concavo-convex molded part 1 2 a and the second concavo-convex molded part 12 b are different in the concave or convex parts.
  • the fuel gas or oxidant gas introduced into the gas conduction space inevitably has the first uneven formed portion 12 a formed in the collector 12 and the first 2 Passes so as to cross the concave or convex portion of the concave and convex molded portion 1 2 b. Therefore, as in the first embodiment, even when the electrode reaction in ME A 30 proceeds and a flooding state occurs, a water film is formed by the flow of fuel gas or oxidant gas. Is prevented. Furthermore, since the fuel gas or the oxidant gas is introduced at a predetermined pressure, the generated water that has reached the collector 12 is discharged together with some unreacted gas to the outside of the single cell, that is, the fuel cell stack.
  • the generated water does not collect in the collector 12, and excessive generation occurs in the anode electrode layer AE or the force sword electrode layer CE. Since water does not accumulate, the occurrence of flooding can be prevented well. Also, during operation of the fuel cell, the generated hydropower S is continuously drained out of the fuel cell stack. Therefore, for example, the generated water can be prevented from freezing even in a low temperature environment, and good startability of the fuel cell can be ensured.
  • the second embodiment since the second embodiment does not perform local molding, it is not necessary to provide molding restrictions. Therefore, since the collector 12 can be molded very easily, the yield is improved, and as a result, the manufacturing cost can be reduced. In addition, since there is no need to provide molding restrictions, the design flexibility of the collector 12 is improved. As a result, for example, a design that reduces the pressure loss of the fuel gas or oxidant gas that conducts in the gas conduction space can also reduce the thickness of the collector 12 and reduce the size of the fuel cell itself. .
  • the three-dimensional curved surface portion 12 d connects the top of the convex portion of the second concave-convex molded portion 12 formed at a position opposite to the bottom of the concave portion in the first concave-convex molded portion 12 a, It is possible to connect the bottom of the concave portion of the second concave-convex molded portion 1 2 formed at a position facing the top of the convex portion in the first concave-convex molded portion 1 2 a.
  • the bottom of the concave portion (the convex portion) in the first concave-convex shaped portion 12 a and the top of the convex portion (bottom of the concave portion) in the second concave-convex shaped portion 1 2 b are formed by the three-dimensional curved surface portion 1 2 d
  • the contact mode with ME A 30 carbon cloth CC
  • the gas supply performance to ME A 30, more specifically the anode electrode layer A E or the force sword electrode layer CE can be further improved, and the power generation performance of the fuel cell itself can be improved.
  • Other effects are the same as in the first embodiment.
  • the present invention is not limited to the first embodiment and the second embodiment, and various modifications can be made.
  • the shape of the four parts of the first concavo-convex molded part 1 2 a and the second concavo-convex molded part 12 b in the collector 12 and the shape of the convex part is substantially rectangular in cross section in the first and second embodiments. It is not limited to shape. That is, any shape may be used as long as the fuel gas or the oxidant gas can pass therethrough.
  • the separator main body 11 and the collector 12 are joined together in a metallic manner so as to be integrally fixed. Needless to say, this can be implemented without metallic joining of the separator body 11 and the collector 12.

Abstract

A separator (10) has a separator body (11) and a collector (12). The body (11) prevents fuel gas and oxidant gas from flowing in a mixed state. The collector (12) has first projection/recess forming sections (12a), in each of which projection/recess sections having a substantially rectangular cross-section are continuously formed, and also has a second projection/recess forming section (12b), in each of which recess sections having a substantially rectangular cross-section are formed with a cycle shifted by half a cycle from the cycle of the projection/recess sections of the first projection/recess forming sections (12a). The collector (12) has flat plate sections (12c) for forming flow paths causing introduced gas to meander from the forming sections (12a) toward the forming sections (12b). The construction enables the introduced gas to be diffused in a good manner and generated water to be discharged in a good manner.

