JPH0982322A - Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof - Google Patents

Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof

Info

Publication number
JPH0982322A
JPH0982322A JP7262097A JP26209795A JPH0982322A JP H0982322 A JPH0982322 A JP H0982322A JP 7262097 A JP7262097 A JP 7262097A JP 26209795 A JP26209795 A JP 26209795A JP H0982322 A JPH0982322 A JP H0982322A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
metal
surface side
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7262097A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsuura
義典 松浦
Mitsuzo Nogami
光造 野上
Mamoru Kimoto
衛 木本
Nobuyuki Higashiyama
信幸 東山
Yasushi Kuroda
黒田  靖
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7262097A priority Critical patent/JPH0982322A/en
Priority to US08/562,150 priority patent/US5629000A/en
Priority to DE69523017T priority patent/DE69523017T2/en
Priority to EP95118539A priority patent/EP0714143B1/en
Priority to CNB951215035A priority patent/CN1138310C/en
Publication of JPH0982322A publication Critical patent/JPH0982322A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the characteristics of a battery in the initial stage of charge/discharge cycles by crushing an alloy having the specified crystal grain size, the specified average thickness and composition, and using the obtained alloy powder as a hydrogen storage material. SOLUTION: The minimum crystal grain size on the roll surface side is made 0.2μm or more and the maximum crystal grain size on the open surface side is made 18μm or less. The alloy powder obtained by crushing a thin plate- shaped Mm.Ni.Co.Al.Mn alloy represented by general formula MmRx having an average thickness of 0.08-0.35mm produced by a single roll process is used as a hydrogen storage material. Mm represents misch metal, R represents Ni, Co, Mn, or Al, and x is 4.5-4.9. Since the excessive small crystal grains do not exist on the roll surface side and excessive large crystal grains do not exist on the open surface side, the alloy is appropriately broken in the initial stage of charge/discharge cycles, and in addition the generation of fine powder is prevented even if charge/discharge cycles are repeated. Since the total amount to molar part of the alloy is regulated, the alloy is easy to break.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属−水素化物ア
ルカリ蓄電池用の水素吸蔵合金電極及びその製造方法に
係わり、詳しくは、充放電サイクル初期の高率放電特
性、充放電サイクル特性及び耐過充電特性のいずれにも
優れる金属−水素化物アルカリ蓄電池を得ることを可能
にする水素吸蔵合金電極を提供することを目的とした、
水素吸蔵材たる水素吸蔵合金の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for a metal-hydride alkaline storage battery and a method for manufacturing the same, and more particularly, to a high rate discharge characteristic at the beginning of a charge / discharge cycle, a charge / discharge cycle characteristic and an overcurrent resistance. With the aim of providing a hydrogen storage alloy electrode that makes it possible to obtain a metal-hydride alkaline storage battery having excellent charging characteristics,
The present invention relates to improvement of a hydrogen storage alloy that is a hydrogen storage material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用した金属・水素化物アル
カリ蓄電池が、単位重量及び単位体積当たりのエネルギ
ー密度が高く、高容量化が可能であることから、ニッケ
ル・カドミウム蓄電池に代わる次世代のアルカリ蓄電池
として注目されている。
2. Description of the Related Art In recent years,
A metal / hydride alkaline storage battery that uses a metal compound such as nickel hydroxide for the positive electrode and a new material hydrogen storage alloy for the negative electrode has a high energy density per unit weight and unit volume and is capable of high capacity. Therefore, it is attracting attention as a next-generation alkaline storage battery that replaces the nickel-cadmium storage battery.

【0003】金属・水素化物アルカリ蓄電池用の水素吸
蔵合金としては、通常、鋳型内の合金溶湯を水冷凝固さ
せた後、粉砕して得たものが使用されている(以下、こ
の水素吸蔵合金を「通常凝固品」と称する。)。
As a hydrogen storage alloy for a metal / hydride alkaline storage battery, one obtained by pulverizing a molten alloy in a mold after water-cooling solidification is generally used (hereinafter, this hydrogen storage alloy will be referred to as "hydrogen storage alloy"). Referred to as "normally coagulated product").

【0004】しかしながら、通常凝固品には偏析(成分
元素濃度の偏り)が多く存在するために、充放電時に水
素を吸蔵又は放出する際に合金粒子に割れが生じて、比
表面積が増加し易い。このため、通常凝固品を負極材料
として使用した金属・水素化物アルカリ蓄電池は、充放
電サイクル初期の高率放電特性には優れる反面、偏析部
分が酸化劣化(腐食)の起点になり易いことからサイク
ル寿命が一般に短いという問題を有していた。
However, since a solidified product usually has a large amount of segregation (deviation of concentration of component elements), alloy particles are cracked when hydrogen is occluded or released during charging / discharging, and the specific surface area is apt to increase. . Therefore, a metal / hydride alkaline storage battery that uses a solidified product as a negative electrode material is excellent in high rate discharge characteristics at the beginning of the charge / discharge cycle, but the segregated portion easily becomes a starting point of oxidative deterioration (corrosion). It has a problem that the life is generally short.

【0005】サイクル寿命を改善する方法として、通常
凝固品にアニール処理(所定温度に所定時間加熱保持す
る処理)を施したものを使用することが、先に提案され
ている(特開昭60−89066号)。
As a method for improving the cycle life, it has been previously proposed to use a solidified product that has been subjected to an annealing treatment (a treatment of heating and holding at a predetermined temperature for a predetermined time) (Japanese Patent Laid-Open No. 60-60). 89066).

【0006】しかしながら、通常凝固品にアニール処理
を施すと、偏析が少なくなるため、未処理のものに比べ
てサイクル寿命は長くなる反面、このように偏析が少な
くなる上に、結晶粒の大きさ(希土類元素の濃度が高い
層と同濃度が低い層とが交互に出現する層状構造に於け
る隣接する二層の厚みの和)が大きくなり過ぎるため
に、粒子に割れが生じにくくなり、充放電サイクル初期
の高率放電特性が未処理のものに比べて著しく低下す
る。
However, when the solidified product is usually annealed, segregation is reduced, so that the cycle life is longer than that of the untreated product. On the other hand, the segregation is reduced and the size of the crystal grains is increased. Since (the sum of the thicknesses of two adjacent layers in a layered structure in which a layer having a high concentration of rare earth elements and a layer having a low concentration of rare earth elements alternately appear) becomes too large, cracks are less likely to occur in the particles, and The high rate discharge characteristics in the initial stage of the discharge cycle are remarkably deteriorated as compared with the untreated one.

【0007】通常凝固品に上述した解決困難な問題があ
ることに鑑み、最近、高速回転するロールの周面に合金
溶湯を噴出させて急冷凝固させる所謂単ロール法により
作製した水素吸蔵合金が金属・水素化物アルカリ蓄電池
用の負極材料として提案されている(特開平6−187
979号公報等参照)。
In view of the above-described difficult problems to solve in a normally solidified product, recently, a hydrogen storage alloy produced by a so-called single roll method in which a molten alloy is jetted to the peripheral surface of a roll rotating at high speed to rapidly solidify is a metal. Proposed as a negative electrode material for hydride alkaline storage batteries (Japanese Patent Laid-Open No. 6-187)
No. 979).

【0008】この単ロール法により作製した水素吸蔵合
金は、合金溶湯を急冷凝固させて得たものであるので、
合金溶湯が凝固する際に重力場の影響を受けにくく、通
常凝固品に比べて、偏析が少ない。
Since the hydrogen storage alloy produced by this single roll method is obtained by quenching and solidifying the molten alloy,
When the molten alloy is solidified, it is less affected by the gravitational field, and segregation is less than that of a normally solidified product.

【0009】しかしながら、単ロール法により作製した
水素吸蔵合金は、結晶粒の大きさが不均一である。この
ため、充放電サイクルが進むにつれて、割れ易い部分
(結晶粒の大きさが大きい開放面側)と、割れにくい部
分(結晶粒の大きさが小さいロール面側)とが存在す
る。
However, the hydrogen storage alloy produced by the single roll method has nonuniform crystal grain sizes. Therefore, as the charging / discharging cycle progresses, there are portions that are easily cracked (on the open surface side where the crystal grain size is large) and portions that are difficult to crack (on the roll surface side where the crystal grain size is small).

【0010】また、特開昭63−291363号公報に
は、結晶粒が一定の結晶面((hk0)面と思われ
る。)に配向した厚さ40μm以下の薄片状の水素吸蔵
合金を粉砕したものを電極材料として使用することが好
ましいことが示されている。しかし、この水素吸蔵合金
では合金粒子の表面に選択配向面が現れるため、電極触
媒能が悪く、充放電サイクル初期の高率放電特性が良く
ないという問題がある。加えて、厚さ40μm以下の薄
片を使用した場合には、粉砕後の合金粒子が細かいの
で、合金粒子間の接触抵抗が大きい。このため、水素吸
蔵合金の利用率が低く、サイクル寿命が短いという問題
もある。
Further, in JP-A-63-291363, a flaky hydrogen storage alloy having a thickness of 40 μm or less in which crystal grains are oriented in a constant crystal plane (probably (hk0) plane) is pulverized. It has been shown that it is preferable to use one as an electrode material. However, in this hydrogen storage alloy, the selective orientation plane appears on the surface of the alloy particles, so that there is a problem that the electrode catalyst ability is poor and the high rate discharge characteristics at the beginning of the charge and discharge cycle are not good. In addition, when a thin piece having a thickness of 40 μm or less is used, since the alloy particles after pulverization are fine, the contact resistance between the alloy particles is large. Therefore, there is a problem that the utilization rate of the hydrogen storage alloy is low and the cycle life is short.

【0011】図2は、単ロール法により作製した水素吸
蔵合金Bを、帯長方向に沿って帯面に垂直な面でカット
したときの断面に現れる結晶粒の様子を模式的に示す拡
大断面図である(一部のみ描写)。図中、白色部21は
希土類元素の濃度が高い層であり、黒色部22は同濃度
が低い層であり、隣接するこれら二層の厚みの和が結晶
粒の大きさを示す。25は、薄帯の厚みである。図2に
示すように、開放面側Oの結晶粒の大きさ23は大き
く、ロール面側Rの結晶粒の大きさ24は小さい。結晶
粒の大きさ23が大きい開放面側Oは割れ易くて活性化
し易いが、結晶粒の大きさ24が小さいロール面側Rは
割れにくくて活性化しにくい。その結果、活性化し易い
開放面側Oの充放電深度が深くなるため、この水素吸蔵
合金Bは、充放電を繰り返すと微粉化し易い。
FIG. 2 is an enlarged cross-sectional view schematically showing the appearance of crystal grains appearing in the cross section of the hydrogen storage alloy B produced by the single roll method when cut along the strip length direction along a plane perpendicular to the strip surface. It is a figure (only a part is drawn). In the figure, the white portion 21 is a layer having a high concentration of rare earth elements, and the black portion 22 is a layer having a low concentration thereof, and the sum of the thicknesses of these two adjacent layers indicates the size of the crystal grain. 25 is the thickness of the ribbon. As shown in FIG. 2, the crystal grain size 23 on the open surface side O is large and the crystal grain size 24 on the roll surface side R is small. The open surface side O having a large crystal grain size 23 is easily cracked and activated, while the roll surface side R having a small crystal grain size 24 is hard to crack and activated. As a result, the charge / discharge depth on the open surface side O, which is easily activated, becomes deep, and therefore the hydrogen storage alloy B is easily pulverized when charge / discharge is repeated.