Description

明 細 書  Specification
燃料電池用セパレータ 技 術 分 野  Fuel Cell Separator Technology Field
本発明は、 燃料電池、 特に、 固体高分子型燃料電池に採用される燃料電池用セパレータ に関する。 背 景 技 .術  The present invention relates to a fuel cell separator, and more particularly to a fuel cell separator employed in a polymer electrolyte fuel cell. Background art.
固体高分子型燃料電池は、 一般的に、 電解質膜の一面側に形成されたアノード電極層と 、 他面側に形成された力ソード電極層とからなる電極構造体を備えている。 そして、 固体 高分子型燃料電池においては、 アノード電極層と力ソード電極層に対して、 それぞれ、 燃 料ガス (例えば、 水素ガスなど) と酸化剤ガス (例えば、 空気など) が外部から供給され ることにより、 電極構造体にて電極反応が生じて発電される。 このため、 固体高分子型燃 料電池の発電効率を向上させるためには、 電極構造体に対して、 電極反応に必要な燃料ガ スおよび酸化剤ガスを効率よく供給することが重要である。  In general, a polymer electrolyte fuel cell includes an electrode structure including an anode electrode layer formed on one side of an electrolyte membrane and a force sword electrode layer formed on the other side. In the polymer electrolyte fuel cell, a fuel gas (for example, hydrogen gas) and an oxidant gas (for example, air) are supplied from the outside to the anode electrode layer and the force sword electrode layer, respectively. As a result, an electrode reaction occurs in the electrode structure to generate power. For this reason, in order to improve the power generation efficiency of the polymer electrolyte fuel cell, it is important to efficiently supply the fuel gas and oxidant gas necessary for the electrode reaction to the electrode structure.
ここで、 固体高分子型燃料電池においては、 アノード電極層と力ソード電極層に対して 、 外部から供給される燃料ガスと酸化剤ガスとを互いに分離して供給するためのセパレー タが設けられる。 そして、 従来から、 セパレータによる燃料ガスおよび酸化剤ガスの供給 効率を向上させることにより、 固体高分子型燃料電池の発電効率を向上させることが行わ れている。  Here, in the polymer electrolyte fuel cell, a separator for supplying the fuel gas and the oxidant gas supplied from the outside separately to the anode electrode layer and the force sword electrode layer is provided. . Conventionally, the power generation efficiency of a polymer electrolyte fuel cell has been improved by improving the supply efficiency of fuel gas and oxidant gas by a separator.
例えば、 特開 2 0 0 5— 2 0 9 4 7 0号公報には、 薄平板状の基板と網目状の導電体と から構成されるセパレータを揉用した燃料電池が示されている。 この従来の燃料電池にお ける網目状の導電体は、 例えば、 菱形のスリットが形成されたエキスパンドメタルやメタ ルラスなどから形成されている。 そして、 この網目状の導電体には、 外部から導入された 燃料ガスまたは空気 (酸化剤ガス) の流通方向に垂直な断面形状が略矩形状に成形された 複数のガス流路が形成されている。 これにより、 外部から導入された燃料ガスまたは酸化 剤ガスは、 田練形状に成形されたガス流路内を流通し、 菱形のスリットを介して、 ァノー ド電極層または力ソード電極層に供給される。 このように、 燃料ガスまたは酸化剤ガスを 供給することにより、 ガス供,袷効率が向上するようになっている。 また、 例えば、 特開 2002— 184422号公報には、 セパレータのガス供給効率を 改善できる燃料電池のセパレータが示されている。 この燃料電池セパレ一タは、 平板状の 第 1部材 (カーボン) と、 この第 1部材に積層されてアノード電極層および力ソード電極 層に弾発的に接触するとともにガス流路を形成するための複数の突片が形成された第 2部 材 (金属板) とから構成されている。 そして、 この従来の燃料電池のセパレータにおいて は、 第 2部材の複数の突片によって形成されたガス流路内を通過させることによって、 通 過する燃料ガスおよび酸化剤ガスに舌し流を生じさせるようになっている。 これにより、 ガ ス流路内に供給された燃料ガスおよび酸化剤ガスはあらゆる方向に立体的に通過すること によって良好に拡散することができ、 アノード電極層および力ソード電極層に対するガス 供給効率が向上するようになっている。 発 明 の 開 示 For example, Japanese Laid-Open Patent Publication No. 2 005-2 0 9 4 70 discloses a fuel cell that uses a separator composed of a thin flat plate-like substrate and a mesh-like conductor. The mesh-like conductor in this conventional fuel cell is made of, for example, expanded metal or metallases having diamond-shaped slits. The mesh-like conductor is formed with a plurality of gas flow paths in which a cross-sectional shape perpendicular to the flow direction of the fuel gas or air (oxidant gas) introduced from the outside is formed into a substantially rectangular shape. Yes. As a result, the fuel gas or the oxidant gas introduced from the outside flows through the gas flow passage formed in the shape of a paddle, and is supplied to the anode electrode layer or the force sword electrode layer through the diamond-shaped slit. The Thus, by supplying the fuel gas or the oxidant gas, the gas supply and soot efficiency is improved. Also, for example, Japanese Patent Laid-Open No. 2002-184422 discloses a fuel cell separator that can improve the gas supply efficiency of the separator. The fuel cell separator has a flat plate-shaped first member (carbon), and is laminated on the first member to elastically contact the anode electrode layer and the force sword electrode layer and to form a gas flow path. And a second member (metal plate) on which a plurality of protrusions are formed. In this conventional fuel cell separator, the fuel gas and the oxidant gas passing therethrough are caused to flow by passing through the gas flow path formed by the plurality of protrusions of the second member. It is like that. As a result, the fuel gas and the oxidant gas supplied into the gas flow path can be diffused well by three-dimensionally passing in all directions, and the gas supply efficiency to the anode electrode layer and the force sword electrode layer is improved. It has come to improve. Disclosure of invention
ところで、 上記特開 2005— 209470号公報に示された網目状の導電体および上 記特開 2002— 184422号公報に示された第 2部材においては、 断面略矩形状に成 形されるガス流路ゃ突片によって形成されるガス流路が、 例えば、 燃料ガスおよび酸化剤 ガスを内部に導入する導入口と導入したガスを外部に導出する導出口とを結ぶ方向に対し て略平行となる^がある。 このため、 形成されたガス流路によって、 導入口と導出口と が直線的に連通する状態となり得る。 これにより、 導入された燃料ガスおよび酸化剤ガス のうちの一部は導電体に形成された網目ゃ突片によって拡散されてアノード電極層おょぴ カソード電極層により消費されるものの、 他部は拡散されることなく、 言レ、換えれば、 消 費されることなく外部に排出される可能性がある。 このように、 消費されずに排出される 燃料ガスおよび酸化剤ガス、 すなわち、 未反応ガスが増加する状況においては、 燃料電池 における発電効率の向上は見込めない。 ,  By the way, in the mesh-like conductor shown in the above-mentioned JP-A-2005-209470 and the second member shown in the above-mentioned JP-A-2002-184422, the gas flow having a substantially rectangular cross section is formed. For example, the gas flow path formed by the projecting piece is substantially parallel to the direction connecting the introduction port for introducing the fuel gas and the oxidant gas into the inside and the outlet port for introducing the introduced gas to the outside. There is ^. For this reason, the inlet and outlet can communicate linearly with the formed gas flow path. As a result, part of the introduced fuel gas and oxidant gas is diffused by the mesh protrusions formed on the conductor and consumed by the anode electrode layer and the cathode electrode layer, but the other part is In other words, there is a possibility of being discharged outside without being consumed without being spread. In this way, in the situation where fuel gas and oxidant gas discharged without being consumed, that is, unreacted gas, increase in power generation efficiency in the fuel cell cannot be expected. ,
また、 固体高分子型燃料電池においては、 電極構造体にて燃料ガスおよび酸化剤ガスを 用いた電極反応が進行すると、 電解質膜のイオン交換特性に応じてアノード電極層または 力ソード電極層で水が生成する。 そして、 この生成した水 (生成水) は、 例えば、 ァノー ド電極層または力ソード電極層の表面を覆ったり、 上記特開 2005— 209470号公 報に示された導電体の網目や上記特開 2002-184422号公報に示された第 2部材 の突片に付着したりすることにより、 燃料ガスまたは酸化剤ガスの良好な供給が損なわれ る可能性がある。 したがって、 電極反応が進行するほど、 燃料電池における発電効率が低 下する可能性がある。 また、 固体高分子型燃料電池が、 例えば、 低温雰囲気となる環境下 に設置された場合には、 内部に残存した生成水が氷結することによって燃料ガスまたは酸 化剤ガスが十分に供給されず、 その結果、 燃料電池の低温始動性が悪化する可能性もある 。 このため、 電極反応による生成水は効率よく外部に排出されることが必要である。 本発明は、 上記した課題を解決するためになされたものであり、 その目的は、 燃料ガス および酸化剤ガスの良好な供給性能と電極反応によつて発生した生成水の良好な排水性能 とを両立した燃料電池用セパレ一タを提供することにある。 In a polymer electrolyte fuel cell, when an electrode reaction using a fuel gas and an oxidant gas proceeds in the electrode structure, water is generated in the anode electrode layer or the force sword electrode layer according to the ion exchange characteristics of the electrolyte membrane. Produces. The generated water (produced water) covers, for example, the surface of the anode electrode layer or the force sword electrode layer, the mesh of conductors disclosed in the above-mentioned JP-A-2005-209470, and the above-mentioned JP-A Good supply of fuel gas or oxidant gas is impaired by adhering to the projecting piece of the second member disclosed in the 2002-184422 publication. There is a possibility. Therefore, the power generation efficiency in the fuel cell may decrease as the electrode reaction progresses. In addition, when the polymer electrolyte fuel cell is installed in an environment having a low temperature atmosphere, for example, the generated water remaining inside freezes, so that the fuel gas or the oxidizing agent gas is not sufficiently supplied. As a result, the low temperature startability of the fuel cell may deteriorate. For this reason, the water produced by the electrode reaction must be efficiently discharged to the outside. The present invention has been made in order to solve the above-described problems, and its purpose is to provide a good supply performance of fuel gas and oxidant gas and a good drainage performance of generated water generated by electrode reaction. The object is to provide a fuel cell separator that is compatible.
上記目的を達成するために、 本発明の特徴は、 燃料電池の電極構造体を構成する電極層 に対して、 外部から導入された燃料ガスと酸化剤ガスとをそれぞれ供給する燃料電池用セ パレータにおいて、 前記燃料ガスと酸化剤ガスとを分離して混流を防止する平板状のセパ レータ本体と、 前記セパレータ本体によって分離された燃料ガスまたは酸化剤ガスをそれ ぞれ¾散して前記電極構造体に供給するとともに、 前記電極構造体における電極反応によ つて発電された電気を集電するコレクタであって、 前記分離された燃料ガスまたは酸化剤 ガスが三次元的に流通するための隙間を前記セパレータ本体およぴ前記電極構造体との間 で形成する複数の凹部と凸部とを直線的にかつ連続的に成形した第 1凹凸成形部と、 同第 1凹凸成形部の凹部おょぴ凸部の成形周期に対して半周期だけ異なり、 前記分離された燃 料ガスまたは酸化剤ガスが三次元的に流通するための隙間を前記セパレータ本体および前 記電極構造体との間で形成する複数の凹部と凸部とを直線的にかつ連続的に成形した第 2 回凸成形部と、 前記第 1凹凸成形部と前記第 2凹凸成形部との間に形成されて、前記第 1 凹凸成形部と前記第 2凹凸成形部とを互レヽに連結するとともに、 前記分離された燃料ガス または酸化剤ガスの前記第 1凹凸成形部の凹部によって形成される隙間から前記第 2凹凸 成形部の凹部によつて形成される隙間への流路ぉよび前記第 1凹凸成形部の ώ部によって 形成される隙間から前記第 2凹凸成形部の凸部によって形成される隙間への流路を形成す る流路形成部とを備えたコレクタとから構成したことにある。  In order to achieve the above object, a feature of the present invention is that a fuel cell separator that supplies an externally introduced fuel gas and an oxidant gas to an electrode layer that constitutes an electrode structure of a fuel cell. In which the fuel gas and the oxidant gas are separated to prevent mixed flow, and the fuel gas or the oxidant gas separated by the separator body is dispersed to disperse the electrode structure. A collector that collects electricity generated by an electrode reaction in the electrode structure, the gap for allowing the separated fuel gas or oxidant gas to flow three-dimensionally A plurality of concave portions and convex portions formed between the separator main body and the electrode structure are linearly and continuously molded; and a concave portion and a concave portion of the first concave / convex molded portion. A gap is formed between the separator body and the electrode structure so that the separated fuel gas or oxidant gas flows three-dimensionally with respect to the molding period of the convex portion. A plurality of concave portions and convex portions that are formed linearly and continuously, and formed between the first concave-convex molded portion and the second concave-convex molded portion. The concavo-convex molded portion and the second concavo-convex molded portion are connected to each other, and the second concavo-convex molded portion is formed from a gap formed by the recessed portion of the first concavo-convex molded portion of the separated fuel gas or oxidant gas. The flow path to the gap formed by the concave portion of the first concave and convex portion and the flow path to the gap formed by the convex portion of the second concave and convex molded portion from the gap formed by the flange portion of the first concave and convex molded portion are formed. And a collector with a flow path forming section There is.
これによれば、 外部から導入された燃料ガスと酸化剤ガスとを分離して混流を防止する セパレータ本体と、 分離された燃料ガスと酸化剤ガスとを拡散して電極構造体に供給する とともに集電するコレクタとによって、 燃料電池用セパレータを構成することができる。 そして、 コレクタは、 燃料ガスまたは酸化剤ガスを三次元的に流通させるための隙間を形 成するために、 複数の凹部と凸部の成形周期が互いに半周期だけ異なる第 1凹凸成形部お ょぴ第 2凹凸成形部を有しており、 さらに、 第 1凹凸成形部の凹凸部によって形成される 隙間を通過した燃料ガスまたは酸化剤ガスが第 2凹凸成形部の凹凸部によつて形成される 隙間に向けて流れる流路を形成する流路形成部を有することができる。 ここで、 流路形成 部は、 分離された燃料ガスまたは酸化剤ガスが、 半周期だけ異なる第 1凹 ώ成形部の凹部 によつて形成される隙間から第 2凹凸成形部の凹部によつて形成される隙間に流通する流 路、 および、 第 1凹凸成形部の凸部によって形成される隙間から第 2凹凸成形部の凸部に よって形成される隙間に流通する流路を形成することができる。 According to this, the separator body that separates the fuel gas and the oxidant gas introduced from the outside to prevent mixed flow, and the separated fuel gas and the oxidant gas are diffused and supplied to the electrode structure. A fuel cell separator can be constituted by a collector for collecting current. The collector forms a gap for three-dimensional distribution of fuel gas or oxidant gas. In order to achieve this, the first concave-convex molded portion and the second concave-convex molded portion have different molding periods of the plurality of concave portions and convex portions by a half cycle. The fuel gas or the oxidant gas that has passed through the formed gap may have a flow path forming portion that forms a flow path that flows toward the gap formed by the uneven portion of the second uneven formed portion. Here, the flow path forming part is formed by the recessed part of the second concavo-convex forming part from the gap formed by the recessed part of the first concave ridge forming part in which the separated fuel gas or oxidant gas differs by a half cycle. A flow path that circulates in the formed gap, and a flow path that circulates from the gap formed by the convex portion of the first concavo-convex molded portion to the gap formed by the convex portion of the second concavo-convex molded portion. it can.
このように、 流路形成部が燃料ガスまたは酸化剤ガスの流路を形成することにより、 第 1凹凸成形部の凹部 (凸部) によって形成される隙間からこの凹部 (凸部) に対向する第 2凹凸成形部の凸部 (凹部) によって形成される隙間に向けての燃料ガスまたは酸化剤ガ スの流れが阻害することができる。 すなわち、 燃料ガスまたは酸化剤ガスは、 第 1凹凸成 形部の凹部 (凸部) によって形成される隙間から対向する第 2凹凸成形部の凸部 (凹部) によって形成される隙間に向けて直線的に通過することなく、 この第 2凹凸成形部におけ る凸部 (凹部) に隣接して成形される凹部 (凸部) によって形成される隙間に向けて蛇行 して流通する。 これにより、 燃料ガスまたは酸化剤ガスは第 1凹凸成形部から第 2凹凸成 形部に向けて蛇行して流通することによって良好に拡散され、 電極構造体を構成する電極 層に対して十分な燃料ガスまたは酸化剤ガスを供給することができる。 したがって、 良好 なガス供給性能を確保することができ、 電極構造体によって消費されなレヽ未反応の燃料ガ スまたは酸化剤ガスの量を低減することができる。  In this way, the flow path forming portion forms the flow path of the fuel gas or the oxidant gas, so that the concave portion (convex portion) is opposed to the gap formed by the concave portion (convex portion) of the first concave-convex forming portion. The flow of fuel gas or oxidant gas toward the gap formed by the convex part (concave part) of the second concave-convex molded part can be hindered. That is, the fuel gas or the oxidant gas is linearly directed from the gap formed by the concave portion (convex portion) of the first concave-convex forming portion toward the gap formed by the convex portion (concave portion) of the second concave-convex forming portion. Without passing through, it snakes and circulates toward the gap formed by the concave portion (convex portion) formed adjacent to the convex portion (concave portion) in the second concavo-convex molded portion. As a result, the fuel gas or the oxidant gas is well diffused by meandering from the first concavo-convex molded portion to the second concavo-convex formed portion, and is sufficiently diffused to the electrode layer constituting the electrode structure. Fuel gas or oxidant gas can be supplied. Therefore, good gas supply performance can be ensured, and the amount of unreacted fuel gas or oxidant gas that is not consumed by the electrode structure can be reduced.
また、 セパレータ本体によって分離された燃料ガスまたは酸化剤ガスは、 第 1凹凸成形 部の凹部または凸部によつて形成される隙間と第 2凹凸成形部の凹部または凸部によって 形成される隙間を横切るように通過して、 電極構造体を構成する電極層に供給される。 こ のため、 例えば、 表面張力の作用により、 発生した生成水がコレクタ近傍に到達すると、 燃料ガスまたは酸化剤ガスの流れに乗せて生成水を未反応ガスとともに外部に排水するこ とができる。 これにより、 燃料ガスおょぴ酸化剤ガスが供給されている限り、 言い換えれ ば、 固体高分子 β料電池が «している限り、 発生した生成水を連続的に排水すること ができる。 したがって、 良好な生成水の排水性能を確保することができる。  Further, the fuel gas or the oxidant gas separated by the separator main body has a gap formed by the concave or convex portion of the first concavo-convex molded portion and a gap formed by the concave or convex portion of the second concavo-convex molded portion. It passes through across and is supplied to the electrode layer constituting the electrode structure. For this reason, for example, when the generated water generated near the collector due to the action of surface tension, the generated water can be discharged together with the unreacted gas on the flow of fuel gas or oxidant gas. As a result, as long as the fuel gas and the oxidant gas are supplied, in other words, as long as the solid polymer β-ion battery is used, the generated water can be drained continuously. Therefore, it is possible to ensure good drainage performance of generated water.
また、 この場合、 前記第 1凹凸成形部と前記第 2凹凸成形部との配列方向が、 前記セパ レータ本体によつて分離された燃料ガスまたは酸化剤ガスの流通方向と略平行であるとよ い。 . In this case, the arrangement direction of the first concavo-convex molded portion and the second concavo-convex molded portion is the separator. It is said that it is substantially parallel to the flow direction of the fuel gas or oxidant gas separated by the generator body. .
これによれば、 導入された燃料ガスまたは酸化剤ガスは、 必然的に第 1凹凸成形部の凹 部および凸部によつて形成される隙間と第 2凹凸成形部の凹部おょぴ凸部によつて形成さ れる隙間を横切るように流通することができる。 これにより、 燃料ガスまたは酸化剤ガス がコレクタを流通することにより、 必然的に拡散されて良好なガス供給性能を確保でき、 必然的にガスの排出に伴つて生成水の良好な排水性能を確保できる。  According to this, the introduced fuel gas or oxidant gas inevitably has a gap formed by the concave and convex portions of the first concavo-convex molded portion and the concave and convex portions of the second concavo-convex molded portion. It is possible to circulate so as to cross the gap formed. As a result, fuel gas or oxidant gas circulates through the collector, which is inevitably diffused to ensure good gas supply performance, and inevitably secure good drainage performance of the generated water as the gas is discharged. it can.
また、 前記第 1凹凸成形部と第 2凹凸成形部とをそれぞれ形成する凹部おょぴ凸部の成 形方向における形状は、 B各矩形状であるとよい。 これによれば、 別途特殊な加工を施すこ となく、 極めて容易に第 1凹凸成形部おょぴ第 2凹凸成形部を形成することができる。 し たがって、 燃料電池用セパレータの製造コストを低減することができる。  In addition, the shape in the forming direction of the concave and convex portions that respectively form the first concavo-convex molded portion and the second concavo-convex molded portion may be each rectangular shape. According to this, the first concavo-convex molded part and the second concavo-convex molded part can be formed very easily without any special processing. Therefore, the manufacturing cost of the fuel cell separator can be reduced.
さらに、 前記コレクタは、 前記第 1凹凸成形部、 前記流路形成部および前記第 2凹凸成 形部が順にかつ連続的に複数成形されているとよい。 これによれば、 燃料ガスまたは酸ィ匕 剤ガスが第 1凹凸成形部によつて形成される隙間から第 2凹凸成形部によつて形成される 隙間を通過する回数すなわち蛇行する回数を増やすことができる。 また、 第 1凹凸成形部 と第 2凹凸成形部とが互いに隣接して配置される部分が存在することにより、 分離された 燃料ガスまたは酸化剤ガスを、 セパレータ本体と電極構造体との間で三次元的に流通させ ることもできる。 このため、 燃料ガスまたは酸化剤ガスをより良好に拡散させることがで きて、 良好なガス供給性能を確保することができる。 さらに、 第 1凹凸成形部および第 2 凹凸成形部が複数成形されることにより、 電極構造体における電極反応によって発生した 生成水がより容易にコレクタ近傍に到達しやすくなるため、 より良好な生成水の排水性能 を確保することができる。  Furthermore, it is preferable that the collector has a plurality of the first concavo-convex forming part, the flow path forming part, and the second concavo-convex forming part sequentially and continuously formed. According to this, the number of times that the fuel gas or the oxidizing agent gas passes through the gap formed by the second concavo-convex molded portion from the gap formed by the first concavo-convex molded portion, that is, the number of times of meandering Can do. In addition, since there is a portion where the first concavo-convex molded portion and the second concavo-convex molded portion are arranged adjacent to each other, the separated fuel gas or oxidant gas is passed between the separator body and the electrode structure. It can also be distributed in three dimensions. For this reason, fuel gas or oxidant gas can be diffused better, and good gas supply performance can be ensured. Furthermore, by forming a plurality of first concavo-convex molded portions and second concavo-convex molded portions, the generated water generated by the electrode reaction in the electrode structure more easily reaches the vicinity of the collector. The drainage performance can be ensured.
また、 本発明の他の特徴は、 前記流路形成部が、 前記第 1凹凸成形部を形成する凹部の 底部および前記第 2凹凸成形部を形成する凹部の底部を含む平面と、 前記第 1凹凸成形部 を形成する凸部の頂部および前記第 2凹凸成形部を形成する凸部の頂部を含む平面との間 に成形されることにもある。  Another feature of the present invention is that the flow path forming part includes a flat surface including a bottom part of a concave part forming the first concave-convex molded part and a bottom part of a concave part forming the second concave-convex molded part, and the first It may be formed between the top of the convex part forming the concave-convex molded part and a plane including the top part of the convex part forming the second concave-convex molded part.
そして、 この場合、 前記流路形成部は、 前記第 1凹凸成形部を形成する凹部および前記 第 2凹凸成形部を形成する凹部の成形方向と、 前記第 1凹凸成形部を形成する凸部および 前記第 2囬 成形部を形成する凸部の成形方向とに対する中立面を少なくとも含んで平板 形状に成形されるとよい。 さらに、 この ¾ ^には、 前記平板形状に成形される流路形成部 に対して、 前記第 1 成形部を形成する凹部の底部おょぴ前記第 2凹凸成形部を形成す る凹部の底部がこれら底部における板厚分だけ突出し、 前記第 1凹凸成形部を形成する凸 部の頂部および前記第 2凹凸成形部を形成する凸部の頂部がこれら頂部における板厚分だ け突出するようにするとよレ、。 In this case, the flow path forming portion includes a concave portion that forms the first concave-convex molded portion and a molding direction of the concave portion that forms the second concave-convex molded portion, and a convex portion that forms the first concave-convex molded portion, and A flat plate including at least a neutral surface with respect to the molding direction of the convex portions forming the second rib molding portion It may be formed into a shape. In addition, the bottom of the concave portion forming the second concave-convex forming portion and the bottom portion of the concave portion forming the first molding portion with respect to the flow path forming portion molded into the flat plate shape are shown in this figure. So as to protrude by the thickness of the plate at the bottom, and so that the top of the projection forming the first concavo-convex molding portion and the top of the projection forming the second concavo-convex molding portion protrude by the thickness of the plate at the top. Well then,
これらによれば、 第 1凹凸成形部および第 2凹凸成形部を形成する凹部の底部を含む平 面と、 第 1凹凸成形部および第 2凹凸成形部を形成する凸部の頂部を含む平面との間に、 平板形状の流路形成部を成形することができる。 より具体的には、 平板形状の流路形成部 を、 第 1凹凸成形部および第 2凹凸成形部を形成する凹部の成形方向と第 1凹凸成形部お ょぴ第 2凹凸成形部を形成する凸部の成形方向とに対する中立面、 すなわち、 第 1凹凸成 形部および第 2凹凸成形部を形成する凹部の底部と第 1凹凸成形部および第 2凹凸成形部 を形成する ώ部の頂部との略中間における中立面を含むように成形することができる。 これにより、 凹部または凸部によって形成される第 1凹凸成形部から第 2凹凸成形部へ の燃料ガスまたは酸化剤ガスの流路は、 凹部および凸部の成形方向において、 平板形状の 流路形成部によって分割 (流路形成部が中立面を含む場合には略等分) される。 このため 、 例えば、 第 1凹凸成形部の凹部によって形成される隙間から対向する第 2凹凸成形部に よって形成される隙間に向けて燃料ガスまたは酸化剤ガスが流通しようとすると、 第 1凹 凸成形部における凹部の底部と流路形成部との間の間隔が狭くなり、 燃料ガスまたは酸化 剤ガスが流通しにくくなる。 また、 同様に、 例えば、 第 1凹凸成形部の凸部から対向する 第 2凹凸成形部に向けて燃料ガスまたは酸化剤ガスが流通しょうとすると、 第 1凹凸成形 部における凸部の頂部と流路形成部との間の間隔が狭くなり、 燃料ガスまたは酸化剤ガス が流通しにくくなる。  According to these, a flat surface including the bottoms of the concave portions forming the first concavo-convex molded portion and the second concavo-convex molded portion, and a flat surface including the tops of the convex portions forming the first concavo-convex molded portion and the second concavo-convex molded portion In the meantime, a plate-shaped flow path forming part can be formed. More specifically, the plate-shaped flow path forming part is formed with the forming direction of the recesses forming the first uneven forming part and the second uneven forming part, and the first uneven forming part and the second uneven forming part. Neutral surface with respect to the molding direction of the convex part, that is, the bottom part of the concave part forming the first concave and convex part and the second convex part and the top part of the flange part forming the first concave and convex part It can shape | mold so that the neutral surface in the approximate middle may be included. As a result, the flow path of the fuel gas or the oxidant gas from the first concavo-convex molded portion to the second concavo-convex molded portion formed by the concave portion or the convex portion is formed as a flat plate-like flow passage in the molding direction of the concave portion and the convex portion. Divided by the part (approximately equal when the flow path forming part includes a neutral surface). For this reason, for example, when the fuel gas or the oxidant gas flows from the gap formed by the concave portion of the first concavo-convex molded portion toward the gap formed by the opposing second concavo-convex molded portion, The distance between the bottom of the recess in the molding part and the flow path forming part is narrowed, and the fuel gas or the oxidant gas is less likely to flow. Similarly, for example, if a fuel gas or an oxidant gas flows from the convex portion of the first concave-convex molded portion to the opposing second concave-convex molded portion, it flows with the top of the convex portion in the first concave-convex molded portion. The space between the passage forming portion is narrowed and fuel gas or oxidant gas is less likely to flow.
その結果、 燃料ガスまたは酸化剤ガスは、 より流通しやすい部位、 具体的には、 流路形 成部によって分割される隙間のうち、 第 1凹凸成形部における凸部の下部側や凹部の上部 側を優先的に流通するようになる。 また、 第 2凹凸成形部においても、 同様に、 燃料ガス または酸化剤ガスは、 より流通しやすい部位、 具体的には、 流路形成部によって分割され る隙間のうち、 凸部の下部側や凹部の上部側を優先的に流通するようになる。 これにより 、 燃料ガスまたは酸化剤ガスは、 流路形成部によって、 互いに半周期だけ異なる第 1凹凸 成形部の凹部によつて形成される隙間の上部側と第 2凹凸成形部の凹部によつて形成され る隙間の上部側間、 または、 第 1凹凸成形部の凸部によって形成される隙間の下部側と第 2凹凸成形部の凸部によつて形成される隙間の下部側間を蛇行して流通することができる 。 したがって、 燃料ガスまたは酸化剤ガスをより確実に蛇行させることができ、 ガス供給 性能を向上させることができるとともに、 生成水の良好な排水性能を確保できる。 As a result, the part where the fuel gas or the oxidant gas is more likely to flow, specifically, the lower part of the convex part or the upper part of the concave part in the first concave-convex molding part among the gaps divided by the flow path forming part. Will be distributed preferentially. Similarly, in the second concavo-convex molded portion, the fuel gas or the oxidant gas is more easily circulated, specifically, in the gaps divided by the flow path forming portion, The upper part of the recess is preferentially distributed. As a result, the fuel gas or the oxidant gas is formed by the flow path forming part by the upper part of the gap formed by the concave part of the first concave / convex molding part and the concave part of the second concave / convex molding part which are different from each other by a half cycle. Formed Between the upper side of the gap or the lower side of the gap formed by the convex part of the first concave / convex molding part and the lower side of the gap formed by the convex part of the second concave / convex molding part can do . Therefore, the fuel gas or the oxidant gas can be more meandered, the gas supply performance can be improved, and the good drainage performance of the generated water can be secured.
また、 平板形状の流路形成部に対して、 第 1凹凸成形部の凹部および第 2凹凸成形部の 凹部における底部を板厚分だけ突出させ、 第 1凹凸成形部の凸部および第 2凹凸成形部の 凸部における頂部を板厚分だけ突出させることができる。 これにより、 例えば、 第 1凹凸 成形部における凸部によつて形成される隙間の下部側を流通した燃料ガスまたは酸化剤ガ スが対向する位置に成形された第 2凹凸成形部における凹部に到達した ¾ ^には、 同凹部 の底部側面に燃料ガスまたは酸化剤ガスが衝突する。 すなわち、 第 1凹凸成形部における 凸部によつて形成される隙間の下部側を流通した燃料ガスまたは酸化剤ガスが対向する第 2四凸成形部における凹部を直線的に通過することを効果的に禁止することができる。 し たがって、 この: t には、 燃料ガスまたは酸化剤ガスをより確実に蛇行させることができ 、 ガス供給効率を向上させることができるとともに、 生成水の良好な排水性を確保できる また、 前記流路形成部は、 前記第 1凹凸成形部を形成する凹部の底部および凸部の頂部 と、 前記第 2凹凸成形部を形成して前記第 1凹凸成形部の凹部に対向する凸部の頂部およ び前記第 1凹凸成形部の凸部に対向する凹部の底部とを連結する三次元曲面に成形される とよい。 '  In addition, the bottom of the concave portion of the first concave / convex molding portion and the concave portion of the second concave / convex molding portion is projected by the plate thickness with respect to the flat plate-shaped flow path forming portion, and the convex portion of the first concave / convex molding portion and the second concave / convex portion The top part of the convex part of the molded part can be projected by the thickness. As a result, for example, the fuel gas or the oxidant gas that has flowed through the lower side of the gap formed by the convex portion in the first concave / convex molding portion reaches the concave portion in the second concave / convex molding portion that is molded at a position facing it. At the same time, fuel gas or oxidant gas collides with the bottom side surface of the recess. That is, it is effective that the fuel gas or the oxidant gas flowing through the lower side of the gap formed by the convex portion in the first concave-convex molded portion passes linearly through the concave portion in the second four convex molded portion facing each other. Can be prohibited. Therefore, in this: t, the fuel gas or the oxidant gas can be more meandered, the gas supply efficiency can be improved, and the good drainage of the generated water can be secured. The flow path forming part includes a bottom part of the concave part and the top part of the convex part forming the first concave and convex part, and a top part of the convex part that forms the second concave and convex part and faces the concave part of the first concave and convex part. And it is good to shape | mold into the three-dimensional curved surface which connects the bottom part of the recessed part facing the convex part of the said 1st uneven | corrugated shaped part. '
これによれば、 三次元曲面に成形された流路形成部が、 第 1囬凸成形部における凹部の 底部と対向する位置に成形された第 2凹凸成形部の凸部の頂部とを連結し、 第 1凹凸成形 部における凸部の頂部と対向する位置に成形された第 2凹凸成形部の凹部の底部とを連結 することができる。 これにより、 第 1凹凸成形部における凹部によって形成される隙間か ら第 2凹凸成形部における凸部によって形成される隙間への燃料ガスまたは酸化剤ガスの 流れ、 および、 第 1凹凸成形部における凸部によって形成される隙間から第 2凹凸成形部 における凹部によつて形成される隙間への燃料ガスまたは酸化剤ガスの流れを確実に禁止 することができる。  According to this, the flow path forming part formed into a three-dimensional curved surface connects the top part of the convex part of the second concave-convex molding part formed at a position facing the bottom part of the concave part in the first ridge convex molding part. The bottom of the concave portion of the second concave-convex molded portion formed at a position facing the top of the convex portion of the first concave-convex molded portion can be coupled. Accordingly, the flow of the fuel gas or the oxidant gas from the gap formed by the concave portion in the first concave-convex molded portion to the gap formed by the convex portion in the second concave-convex molded portion, and the convex in the first concave-convex molded portion. It is possible to reliably inhibit the flow of fuel gas or oxidant gas from the gap formed by the portion to the gap formed by the recess in the second concavo-convex molded portion.
言い換えれば、 三次元曲面に形成された流路形成部により、 第 1凹凸成形部の凹部によ つて形成される隙間から第 2凹凸成形部の凹部によつて形成される隙間への燃料ガスまた は酸化剤ガスの流れ、 および、 第 1凹凸成形部の凸部によって形成される隙間から第 2凹 凸成形部の凸部によつて形成される隙間への燃料ガスまたは酸化剤ガスの流れを確実に形 成することができる。 これにより、 燃料ガスまたは酸化剤ガスは、 流路形成部によって、 互レ、に半周期だけ異なる第 1凹凸成形部の凹部と第 2凹凸成形部の凹部とによつて形成さ れる隙間、 または、 第 1凹 ώ成形部の凸部と第 2凹凸成形部の凸部によって形成される隙 間を蛇行して流通することができる。 したがって、 燃料ガスまたは酸化剤ガスをより確実 に蛇行させることができ、 ガス供給性能を向上させることができるとともに、 生成水の良 好な排水性能を確保できる。 図 面 の 簡 単 な 説 明 In other words, by the flow path forming part formed on the three-dimensional curved surface, the fuel gas or the gas from the gap formed by the concave part of the first concave / convex molding part to the gap formed by the concave part of the second concave / convex molding part Indicates the flow of oxidant gas and the flow of fuel gas or oxidant gas from the gap formed by the convex part of the first concave / convex molding part to the gap formed by the convex part of the second concave / convex molding part. It can be reliably formed. As a result, the fuel gas or the oxidant gas is formed by the flow path forming portion between the concave portion of the first concave-convex molding portion and the concave portion of the second concave-convex molding portion, which differ from each other by a half cycle, or The gap formed by the convex part of the first concave and convex molding part and the convex part of the second concave and convex molding part can meander and circulate. Therefore, the fuel gas or the oxidant gas can be meandered more reliably, the gas supply performance can be improved, and the good drainage performance of the generated water can be secured. A simple explanation of the drawing
図 1は、 本発明の第 1および第 2実施形態に係り、 燃料電池用セパレータを採用して構 成した燃料電池スタックの一部を示 «略図である。  FIG. 1 is a schematic view showing a part of a fuel cell stack configured by adopting a fuel cell separator according to the first and second embodiments of the present invention.
図 2は、 図 1のセパレータを構成するセパレ一タ本体を示した概略的な斜視図である。 図 3は、 図 1のコレクタを説明するための概略図である。  FIG. 2 is a schematic perspective view showing a separator main body constituting the separator of FIG. FIG. 3 is a schematic diagram for explaining the collector of FIG.
図 4は、 図 3のコレクタにおける第 1凹凸成形部および第 2凹凸成形部の凹部と凸部の 成形周期を説明するための概略的な図であり、 (a ) は、 図 3のコレクタにおける第 1凹 凸成形部の凹部と凸部の成形周期を示し、 (b ) は、 (a ) の第 1凹凸成形部に対する第 2 凹凸成形部の凹部と凸部の成形周期を示すものである。  FIG. 4 is a schematic diagram for explaining the molding cycle of the concave and convex portions of the first concave and convex portion and the second concave and convex portion in the collector of FIG. 3, and (a) is a diagram of the collector of FIG. (B) shows the molding cycle of the concave and convex portions of the second concave-convex molding portion with respect to the first concave-convex molding portion of (a). .
図 5は、 図 3のコレクタにおける平板部を説明するための概略的な図であり、 (a ) は 、 コレクタの長手方向における断面を示し、 (b ) は、 コレクタの幅方向における断面を 示すものである。  FIG. 5 is a schematic diagram for explaining the flat plate portion in the collector of FIG. 3. (a) shows a cross section in the longitudinal direction of the collector, and (b) shows a cross section in the width direction of the collector. Is.
図 6は、 図 1に示したフレームおよび ME Aの組み付け状態を説明するための概略的な 分解斜視図である。  FIG. 6 is a schematic exploded perspective view for explaining the assembled state of the frame and ME A shown in FIG.
図 7は、 図 3のコレクタによる燃料ガスまたは酸化剤ガスの三次元的な蛇行を説明する ための概略図である。  FIG. 7 is a schematic diagram for explaining three-dimensional meandering of fuel gas or oxidant gas by the collector of FIG.
図 8は、 本発明の第 2実施形態に係るコレクタを説明するための概略的な図である。 図 9は、 図 8のコレクタにおける三次元曲面を説明するための概略的な図であり、 (a FIG. 8 is a schematic diagram for explaining a collector according to a second embodiment of the present invention. FIG. 9 is a schematic diagram for explaining the three-dimensional curved surface in the collector of FIG.
) は、 コレクタの長手方向における断面を示し、 (b ) は、 コレクタの幅方向における断 面を示すものである。 図 1 0は、 図 8のコレクタによる燃料ガスまたは酸化剤ガスの三次元的な蛇行を説明す るための概略図である。 発 明 の 実 施 す る た め の 最 良 の 形 態 以下、 本宪明の第 1実施形態を、 図面を用いて詳細に説明する。 図 1は、 本発明の第 1 実施形態に係る燃料電池用セパレータ 1 0 (以下、 単にセパレータ 1 0という) を用いて 構成された固体高分子型の燃料電池スタックの一部を概略的に示した断面図である。 燃料 電池スタックは、 2つのセパレータ 1 0と、 これらセパレータ 1 0間に酉己置されて積層さ れるフレーム 2 0および ME A 3 0 (Membrane-Electrode Assembly:膜一電極接合体 ) とからなる単セルが複数積層されて形成される。 ) Shows a cross section in the longitudinal direction of the collector, and (b) shows a cross section in the width direction of the collector. FIG. 10 is a schematic diagram for explaining three-dimensional meandering of fuel gas or oxidant gas by the collector of FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a part of a polymer electrolyte fuel cell stack configured by using a fuel cell separator 10 (hereinafter simply referred to as a separator 10) according to a first embodiment of the present invention. FIG. The fuel cell stack is a single unit composed of two separators 10 and a frame 20 and ME A 30 (Membrane-Electrode Assembly) that are stacked between the separators 10. A plurality of cells are stacked.
そして、 各単セルに対して、 例えば、 水素ガスなどの燃料ガスと空気などの酸化剤ガス とが燃料電池スタックの外部から導入されると、 ME A 3 0にて電極反応が起こることに よって発電される。 ここで、 本明細書では、 以下の説明において、 燃料ガスと酸化剤ガス とをまとめて単にガスともいう。  For example, when a fuel gas such as hydrogen gas and an oxidant gas such as air are introduced into each single cell from the outside of the fuel cell stack, an electrode reaction occurs in ME A 30. Power is generated. Here, in the present specification, in the following description, the fuel gas and the oxidant gas are collectively referred to simply as gas.
セパレータ 1 0は、 図 1に示すように、 燃料電池スタツク内に導入されたガスの混流を 防ぐセパレータ本体 1 1と、 外部から供給された燃料ガスまたは酸化剤ガスを ME A 3 0 に対して一様に拡散するとともに 反応によって発電された電気を集電するコレクタ 1 2とカゝら構成される。  As shown in FIG. 1, the separator 10 includes a separator body 11 that prevents mixed flow of gas introduced into the fuel cell stack, and an externally supplied fuel gas or oxidant gas to the ME A 30. It consists of a collector 12 and a collector that collect the electricity generated by the reaction while spreading uniformly.
セパレ一タ本体 1 1は、 素材として金属製の薄板 (例えば、 板厚が 0 . 1 mm程度のス テンレス板など) から形成されている。 なお、 セパレータ本体 1 1を形成する素材として は、 他に、 例えば、 金めつきなどの防食処理を施した鋼板などを採用することができる。 また、 セパレータ本体 1 1を金属製の薄板から形成することに代えて、 導電性を有する非 金属材料 (例えば、 カーボンなど) を素材にして形成することも可能である。  The separator body 11 is made of a thin metal plate (for example, a stainless steel plate having a thickness of about 0.1 mm) as a material. In addition, as a material for forming the separator body 11, for example, a steel plate subjected to anticorrosion treatment such as gold plating can be employed. In addition, instead of forming the separator body 11 from a thin metal plate, it is also possible to use a non-metallic material having conductivity (for example, carbon) as a raw material.
そして、 セパレータ本体 1 1は、 図 2に示すように、 略正方形の平板状に形成されてお り、 その周縁部分には、 ガス導入口 1 1 aと、 同ガス導入口 1 1 aに対向するガス導出口 1 1 bとからなる対が 2対形成されている。 なお、 各対は、 互いに略直交するように形成 されている。  As shown in FIG. 2, the separator body 11 is formed in a substantially square flat plate shape, and a gas introduction port 1 1a and a gas introduction port 1 1a are opposed to the peripheral portion thereof. Two pairs of gas outlets 1 1 b are formed. Each pair is formed so as to be substantially orthogonal to each other.
ガス導入口 1 1 aは、 略長楕円状の貫通孔として形成されていて、 燃料電池スタックの 外部から供給された燃枓ガスまたは酸化剤ガスを単セル内に導入するとともに、積層され た他の単セルに対して供給された燃料ガスまたは酸化剤ガスを流通する。 ガス導出口 1 1 bも、 田&¾楕円状の貫通孔として形成されていて、 単セル内に導入されたガスのうち ME A 3 0にて未反応のガスを外部に排出するとともに、 積層された他の単セルからの未反応 のガスを流通する。 The gas inlet 1 1 a is formed as a substantially oblong through hole, and introduces fuel gas or oxidant gas supplied from the outside of the fuel cell stack into the single cell and is laminated. In addition, fuel gas or oxidant gas supplied to another single cell is circulated. The gas outlet port 1 1 b is also formed as an elliptical through-hole, and out of the gas introduced into the single cell, ME A 3 0 discharges unreacted gas to the outside, and is stacked. Unreacted gas from other single cells is circulated.
コレクタ 1 2は、 平板状の素材 (例えば、 板厚が 0 . 1 mm程度のステンレス板など) から形成されている。 そして、 コレクタ 1 2は、 図 3に概略的に示すように、 素材の一部 を切断することにより、 素材の板幅方向にて断面略矩形状の凹部と凸部とが連続的に成形 された第 1凹 ώ成形部 1 2 aと、 この第 1凹凸成形部 1 2 aに成形された凹部と凸部の成 形周期に対して半周期だけ異なる成形周期によつて素材の板幅方向にて断面略矩形状の凹 部と凸部とが連続的に成形された第 2凹凸成形部 1 2 bとを有している。 より具体的に説 明すると、 例えば、 第 1凹凸成形部 1 2 aにおける凹部と凸部が、 図 4 ( a ) に示すよう に、 図示左側から凹部、 凸部、 凹部、 凸部…となる成形周期で成形される場合には、 第 2 凹凸成形部 1 2 bにおける凹部と凸部が、 図 4 ( b ) に示すように、 図示左側から凸部、 凹部、 凸部、 凹部…となる成形周期で成形される。  The collector 12 is made of a flat material (for example, a stainless steel plate having a thickness of about 0.1 mm). Then, as schematically shown in FIG. 3, the collector 12 is formed by continuously cutting a part of the material so that a concave portion and a convex portion having a substantially rectangular cross section are continuously formed in the plate width direction of the material. The plate width direction of the material by the molding cycle that differs by a half cycle with respect to the molding cycle of the first concave and convex molding portion 12a and the concave and convex molding portions of the first concave and convex molding portion 12a. And a second concavo-convex molded portion 12 b in which a concave portion and a convex portion having a substantially rectangular cross section are continuously formed. More specifically, for example, as shown in FIG. 4 (a), the concave and convex portions in the first concave-convex molded portion 12 a become concave, convex, concave, convex from the left side of the figure. In the case of molding at a molding cycle, the concave and convex portions in the second concave and convex molded portion 1 2 b become convex portions, concave portions, convex portions, concave portions from the left side of the drawing as shown in FIG. 4 (b). Molded with a molding cycle.