【0012】このように、単ロール法により作製した水
素吸蔵合金を使用した金属−水素化物アルカリ蓄電池に
は、充放電を繰り返すと水素吸蔵合金が微粉化し易いた
めにサイクル寿命が短いという欠点があり、その改善が
嘱望されていた。
As described above, the metal-hydride alkaline storage battery using the hydrogen storage alloy produced by the single roll method has a drawback that the hydrogen storage alloy is easily pulverized when the charge and discharge are repeated, so that the cycle life is short. , The improvement was hoped for.

【0013】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、充放電サイクル初
期の高率放電特性、充放電サイクル特性及び耐過充電特
性のいずれにも優れる金属−水素化物アルカリ蓄電池を
得ることを可能にする水素吸蔵合金電極及びその製造方
法を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to have excellent high rate discharge characteristics, charge / discharge cycle characteristics, and overcharge resistance characteristics at the beginning of a charge / discharge cycle. (EN) Provided are a hydrogen storage alloy electrode and a method for producing the same, which makes it possible to obtain a metal-hydride alkaline storage battery.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る金属−水素化物アルカリ蓄電池用の水素
吸蔵合金電極(本発明電極)は、ロール面側の下記に定
義する結晶粒の大きさの最小が0.2μm以上、開放面
側の下記に定義する結晶粒の大きさの最大が18μm以
下である、単ロール法により作製された平均厚み0.0
8〜0.35mmの一般式:MmRx (Mmはミッシュ
メタル;RはNi、Co、Al及びMn;xは4.5〜
4.9)で表される薄帯状のMm・Ni・Co・Al・
Mn合金を、粉砕して得た合金粉末が、水素吸蔵材とし
て使用されたものである。
A hydrogen storage alloy electrode (invention electrode) for a metal-hydride alkaline storage battery according to the present invention for achieving the above object has a crystal grain defined on the roll surface side as defined below. An average thickness of 0.0 produced by a single roll method in which the minimum size is 0.2 μm or more and the maximum size of the crystal grains defined below on the open surface side is 18 μm or less.
General formula of 8 to 0.35 mm: MmR x (Mm is Misch metal; R is Ni, Co, Al and Mn; x is 4.5 to
4.9) Mm, Ni, Co, Al
The alloy powder obtained by pulverizing the Mn alloy was used as the hydrogen storage material.

【0015】結晶粒の大きさ:希土類元素の濃度が高い
層と同濃度が低い層とが交互に出現する多層構造に於け
るこれら二層の厚みの和をいう。
Crystal grain size: The sum of the thicknesses of these two layers in a multilayer structure in which a layer having a high concentration of rare earth elements and a layer having a low concentration of the rare earth elements appear alternately.

【0016】本発明における薄帯状のMm・Ni・Co
・Al・Mn合金の薄帯の厚み(平均厚み)は0.08
〜0.35mmに規制される。これは、薄帯の厚みが
0.35mmを越えるものを使用すると、薄帯の厚さ方
向の結晶粒の大きさが不均一なため、サイクル寿命の短
命化を招き、一方薄帯の厚みが0.08mm未満のもの
を使用すると、合金の粒子表面が(hk0)面に配向し
て電極触媒能が低下するため、充放電サイクル初期の高
率放電特性の低下を招くとともに、サイクル寿命の短命
化を招くからである。サイクル寿命の短命化を招くの
は、電極を構成する合金粒子の粒径が小さいため、電極
内の合金粒子間の接触抵抗が増大し、その結果、水素吸
蔵合金粉末の利用効率が低下するからである。
The ribbon-shaped Mm, Ni, Co according to the present invention
・ The thickness (average thickness) of the Al / Mn alloy ribbon is 0.08
It is regulated to ~ 0.35 mm. This is because when a ribbon having a thickness of more than 0.35 mm is used, the size of the crystal grains in the thickness direction of the ribbon is non-uniform, which leads to shortening of cycle life, while the thickness of the ribbon is reduced. If less than 0.08 mm is used, the particle surface of the alloy is oriented to the (hk0) plane and the electrode catalytic activity is reduced, leading to a reduction in high rate discharge characteristics at the beginning of the charge and discharge cycle and a short cycle life. This is because it causes The cycle life is shortened because the particle size of the alloy particles forming the electrode is small, so the contact resistance between the alloy particles in the electrode increases, and as a result, the utilization efficiency of the hydrogen storage alloy powder decreases. Is.