また、 コレクタ 1 2は、 素材の長手方向にて所定の間隔を有して成形された第 1凹凸成 形部 1 2 aと第 2凹凸成形部 1 2 bとを互いに連結し、 第 1凹凸成形部 1 2 aから第 2凹 凸成形部 1 2 bへのガスの流路を形成する流路形成部としての平板部 1 2 cを有している 平板部 1 2 cは、 図 5 ( a ) に示すように、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形 部 1 2 bにおける凹部の底部を含む仮想平面と凸部の頂部を含む仮想平面との間の距離 ( すなわち、 成形高さ寸法) の略中間に位置する面 (中立面) を含むように成形されている 。 そして、 図 5 ( b ) に示すように、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 b における凸部の頂部は、 平板部 1 2 cの上面から、 例えば、 板厚分だけ突出するようにな つている。 一方、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bにおける凹部の底部 は、 平板部 1 2 cの下面から、 例えば、 板厚分だけ突出するようになっている。 なお、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの成形高さにつレヽては、 素材の材料特性 Further, the collector 12 connects the first concavo-convex formed portion 12 a and the second concavo-convex formed portion 1 2 b formed with a predetermined interval in the longitudinal direction of the material to each other, and the first concavo-convex portion The flat plate portion 1 2 c has a flat plate portion 1 2 c as a flow path forming portion that forms a gas flow path from the molded portion 1 2 a to the second concave convex molded portion 1 2 b. a), the distance between the virtual plane including the bottom of the concave portion and the virtual plane including the top of the convex portion in the first concave-convex molded portion 12a and the second concave-convex molded portion 12b (i.e., molding) It is molded to include a surface (neutral surface) located approximately in the middle of the height dimension. Then, as shown in FIG. 5 (b), the tops of the convex portions in the first concavo-convex molded portion 1 2 a and the second concavo-convex molded portion 1 2 b are, for example, as thick as the plate thickness It is only protruding. On the other hand, the bottoms of the recesses in the first concavo-convex molded part 12 a and the second concavo-convex molded part 12 b protrude from the lower surface of the flat plate part 12 c by the thickness of the plate, for example. Note that the material characteristics of the material are the same as the molding height of the first uneven part 1 2 a and the second uneven part 1 2 b.
(例えば、 流動特性) に起因する良好な加工性を維持するために、 例えば、 素材の板厚に 対して略 3倍以下の成形高さに成形されるとよい。 In order to maintain good processability due to (for example, flow characteristics), for example, it may be formed to a molding height of about 3 times or less with respect to the thickness of the material.
そして、 コレクタ 1 2は、 素材に対して、 第 1凹凸成形部 1 2 a、 平板部 1 2 cおよび 第 2凹凸成形部 1 2 bが順に素材の長手方向にて連続的に成形されることによって構成さ れている。 And the collector 12 is composed of a first concavo-convex molded part 1 2 a, a flat plate part 1 2 c and The second concavo-convex formed portion 1 2 b is formed by sequentially forming in the longitudinal direction of the material in order.
このように構成されたコレクタ 1 2は、 セパレータ本体 1 1に対して一体的に固設され て、 セパレータ 1 0を形成する。 このコレクタ 1 2の固設について、 以下に簡単に説明す る。 コレクタ 1 2は、 セパレータ本体 1 1の略中央部分に配置される。 そして、 セパレー タ本体 1 1とコレクタ 1 2との接触部分は、 例えば、 ロー付け工法により、 金属的に接合 されて一体的に固設される。  The collector 12 configured in this way is integrally fixed to the separator body 11 to form the separator 10. The fixing of the collector 12 will be briefly described below. The collector 12 is disposed at a substantially central portion of the separator body 11. Then, the contact portion between the separator body 11 and the collector 12 is metallically joined and fixed integrally by, for example, a brazing method.
具体的に説明すると、 まず、 コレクタ 1 2の一面側に対して、 例えば、 銅やニッケルな どのペースト状のロー材を薄く塗布する。 そして、 ロー材を塗布したコレクタ 1 2をセパ レータ本体 1 1の所定位置に仮止めする。 このとき、 コレクタ 1 2は、 セパレータ本体 1 1に形成された一対のガス導入口 1 1 aおよびガス導出口 1 1 bの配置方向と、 コレクタ 1 2における第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの配列方向とがー致する ように仮止めされる。 次に、 還元ガス雰囲気中にて、 仮止めしたセパレータ本体 1 1とコ レクタ 1 2とを所定温度で所定時間だけ加熱し、 その後冷却する。 これにより、 セパレー タ本体 1 1とコレクタ 1 2とが金属的に接合されて一体的に固設される。  More specifically, first, a paste-like brazing material such as copper or nickel is thinly applied to one side of the collector 12. Then, the collector 12 coated with the brazing material is temporarily fixed at a predetermined position of the separator body 11. At this time, the collector 12 includes the arrangement direction of the pair of gas inlets 1 1 a and gas outlets 1 1 b formed in the separator main body 1 1, and the first concavo-convex molded portion 1 2 a and the first 2Temporarily fixed so that it is aligned with the arrangement direction of the concavo-convex molded part 1 2 b. Next, in the reducing gas atmosphere, the temporarily fixed separator body 11 and the collector 12 are heated at a predetermined temperature for a predetermined time, and then cooled. As a result, the separator main body 11 and the collector 12 are joined metallically and fixed integrally.
ここで、 セパレータ本体 1 1とコレクタ 1 2とを金属的に接合する接合工法については 、 上述したロー付け工法に限定されるものではなレ、。 すなわち、 セパレータ本体 1 1とコ レクタ 1 2とを金属的に接合することができる他の工法、 例えば、 溶接工法や拡散接合ェ 法を採用することができる。  Here, the joining method for metallically joining the separator body 11 and the collector 12 is not limited to the brazing method described above. That is, other methods that can metallically join the separator body 11 and the collector 12, such as a welding method or a diffusion bonding method, can be employed.
フレーム 2 0は、 図 6に示すように、 同一の構造とされた 2枚一対の樹脂板本体 2 1 , 2 2から構成されていて、 2枚のセパレータ 1 0 (より詳しくは、 セパレータ本体 1 1 ) にそれぞれの一面側が固着される。 これら樹脂板本体 2 1 , 2 2は、 セパレータ本体 1 1 の外形寸法と略同一の外形寸法とされるとともに、 コレクタ 1 2の成形高さよりも僅かに 小さい板厚とされている。 そして、 樹脂板本体 2 1に対して、 樹脂板本体 2 2は、 同一平 面方向にて略 9 0度回転して配置されて積層される。 なお、 樹脂板本体 2 1 , 2 2は、 種 々の樹脂材料を採用することができ、 好ましくは、 ガラスエポキシ樹脂を採用するとよい また、 樹脂板本体 2 1 , 2 2には、 その周縁部分にて、 単セルを形成した状態でセパレ ータ本体 1 1に形成されたガス導入口 1 1 aおよびガス導出口 1 1 bの各貫通孔に対応す る位置に同各貫通孔の形状と略同一の形状の貫通孔 21 a, 21 bおよび貫通孔 22 a,As shown in FIG. 6, the frame 20 is composed of a pair of two resin plate bodies 2 1 and 2 2 having the same structure, and includes two separators 10 (more specifically, the separator body 1 1) Each side is fixed to 1). The resin plate main bodies 2 1 and 2 2 have substantially the same external dimensions as the separator main body 11 1 and a thickness slightly smaller than the molding height of the collector 12. Then, the resin plate main body 2 2 is rotated and arranged approximately 90 degrees in the same plane direction with respect to the resin plate main body 21 and laminated. Various resin materials can be used for the resin plate main bodies 2 1 and 2 2, and it is preferable to use glass epoxy resin. Also, the resin plate main bodies 2 1 and 2 2 have a peripheral portion. The gas inlet port 1 1 a and gas outlet port 1 1 b formed in the separator body 11 in a state where a single cell is formed correspond to the through holes in the separator body 11. Through-holes 21 a, 21 b and through-holes 22 a, having substantially the same shape as the respective through-holes
22 bが形成されている。 また、 樹脂板本体 21, 22には、 その略中央部分にて、 セパ レータ本体 11に接合されたコレクタ 12を収容する収容孔 21 c 22 cが形成されて いる。 この収容孔 21 c, 22 cは、 固着されるセパレータ本体 11に形成された一対の ガス導入口 11 aおよびガス導出口 11 bと、 積層される他方の樹脂板本体 21または樹 脂板本体 22に形成された貫通孔 21 a, 21 bまたは貫通孔 22 a, 22 bとを収容す るように形成されている。 22b is formed. The resin plate main bodies 21 and 22 are formed with accommodating holes 21 c 22 c for accommodating the collectors 12 joined to the separator main body 11 at substantially central portions thereof. The accommodating holes 21 c and 22 c are formed by a pair of gas inlet 11 a and gas outlet 11 b formed in the separator body 11 to be fixed, and the other resin board body 21 or resin board body 22 stacked. The through-holes 21a and 21b or the through-holes 22a and 22b formed in the inner wall are accommodated.
このように、 収容孔 21 c, 22 cを形成することにより、 固着されるセパレータ本体 11の下面 (または上面)、 収容孔 21 c (または収容孔 22 c) の内周面および ME A Thus, by forming the receiving holes 21 c and 22 c, the lower surface (or upper surface) of the separator body 11 to be fixed, the inner peripheral surface of the receiving hole 21 c (or the receiving hole 22 c), and the ME A
30の上面 (または下面) により空間 (以下、 この空間をガス導通空間という) が形成さ れる。 そして、 ガス導通空間内に対して、 例えば、 燃料ガスを一方のガス導入口 11 aか ら、 また、 酸化剤ガスを他方のガス導入口 11 aおよび貫通孔 21 a力ら導入することが できる。 また、 ガス導通空間内を通過した未反応のガスは、 一方のガス導出口 11 bを介 して、 また、 他方のガス導出口 11 bおよび貫通孔 21 bを介して外部に導出することが できる。 A space (hereinafter referred to as a gas conduction space) is formed by the upper surface (or lower surface) of 30. Then, for example, fuel gas can be introduced into the gas conduction space from one gas introduction port 11a, and oxidant gas can be introduced from the other gas introduction port 11a and through-hole 21a force. . In addition, unreacted gas that has passed through the gas conduction space can be led out to the outside through one gas outlet 11 b and through the other gas outlet 11 b and through hole 21 b. it can.
電極構造体としての ME A 30は、 図 1および図 6に示すように、 電解質膜 E Fと、 同 電解質膜 E F上にて所定の触媒を層状に積層することにより形成されて、 燃料ガスが導入 されるガス導通空間内に配置されるアノード電極層 AEと、 酸化剤ガスが導入されるガス 導通空間内に配置される力ソード電極層 C Eとを主要構成部品としている。 なお、 これら 電解質月莫 EF、 アノード電極層 AEおよび力ソード電極層 CEの作用 (電極反応) につい ては、 広く知られているとともに本発明に直接関係しないため、 以下の記載においてその 詳細な説明を省略する。  ME A 30 as an electrode structure is formed by laminating an electrolyte membrane EF and a predetermined catalyst on the electrolyte membrane EF in layers as shown in FIGS. 1 and 6, and fuel gas is introduced. The main components are an anode electrode layer AE arranged in the gas conduction space and a force sword electrode layer CE arranged in the gas conduction space into which the oxidant gas is introduced. Note that the actions (electrode reactions) of these electrolytes moon EF, anode electrode layer AE, and force sword electrode layer CE are well known and not directly related to the present invention. Is omitted.
電解質膜 EFは、 カチオン (より具体的には、 水素イオン (H+)) を選択的に透過す るイオン交換膜 (例えば、 デュポン社製ナフイオン (登録商標) など)、 あるいは、 ァニ オン (より具体的には、 水酸化物イオン (OH一)) を選択的に透過するイオン交換膜 ( 例えば、 トクャマ霞ネオセプタ (登録商標) など) 力 形成される。 そして、 電解質膜 E Fは、 フレーム 20の榭脂板本体 21, 22を積層した際に形成される略正方形の開口 部分に比して大きく、 かつ、 榭脂板本体 21, 22を積層した状態で貫通孔 21 a, 21 bおよび貫通孔 22 a, 22 bを塞がない大きさに形成されている。 このように、 電解質 膜 E Fを形成することにより、 ガス導通空間に導入されたガスが他側に形成されたガス導 通空間に漏れること (所謂、 クロスリーク) を防止することができる。 The electrolyte membrane EF may be an ion exchange membrane that selectively permeates cations (more specifically, hydrogen ions (H +)) (for example, Nafion (registered trademark) manufactured by DuPont), or anion (from Specifically, an ion exchange membrane (for example, Tokama Neoceptor (registered trademark)) that selectively transmits hydroxide ions (OH) is formed. The electrolyte membrane EF is larger than the substantially square opening formed when the resin board main bodies 21 and 22 of the frame 20 are laminated, and the resin film main bodies 21 and 22 are laminated. The through holes 21 a and 21 b and the through holes 22 a and 22 b are formed in a size that does not block the through holes. Thus, the electrolyte By forming the membrane EF, it is possible to prevent the gas introduced into the gas conduction space from leaking into the gas conduction space formed on the other side (so-called cross leak).
電極層としてのァノード電極層 AEおよぴカソード電極層 C Eは、 貴金属触媒 (例えば 、 白金 (P t) など) を担持したカーボン (担持カーボン) や水素吸蔵合金などを主成分 とするものであり、 電角爭質膜 EFの表面に対して層状に形成される。 そして、 層状に形成 されるアノード電極層 AEおよびカソード電極層 CEは、 フレーム 20の樹脂板本体 21 , 2を積層した際に形成される略正方形の開口部分に比して僅かに小さレ、外形寸法とさ れている。  The anode electrode layer AE and the cathode electrode layer CE as electrode layers are mainly composed of carbon (supported carbon) supporting a noble metal catalyst (for example, platinum (Pt)) or a hydrogen storage alloy. The electroangular membrane is formed in layers on the surface of EF. The anode electrode layer AE and the cathode electrode layer CE formed in layers are slightly smaller than the substantially square opening formed when the resin plate bodies 21 and 2 of the frame 20 are laminated, and the outer shape. It is a dimension.
また、 アノード電極層 AEおよび力ソード電極層 CEは、 それぞれの表面側が導電性を 有した繊維から形成されたカーボンクロス CCで覆われて構成される。 このカーボンクロ ス C Cは、 ガス導通空間内に供給される燃料ガスまたは酸化剤ガスを各電極層に対して均 一に供給するものであるとともに、 電極反応によって発電された電気をコレクタ 12に効 率よく供給するものである。 すなわち、 カーボンクロス CCは繊維状であるため、 この繊 維間を導通することによって、 供給されたガスはより一様に拡散される。 また、 カーボン クロス CCは導電性を有しているため、 発電された電気を効率よくコレクタ 12に流すこ とができる。 なお、 必要に応じて、 カーボンクロス CCを省略して実施することも可能で ある。  Further, the anode electrode layer AE and the force sword electrode layer CE are configured such that each surface side is covered with carbon cloth CC formed of conductive fibers. This carbon cross CC uniformly supplies the fuel gas or oxidant gas supplied into the gas conduction space to each electrode layer, and the electricity generated by the electrode reaction is applied to the collector 12. It will be supplied efficiently. That is, since the carbon cloth CC is in a fibrous form, the supplied gas is more uniformly diffused by conducting between the fibers. In addition, since the carbon cloth CC has electrical conductivity, the generated electricity can flow efficiently to the collector 12. If necessary, the carbon cross CC can be omitted.
そして、 単セルは、 セパレータ本体 11、 コレクタ 12、 フレーム 20および ME A 3 0を順次積層することによって形成される。 具体的に説明すると、 図 6に示したように、 互いに同一平面内にて略 90度回転されて配置される上下 2枚のフレーム 20間に ME A 30を配置し、 例えば、 接着剤などを塗布することによつて各フレーム 20間にて ME A 30の電解質膜 E Fを挟持した状態で一体的に固着する。  The single cell is formed by sequentially laminating the separator body 11, the collector 12, the frame 20, and the ME A 30. More specifically, as shown in FIG. 6, ME A 30 is placed between two upper and lower frames 20 that are rotated approximately 90 degrees in the same plane, and an adhesive or the like is used, for example. By coating, the ME A 30 electrolyte membrane EF is sandwiched between the frames 20 and fixed together.
この一体的に固着したフレーム 20および ME A 30に対して、 各フレーム 20の収容 孔 21 c, 22 c内にコレクタ 12を収容する。 このとき、 コレクタ 12は、 収容される フレーム 20に形成された一対の貫通孔 21 a, 21 b (貫通孔 22 a, 22 b) の配置 方向すなわち導入されたガスの導通方向と、 コレクタ 12における第 1凹凸成形部 12 a および第 2凹凸成形部 12bの配列方向とがー致するように、 フレーム 20の収容孔 21 c, 22 c内に収容される。  The collector 12 is housed in the housing holes 21 c and 22 c of each frame 20 with respect to the integrally fixed frame 20 and ME A 30. At this time, the collector 12 is disposed in the collector 12 in the direction of arrangement of the pair of through holes 21 a and 21 b (through holes 22 a and 22 b) formed in the frame 20 to be accommodated, that is, the conduction direction of the introduced gas. The first concave and convex portions 12 a and the second concave and convex portions 12 b are accommodated in the accommodating holes 21 c and 22 c of the frame 20 so as to coincide with the arrangement direction of the second concave and convex portions 12 b.
そして、 例えば、 接着剤などを塗布することにより、 フレーム 20の収容孔 21 c, 2 2 c内にコレクタ 1 2を収容した状態でセパレータ本体 1 1をフレーム 2 0に対して一体 的に固着する。 このとき、 樹脂板本体 2 1 , 2 2の板厚がコレクタ 1 2の成形高さよりも 僅かに小さい寸法であるため、 コレクタ 1 2がセパレータ本体 1 1によって ME A 3 0側 に若干押圧された状態で組み付けられる。 これにより、 コレクタ 1 2と ME A 3 0 (より 詳しくは、 カーボンクロス C C) との接触状態を良好に保つことができる。 そして、 この ように形成された単セノレは、 要求出力に応じて複数積層されることによって、 燃料電池ス タックを構成する。 Then, for example, by applying an adhesive or the like, the housing holes 21 c, 2 of the frame 20 2 With the collector 12 housed in the c, the separator body 11 is fixed to the frame 20 integrally. At this time, since the plate thickness of the resin plate main bodies 2 1 and 2 2 is slightly smaller than the molding height of the collector 12 2, the collector 12 is slightly pressed to the ME A 3 0 side by the separator main body 1 1. It is assembled in the state. As a result, the contact state between the collector 12 and ME A 30 (more specifically, carbon cloth CC) can be kept good. Then, a plurality of single senores formed in this way are stacked according to the required output to constitute a fuel cell stack.
このように構成された燃料電池スタックにおいては、 図 1に示すように、 積層された単 セル間でセパレータ本体 1 1のガス導入口 1 1 a同士おょぴガス導出口 1 1 b同士がフレ ーム 2 0の貫通孔 2 1 a , 2 1 bおよび貫通孔 2 2 a , 2 2 bを介してすベて連通した状 態となる。 このため、 本明細書中の以下の説明においては、 各単セルのガス導入口 1 1 a およびフレーム 2 0の貫通孔 2 1 a , 2 2 aによって形成される連通路をガス供給ィンナ 一マ二ホーノレド、 ガス導出口 1 1 bおよびフレーム 2 0の貫通孔 2 1 b, 2 2 bによって 形成される連通路をガス排出ィンナーマ二ホールドという。  In the fuel cell stack configured as described above, as shown in FIG. 1, the gas inlets 1 1 a of the separator main body 1 1 and the gas outlets 1 1 b of the separator body 11 are flared between the stacked single cells. In this state, all the holes 20 1 a and 2 1 b and the through holes 2 2 a and 2 2 b are connected to each other. For this reason, in the following description in the present specification, the gas passages formed by the gas inlet 11a of each unit cell and the through holes 21a, 22a of the frame 20. The communication path formed by the two Honored, the gas outlet 1 1 b and the through-holes 2 1 b and 2 2 b of the frame 20 is called a gas exhaust liner two-hold.
このガス供給ィンナーマ二ホーノレドを介して燃料ガスまたは酸化剤ガスがそれぞれ外部 から供給されると、 供給された燃料ガスまたは酸化剤ガスは、 ガス導通空間内に導入され る。 このように導入された燃料ガスまたは酸化剤ガスは、 コレクタ 1 2によって、 ガス導 通空間内を均一に拡散されて流通する。  When fuel gas or oxidant gas is supplied from the outside through this gas supply inner manifold, the supplied fuel gas or oxidant gas is introduced into the gas conduction space. The fuel gas or oxidant gas introduced in this way is circulated by being uniformly diffused in the gas conduction space by the collector 12.
具体的に説明すると、 ガス供給ィンナーマ-ホールドからガス導通空間内に導入された ガスは、 ガス導通空間内に配置されたコレクタ 1 2に接触しながらガス排出ィンナーマ二 ホールドに向けて流れる。 ここで、 コレクタ 1 2は、 ガス供給インナーマ二ホールドとガ ス排出インナーマ二ホールドの配置方向に対して、 第 1凹凸成形部 1 2 a、 平板部 1 2 c および第 2凹凸成形部 1 2 bが連続的に酉己置するようになっている。  More specifically, the gas introduced from the gas supply inner hold into the gas conduction space flows toward the gas discharge inner hold while contacting the collector 12 arranged in the gas conduction space. Here, the collector 12 has the first concavo-convex molded portion 1 2 a, the flat plate portion 1 2 c and the second concavo-convex molded portion 1 2 b with respect to the arrangement direction of the gas supply inner manifold and the gas discharge inner manifold hold. Is going to be self-contained continuously.
このため、 ガス供給ィンナーマ二ホーノレドからガス導通空間内に導入された燃料ガスま たは酸化剤ガスは、 図 7に概略的に示すように、 コレクタ 1 2の第 1凹凸成形部 1 2 aか ら第 2凹凸成形部 1 2 bに向けて、 平板部 1 2 cによって形成される流路を蛇行して三次 元的に流れる。 以下、 このことを具体的に説明する。  For this reason, the fuel gas or oxidant gas introduced into the gas conduction space from the gas supply inner hornored is, as shown schematically in FIG. Then, the flow is formed in a three-dimensional manner by meandering the flow path formed by the flat plate portion 1 2 c toward the second concavo-convex molded portion 1 2 b. This will be specifically described below.
ガス導通空間内に導入されたガスがコレクタ 1 2に到達すると、 ガスは、 ME A 3 0の 上面 (または下面) と第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bにおける凸部 ( または凹部) とによって形成される隙間 (以下、 この隙間を ME A側通路という)、 およ び、 セパレータ本体 1 1の下面 (または上面) と第 1凹凸成形部 1 2 aおよび第 2凹凸成 形部 1 2 bにおける凹部 (または凸部) とによって形成される隙間 (以下、 この隙間をセ パレータ本体側通路という) 内を流通する。 ここで、 以下の説明を簡単にして理解を容易 とするために、 ME A 3 0の上面側にコレクタ 1 2とセパレータ本体 1 1が積層されて燃 料ガスが流通する場合を例示して説明する。 When the gas introduced into the gas conduction space reaches the collector 12, the gas is projected on the upper surface (or the lower surface) of the ME A 30 and the first uneven portion 1 2 a and the second uneven portion 1 2 b. Department ( (Hereinafter, this gap is referred to as ME A side passage), and the lower surface (or upper surface) of the separator body 11, the first concavo-convex molded portion 1 2 a, and the second concavo-convex component. It circulates in a gap formed by the concave portion (or convex portion) in the shape portion 1 2 b (hereinafter, this gap is referred to as a separator main body side passage). Here, in order to simplify the following explanation and make it easy to understand, an example in which the collector gas 12 and the separator main body 11 are laminated on the upper surface side of the ME A 30 and the fuel gas flows is described as an example. To do.