【0017】また、本発明におけるMm・Ni・Co・
Al・Mn合金のロール面側の結晶粒の大きさの最小は
0.2μm以上、開放面側の結晶粒の大きさの最大は1
8μm以下に規制される。これは、ロール面側の結晶粒
の最小が0.2μm未満であると、水素吸蔵合金が割れ
にくくなるために、充放電サイクル初期の高率放電特性
の低下を招き、また開放面側の結晶粒の大きさの最大が
18μmを越えると、耐過充電特性が低下するからであ
る。なお、開放面側の結晶粒の大きさの最大がさらに大
きくなり20μmを越えると、水素吸蔵合金が微粉化し
て酸化劣化し易くなるために、耐過充電特性が低下する
のみならず、サイクル寿命も短命化する。
Further, in the present invention, Mm, Ni, Co,
The minimum crystal grain size on the roll surface side of the Al / Mn alloy is 0.2 μm or more, and the maximum crystal grain size on the open surface side is 1.
It is regulated to 8 μm or less. This is because if the minimum crystal grain size on the roll surface side is less than 0.2 μm, the hydrogen storage alloy becomes less prone to cracking, leading to a decline in high-rate discharge characteristics at the beginning of the charge / discharge cycle, and crystal formation on the open surface side. This is because if the maximum grain size exceeds 18 μm, the overcharge resistance is deteriorated. If the maximum size of the crystal grains on the open surface side exceeds 20 μm, the hydrogen storage alloy is pulverized and is prone to oxidative deterioration, which not only reduces the overcharge resistance but also reduces the cycle life. Will also be short-lived.

【0018】本発明におけるMm・Ni・Co・Al・
Mn合金は、一般式:MmRx (Mmはミッシュメタ
ル;RはNi、Co、Al及びMn;xは4.5〜4.
9)で表される合金である。一般式中のx〔Mmに対す
るRのモル比(化学量論比)〕が上記範囲を外れると、
耐過充電特性が低下する。
Mm, Ni, Co, Al, in the present invention
The Mn alloy has a general formula: MmR x (Mm is Misch metal; R is Ni, Co, Al and Mn; x is 4.5 to 4.
It is an alloy represented by 9). When x [molar ratio of R to Mm (stoichiometric ratio)] in the general formula is out of the above range,
Overcharge resistance is reduced.

【0019】[0019]

【発明の実施の形態】上記Mm・Ni・Co・Al・M
n合金の好適なCo含有量は、Mm1モル部に対してC
o0.5〜0.9モル部である。Co含有量がこの範囲
を外れると、耐過充電特性が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION Mm / Ni / Co / Al / M
A preferable Co content of the n alloy is C based on 1 mol part of Mm.
o 0.5 to 0.9 parts by mole. If the Co content is out of this range, the overcharge resistance is deteriorated.

【0020】本発明電極は、例えば不活性ガス又は真空
中にてロール周速度50〜1000cm/秒で回転する
単ロールの周面に合金溶湯を流し込んで、一般式:Mm
x(Mmはミッシュメタル;RはNi、Co、Al及
びMn;xは4.5〜4.9)で表される薄帯状のMm
・Ni・Co・Al・Mn合金を作製し、該薄帯状のM
m・Ni・Co・Al・Mn合金を不活性ガス又は真空
中にて750〜950°Cの温度に所定時間加熱保持し
てアニール処理し、粉砕して、合金粉末を作製し、該合
金粉末と結着剤溶液とを混合して得たスラリーを基材
(芯体)に塗布又は充填することにより作製される。芯
体の具体例としては、発泡状金属多孔体、金属繊維、炭
素繊維、金属メッシュ、パンチングメタルが挙げられ
る。合金溶湯を単ロール法により50〜1000cm/
秒のロール周速度で急冷凝固することにより、薄帯の平
均厚みを0.08〜0.35mmにすることができ、ま
た急冷凝固後に750〜950°Cの温度でアニール処
理することにより、結晶粒の大きさの最小を0.2μm
以上、最大を18μm以下にすることができる。
The electrode of the present invention has a general formula: Mm obtained by pouring the molten alloy onto the peripheral surface of a single roll that rotates at a peripheral speed of 50 to 1000 cm / sec in an inert gas or vacuum.
A ribbon-shaped Mm represented by R x (Mm is misch metal; R is Ni, Co, Al and Mn; x is 4.5 to 4.9)
・ Ni ・ Co ・ Al ・ Mn alloy is produced, and the thin strip M
The m.Ni.Co.Al.Mn alloy is heated and held at a temperature of 750 to 950.degree. C. for a predetermined time in an inert gas or vacuum, annealed, and pulverized to prepare an alloy powder. It is prepared by coating or filling a base material (core body) with a slurry obtained by mixing the binder solution with the binder solution. Specific examples of the core include a foamed metal porous body, metal fiber, carbon fiber, metal mesh, and punching metal. 50-1000 cm / of molten alloy by single roll method
By quenching and solidifying at a roll peripheral speed of 2 seconds, the average thickness of the thin ribbon can be made 0.08 to 0.35 mm, and after quenching and solidifying, annealing is performed at a temperature of 750 to 950 ° C. The minimum grain size is 0.2 μm
As described above, the maximum can be set to 18 μm or less.

【0021】薄帯状のMm・Ni・Co・Al・Mn合
金の薄帯の厚みは、ロール周速度に依存する。ロール周
速度を速くして凝固速度を速くすると、薄帯の厚みが小
さくなる。一方、結晶粒の大きさは、アニール処理時の
温度(アニール温度)に依存する。通常、アニール温度
を高くすると結晶粒の大きさの最小は大きくなるが、最
大は殆ど変化しない。すなわち、アニール温度を高くす
ると結晶粒の大きさのバラツキが減少する。なお、アニ
ール温度が1000°Cを越えて合金の融点(1200
°C程度)に近づくと、水素吸蔵合金が結晶粒界で一部
再溶解し、極めて割れにくくなって不活性化する。アニ
ール時間は1〜10時間程度である。通常、10時間程
度でアニール処理の効果が飽和する。
The thickness of the ribbon of the ribbon-shaped Mm, Ni, Co, Al, Mn alloy depends on the peripheral speed of the roll. When the roll peripheral speed is increased and the solidification speed is increased, the thickness of the ribbon becomes smaller. On the other hand, the size of the crystal grain depends on the temperature (annealing temperature) during the annealing treatment. Usually, when the annealing temperature is raised, the minimum of the crystal grain size increases, but the maximum hardly changes. That is, when the annealing temperature is increased, the variation in crystal grain size is reduced. Note that when the annealing temperature exceeds 1000 ° C, the melting point of the alloy (1200
When approaching (° C.), The hydrogen storage alloy partially re-dissolves at the crystal grain boundaries, becomes extremely hard to crack, and becomes inactive. The annealing time is about 1 to 10 hours. Usually, the effect of annealing is saturated in about 10 hours.

【0022】[0022]

【作用】本発明におけるMm・Ni・Co・Al・Mn
合金は、薄帯の厚みが0.08〜0.35mmと薄いの
で、薄帯の厚み方向の結晶粒の大きさが均一である。こ
のため、充放電サイクルにおいて、微粉化しにくい。ま
た、薄帯の厚みの下限を0.08mm以上に規制してい
るため合金の粒子表面の(hk0)面への選択配向もさ
ほど大きくなく、電極触媒能が高い。
[Function] Mm / Ni / Co / Al / Mn in the present invention
Since the alloy has a thin ribbon thickness of 0.08 to 0.35 mm, the grain size in the thickness direction of the ribbon is uniform. Therefore, it is less likely to be pulverized in the charge / discharge cycle. Further, since the lower limit of the thickness of the ribbon is regulated to 0.08 mm or more, the selective orientation of the grain surface of the alloy to the (hk0) plane is not so large, and the electrocatalytic activity is high.

【0023】さらに、本発明におけるMm・Ni・Co
・Al・Mn合金は、ロール面側に過小な結晶粒が存在
せず、且つ開放面側に過大な結晶粒が存在しないので、
充放電サイクル初期において、合金が適度に割れ、しか
も充放電を繰り返してもこなごなに微粉化することがな
い。
Further, Mm, Ni, Co in the present invention
-Al-Mn alloy does not have excessively small crystal grains on the roll surface side and does not have excessive crystal grains on the open surface side.
At the beginning of the charge / discharge cycle, the alloy is appropriately cracked, and even if the charge / discharge is repeated, it does not become finely pulverized.

【0024】さらにまた、本発明におけるMm・Ni・
Co・Al・Mn合金は、Mm1モル部に対するNi、
Co、Al及びMnの総量が4.5〜4.9モル部に規
制されているので、合金の微粉化に起因する耐食性の低
下や、合金が極めて割れにくくなることに起因する合金
の利用効率の低下が起こりにくい。
Furthermore, Mm.Ni.
Co / Al / Mn alloy is Ni for 1 mol part of Mm,
Since the total amount of Co, Al and Mn is regulated to 4.5 to 4.9 parts by mol, the corrosion resistance is reduced due to the pulverization of the alloy, and the utilization efficiency of the alloy is due to the fact that the alloy becomes extremely difficult to crack. Is less likely to decrease.

【0025】このため、本発明電極を負極に使用した金
属−水素化物アルカリ蓄電池は、充放電サイクル初期の
高率放電特性、充放電サイクル特性及び耐過充電特性の
いずれにも優れる。
Therefore, the metal-hydride alkaline storage battery using the electrode of the present invention as the negative electrode is excellent in all of the high rate discharge characteristics, the charge / discharge cycle characteristics and the overcharge resistance characteristics in the initial charge / discharge cycle.

【0026】[0026]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0027】(参考例1〜13) 〔水素吸蔵合金の作製〕合金成分金属(いずれも純度9
9.9%以上)を秤取して混合し、真空下で高周波溶解
炉にて溶解した後、単ロール法(ロール径:350m
m)により表1に示す種々の冷却速度(ロール周速度:
50、100、300、500又は1000cm/秒)
で冷却して、組成式:MmNi3.1 Co0.8 Al0.3
0.5 で表される薄帯状の希土類・ニッケル系水素吸蔵
合金(帯長:約30〜100mm;帯幅:約20〜50
mm)を作製した。これらの薄帯の厚みを任意に10箇
所選んで測定し、その平均値を薄帯の厚みとした。
Reference Examples 1 to 13 [Preparation of hydrogen storage alloy] Alloy component metal (purity 9
(9.9% or more) are weighed and mixed, and after melting in a high frequency melting furnace under vacuum, single roll method (roll diameter: 350 m
m) various cooling rates shown in Table 1 (roll peripheral speed:
50, 100, 300, 500 or 1000 cm / sec)
Cooled with, composition formula: MmNi 3.1 Co 0.8 Al 0.3 M
A ribbon-shaped rare earth / nickel-based hydrogen storage alloy represented by n 0.5 (band length: about 30 to 100 mm; band width: about 20 to 50)
mm). The thickness of these ribbons was arbitrarily selected and measured at 10 locations, and the average value was used as the thickness of the ribbons.

【0028】次いで、これらの希土類・ニッケル系水素
吸蔵合金を表1に示す種々の温度(620、700、8
00、900、1000又は1200°C)で、Arガ
ス中にて6時間アニール処理した。
Next, these rare earth / nickel-based hydrogen storage alloys were subjected to various temperatures (620, 700, 8) shown in Table 1.
Annealing treatment was performed in Ar gas at 00, 900, 1000 or 1200 ° C. for 6 hours.