まず、 M E A側通路における燃料ガスの流通から説明する。 燃料ガスが第 1凹凸成形部 1 2 aの凸部によって形成される ME A側通路內に流入すると、 図 7にて破線で示すよう に、 この流入した燃料ガスは、 平板部 1 2 cにより、 第 2凹凸成形部 1 2 bの凸部によつ て形成される ME A側通路に向けて流れる。  First, the fuel gas distribution in the M E A side passage will be described. When the fuel gas flows into the MEA side channel 形成 formed by the convex portion of the first uneven formed portion 1 2 a, as shown by the broken line in FIG. The second concavo-convex molded part 1 2 b flows toward the ME A side passage formed by the convex part.
すなわち、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの凸部は、 これらの各頂 部が平板部 1 2 cの上面から板厚分だけ突出している。 このため、 第 1凹凸成形部 1 2 a における凸部の頂部近傍に流入した燃料ガスは、 平板部 1 2 cの側面に衝突し、 第 2凹凸 成形部 1 2 b方向への直線的な流通が禁止される。 したがって、 第 1凹凸成形部 1 2 aに よつて形成される ME A側通路内に流入した燃科ガスは、 第 1凹凸成形部 1 2 aの凸部に おける ME A 3 0側すなわち凸部の下部側を第 2凹凸成形部 1 2 bに向けて流れる。 言い 換えれば、 燃料ガスは、 ME A 3 0と平板部 1 2 cとの間に形成される空間 (以下、 この 空間を隙間空間という) 内を流通する。  That is, the convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b have their respective top portions protruding from the upper surface of the flat plate portion 12 c by the thickness. For this reason, the fuel gas that has flowed in the vicinity of the top of the convex portion in the first concave-convex shaped portion 12a collides with the side surface of the flat plate portion 12c, and the second concave-convex shaped portion 12b is linearly distributed in the b direction. Is prohibited. Therefore, the fuel gas that has flowed into the ME A-side passage formed by the first concavo-convex molded portion 12 a is ME A 30 side, that is, the convex portion in the convex portion of the first concavo-convex molded portion 12 a. Flows toward the second concavo-convex molded portion 1 2 b. In other words, the fuel gas circulates in a space formed between the ME A 30 and the flat plate portion 12 c (hereinafter, this space is referred to as a gap space).
ここで、 第 1凹凸成形部 1 2 aにおける凹部と凸部の成形周期と、 第 2凹凸成形部 1 2 bにおける凹部と凸部の成形周期とは、 互いに半周期だけ異なる。 また、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの凹部は、 これらの各底部が平板部 1 2 cの下面から 板厚分だけ突出している。  Here, the molding cycle of the concave and convex portions in the first concave and convex molded portion 12 a and the molding cycle of the concave and convex portions in the second concave and convex molded portion 12 b differ from each other by a half cycle. In addition, in the concave portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b, their respective bottom portions protrude from the lower surface of the flat plate portion 12 c by the plate thickness.
このため、 第 1凹凸成形部 1 2 aの凸部を横切って隙間空間内に流入した燃料ガスは、 第 2凹凸成形部 1 2 bにおける凹部の底部の側面に衝突し、 隣接する第 1四凸成形部 1 2 a方向への流通が禁止される。 したがって、 第 1凹凸成形部 1 2 aの凸部によって形成さ れる ME A側通路を通過した燃料ガスは、 隙間空間を介して、 第 2凹凸成形部 1 2 bの凸 部によつて形成される ME A側通路に向けて蛇行しながら流通する。  For this reason, the fuel gas that has flowed into the gap space across the convex portion of the first concave-convex molded portion 12 a collides with the side surface of the bottom of the concave portion in the second concave-convex molded portion 12 b, and the adjacent first fourth Convex forming part 1 2 Distribution in the a direction is prohibited. Therefore, the fuel gas that has passed through the MEA-side passage formed by the convex portions of the first concave / convex molded portion 12 a is formed by the convex portions of the second concave / convex molded portion 12 b through the gap space. It circulates while meandering towards the ME A side passage.
—方、 燃料ガスが第 1凹凸成形部 1 2 aの凹部によって形成されるセパレータ本体側通 路内に流入すると、 図 7にて実線で示すように、 この流入した燃料ガスは、 平板部 1 2 c により、 第 2凹凸成形部 1 2 bの凹部によって形成されるセパレータ本体側通路に向けて 流れ。。 -On the other hand, when the fuel gas flows into the separator main body side passage formed by the concave portion of the first concavo-convex molded portion 1 2 a, as shown by the solid line in FIG. 2 c By, it flows toward the separator main body side channel | path formed by the recessed part of the 2nd uneven | corrugated molded part 1 2b. .
すなわち、 上述したように、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bにおけ る凸部の項部は、 平板部 1 2 cの上面から板厚分だけ突出している。 このため、 第 1凹 ώ 成形部 1 2 aの凹部によつて形成されるセパレータ本体側通路を通過した燃料ガスは、 第 2凹凸成形部 1 2 bにおける凸部の頂部の側面に衝突し、 第 2凹凸成形部 1 2 b方向への 流通が禁止される。 したがって、 セパレータ本体 1 1と平板部 1 2 cとの間に形成される 空間内に流入した燃料ガスは、 衝突した凸部の両側に形成された第 2凹凸成形部 1 2 bの 回部に向けて流れる。  In other words, as described above, the convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b protrude from the upper surface of the flat plate portion 12 c by the thickness of the plate. For this reason, the fuel gas that has passed through the separator body side passage formed by the concave portion of the first concave portion molding portion 12a collides with the side surface of the top portion of the convex portion in the second concave / convex molding portion 12b, Second concavo-convex molded part 1 2 Distribution in the b direction is prohibited. Therefore, the fuel gas that has flowed into the space formed between the separator body 11 and the flat plate portion 1 2 c passes through the second concavo-convex molded portion 1 2 b formed on both sides of the collided convex portion. It flows toward.
ここで、 コレクタ 1 2においては、 図 7に示すように、 第 2凹凸成形部 1 2 bに隣接し て第 1凹凸成形部 1 2 aが成形される部分が存在する。 このため、 この部分においては、 第 2凹凸成形部 1 2 bの凹部に隣接して第 1凹凸成形部 1 2 aの凸部が成形され、 第 2凹 凸成形部 1 2 bの凸部に隣接して第 1凹凸成形部 1 2 aの凹部が成形される。 すなわち、 コレクタ 1 2におレ、て、 第 2 HA凸成形部 1 2 bと第 1凹凸成形部 1 2 aとが互レヽに隣接し ている部分では、 凹部と凸部 (凸部と凹部) によって比較的大きな開口が形成される。 このため、 セパレータ本体側通路を流通する燃料ガスは、 第 2凹凸成形部 1 2 bを通過 すると、 形成された開口を介して、 ME A側通路方向に (図 7に示すコレクタ 1 2の下方 向) に三次元的に流れ、 ME A側通路を流通する燃料ガスと合流するようになる。 一方、 ME A側通路を流通する燃料ガスは、 第 2囬凸成形部 1 2 bを通過すると、 形成された開 口を介して、 セパレータ本体側通路方向 (図 7に示すコレクタ 1 2の上方向) に三次元的 に流れ、 セパレータ本体側通路を流通する燃料ガスと合流するようになる。  Here, in the collector 12, as shown in FIG. 7, there is a portion where the first uneven formed portion 12 a is formed adjacent to the second uneven formed portion 12 b. For this reason, in this part, the convex part of the first concave / convex molding part 12a is formed adjacent to the concave part of the second concave / convex molding part 12b, and the convex part of the second concave / convex molding part 12b is formed. Adjacent to this, a concave portion of the first concave-convex forming portion 12 2 a is formed. That is, at the portion where the second HA convex molded portion 1 2 b and the first concave / convex molded portion 1 2 a are adjacent to each other at the collector 12, the concave portion and the convex portion (the convex portion and the concave portion ) Forms a relatively large opening. For this reason, when the fuel gas flowing through the separator body side passage passes through the second concavo-convex molded portion 12 b, it passes through the formed opening in the direction of the ME side passage (below the collector 12 shown in FIG. 7). Direction) and merge with the fuel gas flowing through the ME A side passage. On the other hand, when the fuel gas flowing through the MEA-side passage passes through the second convex projection portion 12 b, the separator body-side passage direction (upper side of the collector 12 shown in FIG. 7) passes through the formed opening. Direction) and merge with the fuel gas flowing through the separator body side passage.
したがって、 ガス導通空間内に導入された燃料ガスは、 コレクタ 1 2を通過することに より、 上下左右方向に三次元的に蛇行しながら流通する。 これにより、 燃料ガスは、 ガス 導通空間内で良好に拡散することができ、 ァノード電極層 A Eに対して、 効率よく供給さ れる。  Therefore, the fuel gas introduced into the gas conduction space passes through the collector 12 and circulates in a three-dimensional meandering in the vertical and horizontal directions. As a result, the fuel gas can be diffused well in the gas conduction space, and is efficiently supplied to the anode electrode layer AE.
なお、 上記説明においては、 ME A 3 0の上面側にコレクタ 1 2およびセパレータ本体 1 1を積層して燃料ガスを導通させた場合を例示して説明したが、 酸化剤ガスを導通させ る場合であっても全く同様である。 また、 ME A 3 0の下面側にコレクタ 1 2およぴセパ レータ本体 1 1を積層する場合であっても、 上記例示におけるコレクタ 1 2の第 1凹凸成 形部 1 2 aおよび第 2凹凸成形部 1 2 bの凹部または凸部が異なるのみで、 燃料ガスまた は酸化剤ガスは全く同様に流通する。 In the above description, the case where the collector gas 12 and the separator body 11 are laminated on the upper surface side of the ME A 30 and the fuel gas is conducted is described as an example. However, the case where the oxidant gas is conducted is explained. Even so, it is exactly the same. Even when the collector 12 and the separator body 11 are stacked on the lower surface side of the ME A 30, the first unevenness of the collector 12 in the above example is formed. The fuel gas or the oxidant gas flows in exactly the same way, except that the shape portion 12a and the second concavo-convex molded portion 12b are different in the concave or convex portions.
ここで、 固体高分子型燃料電池を構成する MEA 3 0においては、 周知の通り、 燃料ガ スと酸化剤ガスとを用!/ヽた電極反応によって、 ァノード電極層 A Eまたは力ソード電極層 C Eにて水が生成する。 具体的に説明すると、 例えば、 ME A 3 0の電解質膜 E Fがカチ オンを選択的に透過するイオン交換膜から形成される ¾ ^には、 下記化学反応式 1 , 2に 従い、 力ソード電極層 C Eにおいて水が生成する。  Here, in the MEA 30 constituting the polymer electrolyte fuel cell, as is well known, the anode electrode layer AE or the force sword electrode layer CE is formed by an electrode reaction using a fuel gas and an oxidant gas! Water is produced at More specifically, for example, ME A 30 electrolyte membrane EF is formed from an ion exchange membrane that selectively permeates cation. ¾ ^ is a force sword electrode according to the following chemical reaction formulas 1 and 2. Water is produced in layer CE.
ァノード電極層: H2→2H++2e— · · '化学反応式 1 Node electrode layer: H 2 → 2H + + 2e— · · 'Chemical reaction formula 1
カソード電極層: 2H++2e一 +(1/2)02→H20 · · '化学反応式 2 Cathode electrode layer: 2H ++ 2e + (1/2) 0 2 → H 2 0 · · 'Chemical reaction formula 2
また、 例えば、 MEA 3 0の電解質膜 E Fがァニオンを選択的に透過するイオン交換膜 から形成される には、 下記化学反応式 3 , 4に従い、 アノード電極層 A Eにおいて水 が生成する。  Further, for example, in order for the electrolyte membrane EF of MEA 30 to be formed from an ion exchange membrane that selectively permeates anion, water is generated in the anode electrode layer A E according to the following chemical reaction formulas 3 and 4.
ァノ一ド電極層: H2+20H—→2H20+2e— · ·■化学反応式 3 Anode electrode layer: H 2 + 20H— → 2H 2 0 + 2e—
カソード電極層:(l/2)02+H20+2e—→20H— · '化学反応式 4 Cathode electrode layer: (l / 2) 0 2 + H 2 0 + 2e— → 20H— · Chemical reaction formula 4
そして、 このように、 アノード電極層 AEまたは力ソード電極層 C Eにおいて生成水が 多量に発生すると、 燃料ガスまたは酸化剤ガスの供給が阻害される状態、 すなわち、 フラ ッディング状態が生じる場合がある。 このフラッディング状態が発生した状況では、 生成 水は、 アノード電極層 AEまたは力ソード電極層 C Eの表面を覆うとともに、 カーボンク ロス C Cを通過してコレクタ 1 2に到 ¾1 "る。 そして、 コレクタ 1 2に到達した生成水は 、 その表面張力により、 コレクタ 1 2に形成された第 1凹凸成形部 1 2 aまたは第 2凹凸 成形部 1 2 bにおける凹部と凸部に浸入して水膜を形成するようになる。  As described above, when a large amount of generated water is generated in the anode electrode layer AE or the force sword electrode layer CE, the supply of the fuel gas or the oxidant gas is hindered, that is, a flooding state may occur. In the situation in which this flooding state occurs, the generated water covers the surface of the anode electrode layer AE or the force sword electrode layer CE, and passes through the carbon cross CC to reach the collector 12 1 ”. The generated water that has reached the concave portion and the convex portion in the first concave-convex molded portion 12 a or the second concave-convex molded portion 12 b formed in the collector 12 due to the surface tension forms a water film. It becomes like this.
ところで、 コレクタ 1 2は、 上述したように、 ガス導通空間内に導入されたガスを三次 元的に導通させることができる。 すなわち、 コレクタ 1 2には、 第 1凹凸成形部 1 2 a、 第 2凹凸成形部 1 2 bおよび平板部 1 2 cとが連続的に成形されており、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの配列方向がガス導通方向と略平行となるようにフレ ーム 2 0内に収容される。 これにより、 ガス導通空間内に導入された燃料ガスまたは酸化 剤ガスは、 必然的にコレクタ 1 2に形成された第 1凹凸成形部 1 2 aと第 2凹凸成形部 1 2 bの凹部または凸部を横切るように通過する。  Incidentally, the collector 12 can conduct the gas introduced into the gas conduction space three-dimensionally as described above. That is, the collector 12 has a first concavo-convex molded portion 12a, a second concavo-convex molded portion 12b and a flat plate portion 12c continuously formed, and the first concavo-convex molded portion 12a and The second concavo-convex molded portion 12 b is accommodated in the frame 20 so that the arrangement direction thereof is substantially parallel to the gas conduction direction. As a result, the fuel gas or the oxidant gas introduced into the gas conduction space inevitably has the concave or convex portions of the first concavo-convex molded portion 12 a and the second concavo-convex molded portion 12 b formed on the collector 12. Pass across the section.
したがって、 ME A 3 0における電極反応が進行し、 第 1凹凸成形部 1 2 aおよび第 2 凹凸成形部 1 2 bにおける凹部または凸部が生成水の水膜によって塞がれる程度にまでフ ラッディング状態が発生する状況であっても、 ガス供給ィンナーマ二ホールドからガス導 通空間内に導入されて、 ガス排出インナーマニホ一ルドから排出されるガスの流れによつ て水膜の形成が防止される。 さらに、 所定の圧力で燃料ガスまたは酸化剤ガスが導入され ることから、 コレクタ 1 2にまで到達した生成水は、 一部の未反応ガスとともに単セルす なわち燃料電池スタック外に排水される。 Therefore, the electrode reaction in ME A 30 progresses, and the first concavo-convex molded part 1 2 a and the second Even in a situation where a flooding state occurs to such an extent that the concave or convex portion in the concavo-convex molded portion 12 b is blocked by the water film of the generated water, it is introduced into the gas conduction space from the gas supply inner hold. Thus, the formation of a water film is prevented by the flow of gas discharged from the gas discharge inner manifold. Furthermore, since the fuel gas or oxidant gas is introduced at a predetermined pressure, the generated water that has reached the collector 12 is discharged together with some unreacted gas into a single cell, that is, outside the fuel cell stack. .
そして、 このように、 コレクタ 1 2に到達した生成水が外部に排水されることによって 、 アノード電極層 AEまたは力ソード電極層 C Eの近傍に存在する生成水のうち、 例えば 、 電解質膜 E Fを保水する以外の余剰水がカーボンクロス C Cを介して連続的にコレクタ 1 2近傍に到達し、 この到達した生成水 (余剰水) 力 S排水される。 このような、 水膜の形 成防止および生成水の排水は、 燃料電池の作動状態時、 言い換えれば、燃料ガスおよ 酸 ィヒ剤ガスが供給されている限りにおいて、 連続的に行われる。  In this way, the generated water that has reached the collector 12 is drained to the outside, so that, for example, the electrolyte membrane EF is retained in the generated water existing in the vicinity of the anode electrode layer AE or the force sword electrode layer CE. Excess water other than water reaches continuously near the collector 12 via the carbon cloth CC, and this generated water (surplus water) force S is discharged. Such water film formation prevention and generated water drainage are continuously performed when the fuel cell is in operation, that is, as long as fuel gas and oxidizer gas are supplied.
したがって、 燃料電池が作動している間は、 コレクタ 1 2に生成水が溜まることがなく 、 また、 ァノード電極層 A Eまたはカソード電極層 C Eに余分な生成水が溜まることがな いため、 フラッデイング状態の発生を良好に防止することができる。 また、 燃料電池の作 動中において生成水が燃料電池スタック外に連続的に排水されるため、 燃料電池の作動を 停止した後における単セル、 より詳しくは、 ァノード電極層 A Eまたはカソード電極層 C Eゃコレクタ 1 2の内部に残留する生成水の量を極めて少なくすることができる。 これに より、 例えば、 燃料電池が低温 (0 °C以下) となる環境下に設置された場合であっても、 生成水が氷結してガスの供給量が低下することを防止することができ、 低温環境下におけ る燃料電池の良好な始動性を確保することができる。  Therefore, while the fuel cell is in operation, no water is collected in the collector 12, and no extra water is collected in the anode electrode layer AE or the cathode electrode layer CE. Can be satisfactorily prevented. In addition, since the generated water is continuously drained outside the fuel cell stack during the operation of the fuel cell, a single cell after stopping the operation of the fuel cell, more specifically, the anode electrode layer AE or the cathode electrode layer CE The amount of produced water remaining in the collector 1 2 can be extremely reduced. As a result, for example, even when the fuel cell is installed in an environment where the temperature is low (below 0 ° C), it is possible to prevent the generated water from icing and reducing the gas supply rate. It is possible to ensure good startability of the fuel cell in a low temperature environment.
以上の説明からも理解できるように、 この第 1実施形態によれば、 コレクタ 1 2に成形 された平板部 1 2 cが燃料ガスまたは酸化剤ガスの流路を形成することにより、 第 1凹凸 成形部 1 2 aの凹部 (凸部) によって形成される隙間からこの凹部 (凸部) に対向する第 2凹凸成形部 1 2 bの ώ部 (凹部) によって形成される隙間に向けての燃料ガスまたは酸 ィヒ剤ガスの流れが阻害することができる。 すなわち、 燃料ガスまたは酸化剤ガスは、 平板 部 1 2 cにより、 第 1凹凸成形部 1 2 aの凹部 (凸部) によって形成される隙間から第 2 凹凸成形部 1 2 bの凸部 (凹部) によって形成される隙間に向けて直線的に通過すること なく、 この第 2凹凸成形部 1 2 bにおける凸部 (K1部) に隣接して成形される凹部 (凸部 ) によって形成される隙間に向けて蛇行して流通する。 これにより、 燃料ガスまたは酸化 剤ガスは第 1凹 ώ成形部 1 2 aから第 2凹凸成形部 1 2 bに向けて蛇行して流通すること によって良好に拡散され、 ME A 3 0を構成するアノード電極層 AEまたは力ソード電極 層 C Eに対して十分な燃料ガスまたは酸化剤ガスを供給することができる。 したがって、 良好なガス供給性能を確保することができ、 ME A 3 0によって消費されない未反応の燃 料ガスまたは酸化剤ガスの量を低減することができる。 As can be understood from the above description, according to the first embodiment, the flat plate portion 1 2 c formed on the collector 12 2 forms the flow path of the fuel gas or the oxidant gas. Fuel from the gap formed by the concave portion (convex portion) of the molded portion 1 2 a toward the gap formed by the flange portion (concave portion) of the second concave-convex molded portion 1 2 b facing this concave portion (convex portion) The flow of gas or oxidant gas can be hindered. That is, the fuel gas or the oxidant gas is projected from the gap formed by the concave portion (convex portion) of the first concave-convex molded portion 12 a by the flat plate portion 12 c. ) Concave part (convex part) formed adjacent to the convex part (K1 part) in this second concave-convex molded part 1 2 b without passing linearly toward the gap formed by ) Meanders towards the gap formed by As a result, the fuel gas or the oxidant gas is well diffused by meandering from the first concave and convex molding portion 12 a to the second concave and convex molding portion 1 2 b to constitute ME A 30. Sufficient fuel gas or oxidant gas can be supplied to the anode electrode layer AE or the force sword electrode layer CE. Therefore, good gas supply performance can be ensured, and the amount of unreacted fuel gas or oxidant gas that is not consumed by ME A 30 can be reduced.
また、 セパレータ本体 1 1によって分離された燃料ガスまたは酸化剤ガスは、 第 1囬凸 成形部 1 2 aの凹部または凸部によって形成される隙間と第 2凹凸成形部 1 2 bの凹部ま たは凸部によつて形成される隙間を横切るように通過して、 ァノ一ド電極層 A Eまたは力 ソード電極層 C Eに供給される。 このため、 例えば、 表面張力の作用により、 発生した生 成水がコレクタ 1 2近傍に到 ると、 燃料ガスまたは酸化剤ガスの流れに乗せて生成水 を未反応ガスとともに外部に排水することができる。 これにより、 燃料ガスおょぴ酸化剤 ガスが供給されている限り、 言い換えれば、 固体高分子 §¾料電池が作動している限り、 発生した生成水を連続的に排水することができる。 したがって、 良好な生成水の排水性能 を確保することができる。  In addition, the fuel gas or the oxidant gas separated by the separator main body 1 1 is a gap formed by the concave portion or the convex portion of the first rib convex molding portion 12 a and the concave portion of the second concave and convex molding portion 12 b. Passes across the gap formed by the convex portion and is supplied to the anode electrode layer AE or the force sword electrode layer CE. For this reason, for example, when the generated water generated by the action of surface tension reaches the vicinity of the collector 12, the generated water can be discharged together with unreacted gas on the flow of fuel gas or oxidant gas. it can. As a result, as long as the fuel gas and the oxidizing gas are supplied, in other words, as long as the solid polymer battery is operating, the generated water can be drained continuously. Therefore, it is possible to ensure good drainage performance of the generated water.