【0029】これらのアニール処理した各希土類・ニッ
ケル系水素吸蔵合金を、帯長方向に沿って帯面に垂直に
カットし、断面の反射電子線像を走査型電子顕微鏡(日
本電子線株式会社製、品番「JEOL866」)に観察
し、開放面側の結晶粒の大きさの最大及びロール面側の
結晶粒の大きさの最小を求めた。結晶粒の大きさの最大
及び最小は、反射電子線像で観察される隣接する白線部
の間隔を白線と垂直方向に測定して求めた(以下の結晶
粒の大きさの最大及び最小についても同様にして求め
た。)。結晶粒の大きさの最大及び最小は、いずれも各
希土類・ニッケル系水素吸蔵合金10サンプルについて
の平均値である。
Each of these annealed rare earth / nickel-based hydrogen storage alloys was cut perpendicularly to the band surface along the band length direction, and the backscattered electron image of the cross section was taken by a scanning electron microscope (manufactured by JEOL Ltd.). No. “JEOL866”), and the maximum crystal grain size on the open surface side and the minimum crystal grain size on the roll surface side were determined. The maximum and minimum crystal grain sizes were obtained by measuring the spacing between adjacent white line portions observed in a backscattered electron beam image in the direction perpendicular to the white line (also regarding the maximum and minimum crystal grain sizes below. Obtained in the same manner.). The maximum and minimum crystal grain sizes are average values for 10 samples of each rare earth / nickel-based hydrogen storage alloy.

【0030】図1は、アニール処理した薄帯状の水素吸
蔵合金Aの断面に現れた結晶粒の様子を示す模式図であ
る(一部のみ描写)。図中、白色部1は希土類元素及び
コバルト濃度が高く、マンガン濃度が低い層であり、黒
色部2は希土類元素及びコバルト濃度が低く、マンガン
濃度が高い層である。3は開放面側Oの結晶粒の大きさ
を示し、4はロール面側Rの結晶粒の大きさを示す。5
は薄帯の厚みを示す。図1に示すように、アニール処理
したためロール面側Rの結晶粒の大きさ4が大きくな
り、その結果開放面側Oの結晶粒の大きさ3との差が小
さくなって薄帯の厚さ方向の結晶粒の大きさが、アニー
ル処理前の水素吸蔵合金B(図2参照)に比べて、均一
化している。
FIG. 1 is a schematic view showing a state of crystal grains appearing in a cross section of an annealing-processed ribbon-shaped hydrogen storage alloy A (only a part is shown). In the figure, a white portion 1 is a layer having a high rare earth element and cobalt concentration and a low manganese concentration, and a black portion 2 is a layer having a low rare earth element and cobalt concentration and a high manganese concentration. 3 indicates the size of crystal grains on the open surface side O, and 4 indicates the size of crystal grains on the roll surface side R. 5
Indicates the thickness of the ribbon. As shown in FIG. 1, the size of the crystal grains 4 on the roll surface side R becomes large due to the annealing treatment, and as a result, the difference from the size 3 of the crystal grains on the open surface side O becomes small and the thickness of the ribbon becomes small. The size of the crystal grains in the direction is more uniform than that of the hydrogen storage alloy B (see FIG. 2) before the annealing treatment.

【0031】〔水素吸蔵合金電極の作製〕アニール処理
した各希土類・ニッケル系水素吸蔵合金を、不活性ガス
(Arガス)雰囲気下において機械的に粉砕し、篩にか
けて、最大粒径が100メッシュアンダー(以下の参考
例又は比較参考例においても、最大粒径は全て100メ
ッシュアンダーに調節した)で、平均粒径(体積加重平
均径)が70μmの粉末を得た。平均粒径は2点法〔上
式(1)中のi=2〕で求めた。その後、この粉末90
重量部と、ポリエチレンオキシドの2.5重量%水溶液
10重量部とを混合して、スラリーを調製した。平均粒
径は、レーザーを光源とし、フラウンホーファーの回折
現象を利用するレーザー回折法により粒度分布を測定し
て求めた。測定装置としては、マイクロトラック粒度分
析計(Leeds & Northrup社製、799
1型)を使用した。
[Preparation of Hydrogen Storage Alloy Electrode] Each of the annealed rare earth / nickel based hydrogen storage alloys is mechanically crushed in an inert gas (Ar gas) atmosphere and sieved to give a maximum particle size of 100 mesh under. (In each of the following reference examples or comparative reference examples, the maximum particle size was adjusted to 100 mesh under), and a powder having an average particle size (volume-weighted average size) of 70 μm was obtained. The average particle size was determined by the 2-point method [i = 2 in the above formula (1)]. Then this powder 90
By weight, 10 parts by weight of a 2.5% by weight aqueous solution of polyethylene oxide were mixed to prepare a slurry. The average particle size was obtained by measuring the particle size distribution using a laser as a light source and a laser diffraction method utilizing the Fraunhofer diffraction phenomenon. Microtrac particle size analyzer (Leeds & Northrup, 799
Type 1) was used.

【0032】次いで、このスラリーを鉄にニッケルめっ
きしてなるパンチングメタルに塗布し、乾燥して13種
の水素吸蔵合金電極を作製した。
Next, this slurry was applied to a punching metal obtained by plating iron with nickel and dried to prepare 13 kinds of hydrogen storage alloy electrodes.