さらに、 第 1凹凸成形部 1 2 a、 平板部 1 2 cおよび第 2凹凸成形部 1 bを順に連続 的に成形することにより、 燃料ガスまたは酸化剤ガスが第 1凹凸成形部 1 2 a力ゝら第 2凹 凸成形部 1 2 bを通過する回数すなわち蛇行する回数を増やすことができるとともに、 燃 料ガスまたは酸化剤ガスを Ξ次元的に流通させることができる。 このため、 燃料ガスまた は酸化剤ガスをより良好に拡散させることができて、 良好なガス供給性能を確保すること ができる。 また、 第 1凹凸成形部 1 2 aおよび第 2 HA凸成形部 1 2 bが複数成形されるこ とにより、 ME A 3 0における電極反応によって発生した生成水がより容易にコレクタ 1 2近傍に到達しゃすくなるため、 より良好な生成水の排水性能を確保することができる。 上記第 1実施形態においては、 流路形成部としての平板部 1 2 cを採用し、 燃料ガスま たは酸化剤ガスの第 1凹凸成形部 1 2 a力ゝら第 2凹凸成形部 1 2 bへの流路を形成するよ うに実施した。 しかし、 上述したように、 平板部 1 2 cを平板形状とするために、 言い換 えれば、 平板状の素材に対して第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 を選択 的に成形するために、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの成形高さが制 限される。 すなわち、 上記第 1実施形態においては、 素材に対して局所的にせん断加工お よび引き伸ばし加工が施されるために加工度が高くなる。 このため、 良好な成形を行うた めに、 これら加工に対する素材の材料特性 (例えば、 材料の流動特性) を考慮しなければ ならず、 成形高さを制限する必要がある。 Furthermore, the first concavo-convex molded part 1 2 a, the flat plate part 1 2 c and the second concavo-convex molded part 1 b are successively formed in this order so that the fuel gas or the oxidant gas can be applied to the first concavo-convex molded part 1 2 a In addition, it is possible to increase the number of times of passing through the second concave-convex molded portion 1 2 b, that is, the number of times of meandering, and to distribute the fuel gas or the oxidant gas in a three-dimensional manner. For this reason, fuel gas or oxidant gas can be diffused better, and good gas supply performance can be ensured. In addition, by forming a plurality of first concavo-convex molded parts 1 2 a and second HA convex molded parts 1 2 b, the water generated by the electrode reaction in ME A 30 can be more easily brought near collector 12. Since it reaches a low level, it is possible to ensure better drainage performance of the generated water. In the first embodiment, the flat plate portion 12 c is used as the flow path forming portion, and the first concavo-convex forming portion 1 2 a of the fuel gas or the oxidant gas is used. The flow path to b was formed. However, as described above, in order to make the flat plate portion 1 2 c into a flat plate shape, in other words, the first uneven formed portion 1 2 a and the second uneven formed portion 1 2 are selected for the flat plate-shaped material. Therefore, the forming heights of the first uneven portion 12 a and the second uneven portion 12 b are limited. That is, in the first embodiment, the shearing process is locally applied to the material. Further, the degree of processing increases because of the stretching process. For this reason, in order to perform good molding, the material characteristics of the raw materials for these processes (for example, the flow characteristics of the material) must be taken into account, and the molding height must be limited.
そこで、 このような成形上の制限を設ける必要がなく、 コレクタ 1 2を成形することが できる第 2実施形態を説明する。 なお、 この第 2実施形態を説明するにあたり、 上記第 1 実施形態と同一部分に同一の符号を付し、 その詳細な説明を省略する。  Therefore, a description will be given of a second embodiment in which the collector 12 can be molded without the need to provide such molding restrictions. In describing the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
この第 2実施形態においては、 図 8に示すように、 上記第 1実施形態におけるコレクタ 1 2の平板部 1 2 cに代えて、 三次元的に成形された流路形成部としての三次元曲面部 1 2 dが採用される点で異なる。 三次元曲面部 1 2 dは、 図 9 ( a ) , ( b ) に示すように、 第 1凹凸成形部 1 2 aにおける凸部の項部と第 2凹凸成形部 1 2 bにおける凹部の底部と を連結する曲面、 および、 第 1凹凸成形部 1 2 aにおける凹部の底部と第 2凹凸成形部 1 2 bにおける凸部の頂部とを連結する曲面が複合して形成されている。  In this second embodiment, as shown in FIG. 8, instead of the flat plate portion 12c of the collector 12 in the first embodiment, a three-dimensional curved surface as a three-dimensionally formed flow path forming portion Part 1 2 d differs in that it is adopted. As shown in FIGS. 9 (a) and (b), the three-dimensional curved surface portion 1 2 d includes a convex portion in the first uneven portion 12 a and a bottom portion of the concave portion in the second uneven portion 1 2 b. And a curved surface that connects the bottom of the concave portion in the first concave-convex molded portion 12 a and the top of the convex portion in the second concave-convex molded portion 12 b.
ここで、 このような三次元曲面部 1 2 dは、 第 1凹凸成形部 1 2 aにおける凹部と凸部 および第 2凹凸成形部 1 2 bにおける凹部と凸部の成形と同時に成形することができる。 すなわち、 この第 2実施形態においては、 素材に対する加工領域を大きくすることができ る。 このため、 例えば、 加工時における素材の流動性を十分に確保することができ、 良好 な成形を行うことができる。 したがって、 第 1凹凸成形部 1 2 a、 第 2凹凸成形部 1 2 b および三次元曲面部 1 2 dの成形に伴う制限を厳密に設ける必要がなレ、。  Here, such a three-dimensional curved surface portion 12 d can be formed simultaneously with the formation of the concave portion and the convex portion in the first concave-convex molding portion 12 a and the concave portion and the convex portion in the second concave-convex molding portion 12 b. it can. That is, in the second embodiment, the processing area for the material can be increased. For this reason, for example, the fluidity of the raw material at the time of processing can be sufficiently secured, and good molding can be performed. Therefore, it is not necessary to strictly set restrictions associated with the molding of the first concavo-convex molded part 1 2 a, the second concavo-convex molded part 1 2 b, and the three-dimensional curved surface part 1 2 d.
そして、 このような三次元曲面部 1 2 dが形成されたコレクタ 1 2も、 上記第 1実施形 態と同様に、 セパレータ本体 1 1に対して一体的に接合されるとともに、 一体的に固着さ れたフレーム 2 0および ME A 3 0の収容孔 2 1 c , 2 2 c内に収容され、 単セルを形成 する。 ここで、 この第 2実施形態におけるコレクタ 1 2も、 ガス供給ィンナーマ二ホール ドとガス排出インナーマ二ホールドの配置方向に対して、 第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの配列方向が略平行となるように、 フレーム 2 0の収容孔 2 1 c , 2 2 c内に収容される。 .  Then, the collector 12 having such a three-dimensional curved surface portion 12 d is also integrally joined to the separator body 11 and fixed integrally as in the first embodiment. The frame 20 and the ME A 30 are accommodated in the accommodation holes 21c and 22c to form a single cell. Here, the collector 12 in the second embodiment also has the first concavo-convex molded portion 1 2 a and the second concavo-convex molded portion 1 2 b with respect to the arrangement direction of the gas supply inner manifold and the gas discharge inner manifold hold. Are accommodated in the receiving holes 2 1 c and 2 2 c of the frame 20 so that the arrangement directions of the two are substantially parallel to each other. .
そして、 この第 2実施形態においては、 ガス供給ィンナーマ二ホールドからガス導通空 間内に導入された燃料ガスまたは酸化剤ガスは、 図 1 0に概略的に示すように、 コレクタ 1 2の第 1凹凸成形部 1 2 a力ら第 2凹凸成形部 1 2 bに向けて、 三次元曲面部 1 2 dに よって形成される流路を蛇行して三次元的に流れる。 以下、 このことを具体的に説明する 。 なお、 この説明においても、 上記実施形態と同様に、 理解を容易とするため、 ME A 3 0の上面側にコレクタ 1 2とセパレータ本体 1 1が積層されて燃料ガスが流通する を 例示して説明する。 In the second embodiment, the fuel gas or the oxidant gas introduced into the gas conduction space from the gas supply inner hold is the first of the collector 12 as schematically shown in FIG. The uneven formed portion 1 2 a flows in a three-dimensional manner by meandering the flow path formed by the three-dimensional curved surface portion 1 2 d toward the second uneven formed portion 1 2 b from the force. This will be explained in detail below. . In this description as well, in the same way as in the above embodiment, in order to facilitate understanding, the collector 12 and the separator body 11 are laminated on the upper surface side of the ME A 30 and the fuel gas flows. explain.
まず、 ME A側通路における燃料ガスの流通から説明する。 燃料ガスが第 1凹凸成形部 1 2 aの凸部によって形成される ME A側通路内に流入すると、 図 1 0にて破線で示すよ うに、 この流入した燃料ガスは、 三次元曲面部 1 2 dにより、 第 2凹凸成形部 1 2 bの凸 部によって形成される ME A側通路に向けて流れる。  First, fuel gas distribution in the ME A side passage will be described. When the fuel gas flows into the ME A-side passage formed by the convex portions of the first concavo-convex molded portion 1 2 a, as shown by the broken line in FIG. 2d flows toward the MEA-side passage formed by the convex portions of the second concave-convex molded portion 12b.
すなわち、 三次元曲面部 1 2 dは、 第 1凹凸成形部 1 2 aの凸部の頂部と第 2凹凸成形 部 1 2 bの凹部の底部を連結する曲面と、 第 1凹凸成形部 1 2 aの凹部の底部と第 2四凸 成形部 1 2 bの凸部の頂部を連結する曲面とから形成される。 このため、 第 1囬凸成形部 1 2 aにおける凸部に流入した燃料ガスは、 図 1 0における三次元曲面部 1 2 dの下面に 沿って、 ME A 3 0方向に流通する。 すなわち、 第 1凹凸成形部 1 2 aにおける凸部に流 入した燃料ガスは、 三次元曲面部 1 2 d力 S第 2凹凸成形部 1 2 bの凹部の底部に連結され るため、 第 2凹凸成形部 1 2 b方向への流通が禁止される。  That is, the three-dimensional curved surface portion 1 2 d has a curved surface connecting the top of the convex portion of the first concave-convex molded portion 1 2 a and the bottom portion of the concave portion of the second concave-convex molded portion 1 2 b and the first concave-convex molded portion 1 2 It is formed from a curved surface connecting the bottom of the concave portion of a and the top of the convex portion of the second four-convex molded portion 1 2 b. For this reason, the fuel gas that has flowed into the convex portion of the first ridge convex molding portion 12 a flows in the ME A 30 direction along the lower surface of the three-dimensional curved surface portion 12 d in FIG. That is, the fuel gas that has flowed into the convex portion of the first concave-convex shaped portion 12 a is connected to the bottom of the concave portion of the three-dimensional curved surface portion 1 2 d force S second concave-convex molded portion 12 b, so that the second Unevenness forming part 1 2 Distribution in the b direction is prohibited.
そして、 ME A 3 0に到達した燃料ガスは、 第 2凹凸成形部 1 2 bの凹部の両側に成形 された凸部に向けて流れる。 これにより、 第 1凹凸成形部 1 2 aの凸部によって形成され る ME A側通路を通過した燃料ガスは、 第 2凹凸成形部 1 2 bの凸部によつて形成される M E A側通路に向けて蛇行しながら流通する。  Then, the fuel gas that has reached ME A 30 flows toward the convex portions formed on both sides of the concave portion of the second concave-convex molded portion 12 b. As a result, the fuel gas that has passed through the MEA-side passage formed by the convex portions of the first concave-convex molded portion 12 a is transferred to the MEA-side passage formed by the convex portions of the second concave-convex molded portion 12 b. It circulates while meandering.
一方、 燃料ガスが第 1凹凸成形部 1 2 aの凹部によって形成されるセパレータ本体側通 路内に流入すると、 図 1 0にて実泉で示すように、 この流入した燃料ガスは、 図 1 0に示 す三次元曲面部 1 2 dの上面に沿って、 セパレ一タ本体 1 1に向けて流れる。 すなわち、 第 1凹凸成形部 1 2 aにおける凹部に流入した燃料ガスは、 三次元曲面部 1 2 dが第 2凹 凸成形部 1 2 bの凸部の頂部に連結されるため、 第 2凹凸成形部 1 2 b方向への流通が禁 止される。 そして、 セパレータ本体 1 1に到達した燃料ガスは、 第 2凹凸成形部 1 2 の 頂部の両側に成形された凹部に向けて流れる。  On the other hand, when the fuel gas flows into the separator main body side passage formed by the concave portion of the first concavo-convex molded portion 12 2a, as shown by the actual spring in FIG. It flows toward the separator body 11 along the upper surface of the three-dimensional curved surface portion 1 2 d shown in 0. That is, the fuel gas that has flowed into the concave portion of the first concave-convex molded portion 12 a is connected to the top of the convex portion of the second concave-convex molded portion 1 2 b because the three-dimensional curved surface portion 1 2 d is connected to the second concave-convex portion. Molding part 1 2 Distribution in the b direction is prohibited. Then, the fuel gas that has reached the separator body 11 flows toward the recesses formed on both sides of the top of the second concavo-convex molded part 1 2.
ここで、 この第 2実施形態におけるコレクタ 1 2においては、 図 1 0にも示すように、 第 2凹凸成形部 1 2 bの成形に伴って第 1凹凸成形部 1 2 aが成形される部分が存在する 。 すなわち、 第 2凹凸成形部 1 2 bの凹部に隣接して第 1凹凸成形部 1 2 aの凸部が成形 され、 第 2凹凸成形部 1 2 bの凸部に隣接して第 1凹凸成形部 1 2 aの凹部が成形される 。 このため、 この第 2実施形態におけるコレクタ 1 2においても、 第 2凹凸成形部 1 2 b と第 1凹凸成形部 1 2 aとが互いに隣接している部分では、 凹部と凸部 (凸部と凹部) に よつて比較的大きな開口が形成される。 Here, in the collector 12 in the second embodiment, as shown in FIG. 10, a portion where the first concavo-convex molded portion 1 2 a is formed as the second concavo-convex molded portion 12 b is formed. Exists. That is, the convex portion of the first concave / convex molded portion 12a is formed adjacent to the concave portion of the second concave / convex molded portion 12b, and the first concave / convex molded portion adjacent to the convex portion of the second concave / convex molded portion 12b. Recessed part 1 2 a is formed . Therefore, also in the collector 12 in the second embodiment, in the portion where the second concavo-convex molded portion 1 2 b and the first concavo-convex molded portion 1 2 a are adjacent to each other, the concave portion and the convex portion (the convex portion and A relatively large opening is formed by the recess).
このため、 この第 2実施形態におけるコレクタ 1 2においても、 セパレータ本体側通路 を流通する燃料ガスは、 第 2凹凸成形部 1 2 bを通過すると、 形成された開口を介して、 ME A側通路方向に (図 1 0に示すコレクタ 1 2の下方向) に三次元的に流れ、 ME A側 通路を流通する燃料ガスと合流するようになる。 一方、 ME A側通路を流通する燃料ガス は、 第 2凹凸成形部 1 2 bを通過すると、 形成された開口を介して、 セパレータ本体側通 路方向 (図 1 0に示すコレクタ 1 2の上方向) に三次元的に流れ、 セパレータ本体側通路 を流通する燃料ガスと合流するようになる。  For this reason, also in the collector 12 in the second embodiment, when the fuel gas flowing through the separator main body side passage passes through the second concavo-convex molding portion 12 b, the ME A side passage is formed through the formed opening. It flows three-dimensionally in the direction (downward direction of collector 12 shown in FIG. 10) and merges with the fuel gas flowing through the ME A side passage. On the other hand, when the fuel gas flowing through the MEA-side passage passes through the second concavo-convex molded portion 12 b, the separator body-side passage direction (upper side of the collector 12 shown in FIG. 10) passes through the formed opening. Direction) and merge with the fuel gas flowing through the separator body side passage.
したがって、 この第 2実施形態においても、 ガス導通空間内に導入された燃料ガスは、 コレクタ 1 2を通過することにより、 上下左右方向に三次元的に蛇行しながら流通する。 これにより、 燃料ガスは、 ガス導通空間内で良好に拡散することができ、 アノード電極層 AEに対して、 効率よく供給される。 なお、 この第 2実施形態における例示においても、 酸化剤ガスを導通させる場合や、 ME A 3 0の下面側にコレクタ 1 2およびセパレータ本 体 1 1を積層する場合は、 上記例示におけるコレクタ 1 2の第 1凹凸成形部 1 2 aおよび 第 2凹凸成形部 1 2 bの凹部または凸部が異なるのみでその他の部分は全く同様である。 また、 この第 2実施形態におけるコレクタ 1 2においても、 ガス導通空間内に導入され た燃料ガスまたは酸化剤ガスは、 必然的にコレクタ 1 2に形成された第 1凹凸成形部 1 2 aと第 2凹凸成形部 1 2 bの凹部または凸部を横切るように通過する。 したがって、 上記 第 1実施形態と同様に、 ME A 3 0における電極反応が進行してフラッディング状態が発 生する状況であつても、 燃料ガスまたは酸化剤ガスの流れによつて水膜の形成が防止され る。 さらに、 所定の圧力で燃料ガスまたは酸化剤ガスが導入されることから、 コレクタ 1 2にまで到達した生成水は、 一部の未反応ガスとともに単セノレすなわち燃料電池スタック 外に排水される。  Therefore, also in the second embodiment, the fuel gas introduced into the gas conduction space passes through the collector 12 and circulates in a three-dimensional meandering in the vertical and horizontal directions. As a result, the fuel gas can diffuse well in the gas conduction space, and is efficiently supplied to the anode electrode layer AE. In the example in the second embodiment, when the oxidant gas is conducted, or when the collector 12 and the separator main body 11 are stacked on the lower surface side of the ME A 30, the collector 12 in the above example is used. The other parts are exactly the same except that the first concavo-convex molded part 1 2 a and the second concavo-convex molded part 12 b are different in the concave or convex parts. Also in the collector 12 in the second embodiment, the fuel gas or oxidant gas introduced into the gas conduction space inevitably has the first uneven formed portion 12 a formed in the collector 12 and the first 2 Passes so as to cross the concave or convex portion of the concave and convex molded portion 1 2 b. Therefore, as in the first embodiment, even when the electrode reaction in ME A 30 proceeds and a flooding state occurs, a water film is formed by the flow of fuel gas or oxidant gas. Is prevented. Furthermore, since the fuel gas or the oxidant gas is introduced at a predetermined pressure, the generated water that has reached the collector 12 is discharged together with some unreacted gas to the outside of the single cell, that is, the fuel cell stack.
したがって、 上記第 1実施形態と同様に、 燃料電池が作動している間は、 コレクタ 1 2 に生成水が溜まることがなく、 また、 アノード電極層 AEまたは力ソード電極層 C Eに余 分な生成水が溜まることがなレ、ため、 フラッディング状態の発生を良好に防止することが できる。 また、 燃料電池の作動中において生成水力 S燃料電池スタック外に連続的に排水さ れるため、 例えば、 低温環境下におレヽても生成水が氷結することを防止することができ、 燃料電池の良好な始動性を確保することができる。 Therefore, as in the first embodiment, while the fuel cell is in operation, the generated water does not collect in the collector 12, and excessive generation occurs in the anode electrode layer AE or the force sword electrode layer CE. Since water does not accumulate, the occurrence of flooding can be prevented well. Also, during operation of the fuel cell, the generated hydropower S is continuously drained out of the fuel cell stack. Therefore, for example, the generated water can be prevented from freezing even in a low temperature environment, and good startability of the fuel cell can be ensured.
以上の説明からも理解できるように、 この第 2実施形態にぉレ、ては、 局所的な成形を行 わないため、 成形上の制約を設ける必要がない。 したがって、 極めて容易にコレクタ 1 2 を成形することができるため、 歩留まりがよくなり、 その結果、 製造コストを低減するこ とができる。 また、 成形上の制約を設ける必要がないため、 コレクタ 1 2の設計自由度が 向上する。 これにより、 例えば、 ガス導通空間内を導通する燃料ガスまたは酸化剤ガスの 圧力損失を低減する形状の設計ゃコレクタ 1 2の厚みを小さくして燃料電池自体を小型ィヒ することも可能となる。  As can be understood from the above description, since the second embodiment does not perform local molding, it is not necessary to provide molding restrictions. Therefore, since the collector 12 can be molded very easily, the yield is improved, and as a result, the manufacturing cost can be reduced. In addition, since there is no need to provide molding restrictions, the design flexibility of the collector 12 is improved. As a result, for example, a design that reduces the pressure loss of the fuel gas or oxidant gas that conducts in the gas conduction space can also reduce the thickness of the collector 12 and reduce the size of the fuel cell itself. .
また、 三次元曲面部 1 2 dは、 第 1凹凸成形部 1 2 aにおける凹部の底部と対向する位 置に成形された第 2凹凸成形部 1 2 の凸部の頂部とを連結し、 第 1凹凸成形部 1 2 aに おける凸部の頂部と対向する位置に成形された第 2凹凸成形部 1 2 の凹部の底部とを連 結することができる。 これにより、 第 1凹凸成形部 1 2 aにおける凹部によって形成され る隙間から第 2凹凸成形部 1 2 bにおける凸部によって形成される隙間への燃科ガスまた は酸化剤ガスの流れ、 および、 第 1凹凸成形部 1 2 aにおける凸部によつて形成される隙 間から第 2凹凸成形部 1 2 bにおける凹部によって形成される隙間への燃料ガスまたは酸 化剤ガスの流れを確実に禁止することができる。  The three-dimensional curved surface portion 12 d connects the top of the convex portion of the second concave-convex molded portion 12 formed at a position opposite to the bottom of the concave portion in the first concave-convex molded portion 12 a, It is possible to connect the bottom of the concave portion of the second concave-convex molded portion 1 2 formed at a position facing the top of the convex portion in the first concave-convex molded portion 1 2 a. Accordingly, the flow of the fuel gas or the oxidant gas from the gap formed by the concave portion in the first concave / convex molded portion 12a to the gap formed by the convex portion in the second concave / convex molded portion 12b, and The flow of fuel gas or oxidant gas is surely prohibited from the gap formed by the convex part in the first concave / convex molding part 12a to the gap formed by the concave part in the second concave / convex molding part 12b. can do.
さらに、 第 1凹凸成形部 1 2 aにおける凹部の底部 (凸部の項部) と第 2凹凸成形部 1 2 bにおける凸部の頂部 (凹部の底部) とを三次元曲面部 1 2 dによって連結することに より、 ME A 3 0 (カーボンクロス C C) との接触態様を線状とすることができる。 これ により、 ME A 3 0、 より詳しくは、 アノード電極層 A Eまたは力ソード電極層 C Eに対 するガスの供給性能をより向上させることができ、 燃料電池自体の発電性能を向上させる ことができる。 その他の効果にっレ、ては、 上記第 1実施形態と同様である。  Further, the bottom of the concave portion (the convex portion) in the first concave-convex shaped portion 12 a and the top of the convex portion (bottom of the concave portion) in the second concave-convex shaped portion 1 2 b are formed by the three-dimensional curved surface portion 1 2 d By connecting, the contact mode with ME A 30 (carbon cloth CC) can be made linear. As a result, the gas supply performance to ME A 30, more specifically the anode electrode layer A E or the force sword electrode layer CE, can be further improved, and the power generation performance of the fuel cell itself can be improved. Other effects are the same as in the first embodiment.
本発明の実施に当たっては、 上記第 1実施形態および第 2実施形態に限定されるもので はなく、 種々の変形が可能である。  In carrying out the present invention, the present invention is not limited to the first embodiment and the second embodiment, and various modifications can be made.
例えば、 コレクタ 1 2における第 1凹凸成形部 1 2 aおよび第 2凹凸成形部 1 2 bの四 部と凸部の形状にっレ、ては、 上記第 1および第 2実施形態の断面略矩形状に限定されるも のではない。 すなわち、 燃料ガスまたは酸化剤ガスが通過可能な形状であれば、 いかなる 形状であってもよい。 また、 上記第 1および第 2実施形態においては、 セパレータ本体 11とコレクタ 12と を金属的に接合することによって、 一体的に固設して実施した。 し力し、 セパレータ本体 11とコレクタ 12とを金属的に接合することなく実施可能であることはいうまでもない For example, the shape of the four parts of the first concavo-convex molded part 1 2 a and the second concavo-convex molded part 12 b in the collector 12 and the shape of the convex part is substantially rectangular in cross section in the first and second embodiments. It is not limited to shape. That is, any shape may be used as long as the fuel gas or the oxidant gas can pass therethrough. In the first and second embodiments, the separator main body 11 and the collector 12 are joined together in a metallic manner so as to be integrally fixed. Needless to say, this can be implemented without metallic joining of the separator body 11 and the collector 12.