【0033】〔ニッケル・水素化物アルカリ蓄電池の作
製〕上記の各水素吸蔵合金電極を負極として、順にAA
サイズ(単3型)の正極支配型のニッケル・水素化物ア
ルカリ蓄電池(電池容量:1200mAh±10mA
h)A1〜A13を作製した。なお、正極としては従来
公知の焼結式ニッケル極を、セパレータとしてはポリア
ミド製の不織布を、アルカリ電解液としては30重量%
水酸化カリウム水溶液を、それぞれ使用した。
[Preparation of Nickel / Hydride Alkaline Storage Battery] AA was sequentially prepared by using each of the above hydrogen storage alloy electrodes as a negative electrode.
Size (AA type) positive electrode dominant nickel-hydride alkaline storage battery (battery capacity: 1200 mAh ± 10 mA
h) A1 to A13 were produced. A conventionally known sintered nickel electrode is used as the positive electrode, a polyamide non-woven fabric is used as the separator, and 30% by weight is used as the alkaline electrolyte.
Aqueous potassium hydroxide solution was used respectively.

【0034】参考例1〜13における合金作製条件(ロ
ール周速度及びアニール温度)、薄帯の厚み、結晶粒の
大きさの最大及び最小を、表1にまとめて示す。
Table 1 collectively shows the alloy production conditions (roll peripheral speed and annealing temperature), the thickness of the ribbon, and the maximum and minimum of the crystal grain size in Reference Examples 1 to 13.

【0035】[0035]

【表1】 [Table 1]

【0036】(比較参考例1)単ロール法に代えて通常
凝固法を使用したこと以外は参考例1〜13と同様にし
て、同組成の塊状の希土類・ニッケル系水素吸蔵合金を
作製した。
(Comparative Reference Example 1) A massive rare earth / nickel-based hydrogen storage alloy having the same composition was produced in the same manner as in Reference Examples 1 to 13 except that a normal solidification method was used instead of the single roll method.

【0037】次いで、この合金を900°Cで6時間
(以下の参考例又は比較参考例においても、アニール時
間は全て6時間に統一した。)アニール処理した後、機
械的に粉砕し、篩にかけて、平均粒径が70μm、結晶
粒の大きさの最大が25μm、最小が7μmの粉末を作
製した。
Then, this alloy was annealed at 900 ° C. for 6 hours (the annealing time was unified to 6 hours in the following reference examples or comparative reference examples), mechanically crushed and sieved. A powder having an average particle size of 70 μm, a maximum crystal grain size of 25 μm and a minimum crystal grain size of 7 μm was produced.

【0038】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B1を作製し
た。
A battery B1 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0039】(比較参考例2)ロール周速度を10cm
/秒とし、アニール温度を900°Cとしたこと以外は
参考例1〜13と同様にして、平均粒径が70μm、平
均厚みが0.57μm、開放面側の結晶粒の大きさの最
大が40μm、ロール面側の結晶粒の大きさの最小が
0.2μmの粉末を作製した。
(Comparative Reference Example 2) Roll peripheral speed of 10 cm
/ Sec and the annealing temperature was 900 ° C., except that the average grain size was 70 μm, the average thickness was 0.57 μm, and the maximum crystal grain size on the open surface side was the same as in Reference Examples 1 to 13. A powder having a size of 40 μm and a minimum crystal grain size on the roll surface side of 0.2 μm was prepared.

【0040】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B2を作製し
た。
A battery B2 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0041】(比較参考例3)ロール周速度を300c
m/秒とし、アニール温度を500°Cとしたこと以外
は参考例1〜13と同様にして、平均粒径が70μm、
平均厚みが0.27μm、開放面側の結晶粒の大きさの
最大が15μm、ロール面側の結晶粒の大きさの最小が
0.01μm以下の粉末を作製した。
(Comparative Reference Example 3) Roll peripheral speed of 300c
m / sec and the annealing temperature was 500 ° C., except that the average particle size was 70 μm in the same manner as in Reference Examples 1 to 13.
A powder having an average thickness of 0.27 μm, a maximum crystal grain size on the open side of 15 μm, and a minimum crystal grain size on the roll side of 0.01 μm or less was prepared.

【0042】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B3を作製し
た。
A battery B3 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0043】(比較参考例4)ロール周速度を300c
m/秒とし、アニール温度を1200°Cとしたこと以
外は参考例1〜13と同様にして、平均粒径が70μ
m、平均厚みが0.27μm、開放面側の結晶粒の大き
さの最大が25μm、ロール面側の結晶粒の大きさの最
小が0.4μmの粉末を作製した。
(Comparative Reference Example 4) Roll peripheral speed of 300c
The average particle size was 70 μm in the same manner as in Reference Examples 1 to 13 except that the annealing temperature was 1200 ° C.
m, the average thickness was 0.27 μm, the maximum crystal grain size on the open surface side was 25 μm, and the minimum crystal grain size on the roll surface side was 0.4 μm.

【0044】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B4を作製し
た。
A battery B4 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0045】(比較参考例5)単ロール法に代えて通常
凝固法(水冷凝固法)を使用するとともに、アニール処
理しなかったこと以外は参考例1〜13と同様にして、
平均粒径が70μm、結晶粒の大きさの最大が35μ
m、最小が10μmの粉末を作製した。
(Comparative Reference Example 5) In the same manner as in Reference Examples 1 to 13 except that a normal solidification method (water cooling solidification method) was used in place of the single roll method, and no annealing treatment was performed.
Average grain size is 70μm, maximum grain size is 35μ
m, and the minimum powder was 10 μm.