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃料電池の電極構造体を構成する電極層に対して、 外部から導入された燃料ガスと酸 化剤ガスとをそれぞれ供給する燃料電池用セパレータにおいて、  1. In a fuel cell separator that supplies an externally introduced fuel gas and an oxidant gas to an electrode layer constituting an electrode structure of a fuel cell,
前記燃料ガスと酸化剤ガスとを分離して混流を防止する平板状のセパレータ本体と、 前記セパレータ本体によつて分離された燃料ガスまたは酸化剤ガスをそれぞれ拡散して 前記電極構造体に供給するとともに、 前記電極構造体における電極反応によって発電され た電気を集電するコレクタであって、  A flat separator body that separates the fuel gas and the oxidant gas to prevent mixed flow; and the fuel gas or the oxidant gas separated by the separator body is diffused and supplied to the electrode structure. And a collector that collects electricity generated by an electrode reaction in the electrode structure,
前記分離された燃料ガスまたは酸化剤ガスが三次元的に流通するための隙間を前記セパ レータ本体おょぴ前記電極構造体との間で形成する複数の回部と凸部とを直線的に力つ連 続的に成形した第 1凹凸成形部と、  A plurality of turning portions and projections that form gaps between the separated fuel gas or the oxidant gas in a three-dimensional manner between the separator body and the electrode structure are linearly formed. The first concavo-convex molded part,
同第 1凹凸成形部の凹部および凸部の成形周期に対して半周期だけ異なり、 前記分離さ れた燃料ガスまたは酸化剤ガスが三次元的に流通するための隙間を前記セパレ一タ本体お よび前記電極構造体との間で形成する複数の凹部と凸部とを直線的にかつ連続的に成形し た第 2凹凸成形部と、  It differs from the molding cycle of the concave and convex portions of the first concavo-convex molded portion by a half cycle, and a gap for the three-dimensional flow of the separated fuel gas or oxidant gas is provided in the separator main body. And a second concavo-convex molded portion formed by linearly and continuously molding a plurality of concave portions and convex portions formed between the electrode structure and the electrode structure,
前記第 1凹凸成形部と前記第 2凹凸成形部との間に形成されて、 前記第 1凹凸成形部と 前記第 2凹凸成形部とを互レ、に連結するとともに、 前記分離された燃料ガスまたは酸化剤 ガスの前記第 1凹凸成形部の回部によつて形成される隙間から前記第 2凹凸成形部の凹部 によって形成される隙間への流路および前記第 1凹凸成形部の凸部によって形成される隙 間から前記第 2凹凸成形部の凸部によつて形成される隙間への流路を形成する流路形成部 とを備えたコレクタとから構成したことを特徴とする燃料電池用セパレータ。  Formed between the first concavo-convex molded portion and the second concavo-convex molded portion to connect the first concavo-convex molded portion and the second concavo-convex molded portion to each other, and the separated fuel gas Alternatively, the flow path from the gap formed by the turning portion of the first concavo-convex molding portion to the gap formed by the concave portion of the second concavo-convex molding portion and the convex portion of the first concavo-convex molding portion And a collector having a flow path forming portion that forms a flow path from the formed gap to the gap formed by the convex portion of the second concavo-convex molded portion. Separator.
2 . 請求項 1に記载した燃料電池用セパレータにおレ、て、 2. The fuel cell separator described in claim 1
前記第 1凹凸成形部と前記第 2凹凸成形部との酉 S列方向が、 前記セパレータ本体によつ て分離された燃料ガスまたは酸化剤ガスの流通方向と略平行であることを特徴とする燃料 電池用セパレータ。  The 酉 S row direction of the first concavo-convex molded portion and the second concavo-convex molded portion is substantially parallel to the flow direction of the fuel gas or oxidant gas separated by the separator body. Fuel cell separator.
3 . 請求項 1に記載した燃料電池用セパレータにおレヽて、 3. In the fuel cell separator according to claim 1,
前記流路形成部は、  The flow path forming part is
前記第 1凹凸成形部を形成する凹部の底部および前記第 2凹凸成形部を形成する凹部の 底部を含む平面と、 前記第 1凹凸成形部を形成する凸部の頂部および前記第 2凹凸成形部 を形成する凸部の頂部を含む平面との間に成形されることを特徴とする燃料電池用セパレ ータ。 A bottom portion of the concave portion forming the first concave-convex molded portion and a concave portion forming the second concave-convex molded portion. A fuel cell formed between a flat surface including a bottom and a flat surface including a top of a convex portion forming the first concave / convex molding portion and a top portion of a convex portion forming the second concave / convex molding portion. Separator for use.
4 . 請求項 3に記載した燃料電池用セパレータにお!/、て、 4. In the fuel cell separator according to claim 3,! /,
前記流路形成部は、  The flow path forming part is
前記第 1凹凸成形部を形成する凹部おょぴ前記第 2凹凸成形部を形成する凹部の成形方 向と、 前記第 1凹凸成形部を形成する凸部および前記第 2凹凸成形部を形成する凸部の成 形方向とに対する中立面を少なくとも含んで平板形状に成形されることを特徴とする燃料 電池用セパレータ。  Forming the first concave and convex portions, forming the concave portion forming the second concave and convex portions, forming the convex portions forming the first concave and convex portions, and forming the second concave and convex portions. A separator for a fuel cell, characterized in that it is formed into a flat plate shape including at least a neutral surface with respect to the forming direction of the convex portion.
5 . 請求項 4に記載した燃料電池用セパレータにおいて、 5. In the fuel cell separator according to claim 4,
前記平板形状に成形される流路形成部に対して、  For the flow path forming part formed into the flat plate shape,
前記第 1凹凸成形部を形成する凹部の底部および前記第 2凹凸成形部を形成する凹部の 底部がこれら底部における板厚分だけ突出し、 前記第 1凹凸成形部を形成する凸部の頂部 および前記第 2凹凸成形部を形成する凸部の頂部がこれら頂部における板厚分だけ突出す ることを特徴とする燃料電池用セパレータ。  The bottom part of the concave part forming the first concave-convex molded part and the bottom part of the concave part forming the second concave-convex molded part protrude by the thickness of the bottom part, and the top part of the convex part forming the first concave-convex molded part and A fuel cell separator characterized in that the tops of the projections forming the second concavo-convex molded part protrude by the thickness of the tops.
6 . 請求項 3に記載した燃料電池用セパレータにおレ、て、 6. In the fuel cell separator according to claim 3,
前記流路形成部は、  The flow path forming part is
前記第 1凹凸成形部を形成する凹部の底部および凸部の頂部と、 前記第 2凹凸成形部を 形成して前記第 1凹凸成形部の凹部に対向する凸部の頂部および前記第 1凹凸成形部の凸 部に対向する凹部の底部とを連結する三次元曲面に成形されることを特徴とする燃料電池 用セパレータ。  The bottom of the concave portion and the top of the convex portion that form the first concave-convex molded portion, and the top portion of the convex portion that forms the second concave-convex molded portion and faces the concave portion of the first concave-convex molded portion, and the first concave-convex molded portion A separator for a fuel cell, characterized in that it is formed into a three-dimensional curved surface that connects the bottom of the concave portion facing the convex portion of the portion.
7 . 請求項 1に記載した燃料電池用セパレ一タにおレ、て、 7. The fuel cell separator according to claim 1,
前記第 1凹凸成形部と第 2凹凸成形部とをそれぞれ形成する凹部および凸部の成形方向 における形状は、 略矩形状であることを特徴とする燃料電池用セパレータ。 The fuel cell separator, wherein the concave and convex portions forming the first concave and convex portions and the convex and concave portions in the molding direction are substantially rectangular.
8 . 請求項 1に記載した燃料電池用セパレータにおレ、て、 8. The fuel cell separator according to claim 1, wherein
前記コレクタは、 前記第 1凹凸成形部、 前記流路形成部および前記第 2凹凸成形部が J噴 に力つ連続的に複数成形されることを特徴とする燃料電池用セパレータ。  The collector for a fuel cell, wherein the collector is formed by continuously forming a plurality of the first concavo-convex forming part, the flow path forming part and the second concavo-convex forming part against J jet.
PCT/JP2008/062661 2007-07-10 2008-07-08 Separator for fuel cell WO2009008534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-180772 2007-07-10
JP2007180772A JP4924829B2 (en) 2007-07-10 2007-07-10 Fuel cell separator

Publications (1)

Publication Number Publication Date
WO2009008534A1 true WO2009008534A1 (en) 2009-01-15

Family

ID=40228701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062661 WO2009008534A1 (en) 2007-07-10 2008-07-08 Separator for fuel cell

Country Status (2)

Country Link
JP (1) JP4924829B2 (en)
WO (1) WO2009008534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065907A (en) * 2018-08-21 2018-12-21 上海空间电源研究所 A kind of fuel battery polar plate flow field structure and fuel battery pole board
CN111316468A (en) * 2017-10-30 2020-06-19 罗伯特·博世有限公司 Gas distributor plate for gas distribution and flow guidance in electrolysers and fuel cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186578A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Fuel cell separator
WO2010113252A1 (en) 2009-03-31 2010-10-07 トヨタ車体 株式会社 Fuel battery
WO2011108022A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Fuel cell
JP5240282B2 (en) * 2010-12-06 2013-07-17 トヨタ自動車株式会社 Fuel cell
KR101241016B1 (en) 2011-09-09 2013-03-11 현대자동차주식회사 Seperator for fuel cell
KR102034457B1 (en) * 2015-10-30 2019-10-21 주식회사 엘지화학 Separator and Fuel cell stack comprising the same
KR20230100109A (en) * 2021-12-28 2023-07-05 주식회사진영정기 Current collector for solid oxide fuel cell to prevent structural deformation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279573A (en) * 1988-05-02 1989-11-09 Hitachi Ltd Separator for fuel cell
JPH05503606A (en) * 1989-11-24 1993-06-10 株式会社東芝 fuel cell current collector plate
JPH0982344A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JP2004531871A (en) * 2001-06-26 2004-10-14 フュエルセル エナジー, インコーポレイテッド Waveform current collector of internal direct reforming fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279573A (en) * 1988-05-02 1989-11-09 Hitachi Ltd Separator for fuel cell
JPH05503606A (en) * 1989-11-24 1993-06-10 株式会社東芝 fuel cell current collector plate
JPH0982344A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JP2004531871A (en) * 2001-06-26 2004-10-14 フュエルセル エナジー, インコーポレイテッド Waveform current collector of internal direct reforming fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316468A (en) * 2017-10-30 2020-06-19 罗伯特·博世有限公司 Gas distributor plate for gas distribution and flow guidance in electrolysers and fuel cells
CN109065907A (en) * 2018-08-21 2018-12-21 上海空间电源研究所 A kind of fuel battery polar plate flow field structure and fuel battery pole board
CN109065907B (en) * 2018-08-21 2022-03-25 上海空间电源研究所 Fuel cell polar plate flow field structure and fuel cell polar plate

Also Published As

Publication number Publication date
JP4924829B2 (en) 2012-04-25
JP2009021022A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2009008534A1 (en) Separator for fuel cell
JP4842072B2 (en) Fuel cell and fuel cell system having the same
JP5318696B2 (en) Fuel cell stack
US20050153184A1 (en) Bipolar plate with cross-linked channels
JP5962847B2 (en) FUEL CELL, FUEL CELL DISTRIBUTION DEVICE, AND VEHICLE HAVING FUEL CELL
CN111244496B (en) Fuel cell and flow distribution device
JP2004247154A (en) Separator channel structure of fuel cell
RU2011107433A (en) INTERCONNECTOR FOR FUEL ELEMENTS AND METHOD FOR PRODUCING INTERCONNECTOR FOR FUEL ELEMENTS
JP5302263B2 (en) Fuel cell
US8053125B2 (en) Fuel cell having buffer and seal for coolant
US20070254203A1 (en) Fuel cell stack
KR20070073340A (en) Flat type fuel cell assembly having housing
JP3551810B2 (en) Gas separator for fuel cell, fuel cell, and gas distribution method in fuel cell
US9373857B2 (en) Fuel cell apparatus
JP2019121530A (en) Power generation cell
US20080138695A1 (en) Fuel Cell
JP5042507B2 (en) Fuel cell
US20170110755A1 (en) Fuel cell stack
JP4259041B2 (en) Fuel cell
CN106887624B (en) Fuel cell
JP2005108505A (en) Internal manifold type fuel cell
US9634340B2 (en) Plate-style water vapor transfer unit with integral headers
JP2004171824A (en) Fuel cell
JP4989185B2 (en) Separator set for fuel cell
US11233261B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08778132

Country of ref document: EP

Kind code of ref document: A1