【0046】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B5を作製し
た。
A battery B5 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0047】(比較参考例6)ロール周速度を300c
m/秒とし、アニール処理しなかったこと以外は参考例
1〜13と同様にして、平均粒径が70μm、平均厚み
が0.27μm、開放面側の結晶粒の大きさの最大が1
0μm、ロール面側の結晶粒の大きさの最小が0.01
μm以下の粉末を作製した。
(Comparative Reference Example 6) Roll peripheral speed of 300c
The average grain size was 70 μm, the average thickness was 0.27 μm, and the maximum crystal grain size on the open surface side was 1 in the same manner as in Reference Examples 1 to 13 except that the annealing treatment was performed at m / sec.
0 μm, the minimum crystal grain size on the roll side is 0.01
A powder having a size of μm or less was produced.

【0048】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B6を作製し
た。
A battery B6 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0049】(比較参考例7)参考例1〜13と同じ組
成の合金溶湯(MmNi3.1 Co0.8 Al0.3
0. 5 )をアトマイズ法により凝固させた後、900°
Cで6時間アニール処理して、水素吸蔵合金粉末を作製
した。平均粒径、結晶粒の大きさの最大及び最小は、そ
れぞれ70μm、8μm、0.1μmであった。
Comparative Reference Example 7 A molten alloy having the same composition as in Reference Examples 1 to 13 (MmNi 3.1 Co 0.8 Al 0.3 M)
After coagulation by n 0. 5) the atomization method, 900 °
Annealing was performed for 6 hours at C to prepare a hydrogen storage alloy powder. The maximum and minimum of the average grain size and the crystal grain size were 70 μm, 8 μm, and 0.1 μm, respectively.

【0050】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B7を作製し
た。
A battery B7 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0051】(比較参考例8)ロール周速度を1500
cm/秒とし、アニール温度を900°Cとしたこと以
外は参考例1〜13と同様にして、平均粒径が70μ
m、平均厚みが0.06μm、開放面側の結晶粒の大き
さの最大が5μm、ロール面側の結晶粒の大きさの最小
が0.2μmの粉末を作製した。
(Comparative Reference Example 8) Roll peripheral speed is 1500
cm / sec and the annealing temperature was 900 ° C., and the average particle size was 70 μm in the same manner as in Reference Examples 1 to 13.
m, the average thickness was 0.06 μm, the maximum crystal grain size on the open surface side was 5 μm, and the minimum crystal grain size on the roll surface side was 0.2 μm.

【0052】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B8を作製し
た。
A battery B8 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0053】(比較参考例9)ロール周速度を3000
cm/秒(ロール径:150mm)とし、アニール温度
を900°Cとしたこと以外は参考例1〜13と同様に
して、平均粒径が55μm、平均厚みが0.04μm、
開放面側の結晶粒の大きさの最大が2μm、ロール面側
の結晶粒の大きさの最小が0.2μmの粉末を作製し
た。なお、ロール周速度を3000cm/秒と高速にし
たため、平均粒径70μmのものは得られなかった。
(Comparative Reference Example 9) Roll peripheral speed was 3000
cm / sec (roll diameter: 150 mm) and the annealing temperature was 900 ° C., in the same manner as in Reference Examples 1 to 13 having an average particle diameter of 55 μm and an average thickness of 0.04 μm.
A powder having a maximum crystal grain size of 2 μm on the open surface side and a minimum crystal grain size of 0.2 μm on the roll surface side was produced. Since the peripheral speed of the roll was set to a high speed of 3000 cm / sec, a roll having an average particle diameter of 70 μm could not be obtained.

【0054】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B9を作製し
た。
A battery B9 was prepared in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0055】(比較参考例10)ロール周速度を500
0cm/秒(ロール径:150mm)とし、アニール温
度を900°Cとしたこと以外は参考例1〜13と同様
にして、平均粒径が48μm、平均厚みが0.03μ
m、開放面側の結晶粒の大きさの最大が2μm、ロール
面側の結晶粒の大きさの最小が0.15μmの粉末を作
製した。なお、ロール周速度を5000cm/秒と高速
にしたため、平均粒径70μmのものは得られなかっ
た。
(Comparative Reference Example 10) Roll peripheral speed is 500
The average particle size was 48 μm and the average thickness was 0.03 μm in the same manner as in Reference Examples 1 to 13 except that 0 cm / sec (roll diameter: 150 mm) and the annealing temperature was 900 ° C.
m, the maximum crystal grain size on the open surface side was 2 μm, and the minimum crystal grain size on the roll surface side was 0.15 μm. Since the roll peripheral speed was set to a high speed of 5000 cm / sec, a roll having an average particle diameter of 70 μm could not be obtained.

【0056】水素吸蔵材としてこの粉末を使用したこと
以外は参考例1〜13と同様にして、電池B10を作製
した。
A battery B10 was produced in the same manner as in Reference Examples 1 to 13 except that this powder was used as the hydrogen storage material.

【0057】比較参考例1〜10における合金作製条件
(ロール周速度及びアニール温度)、薄帯の厚み、結晶
粒の大きさの最大及び最小を、表2にまとめて示す。
Table 2 shows the alloy preparation conditions (roll peripheral speed and annealing temperature), the thickness of the ribbon, and the maximum and minimum of the grain size in Comparative Reference Examples 1 to 10.

【0058】[0058]

【表2】 [Table 2]

【0059】〔充放電サイクル初期の高率放電容量〕電
池A1〜A13及び電池B1〜B10を、室温(約25
°C)にて120mAで16時間充電した後、60°C
にて120mAで0.95Vまで放電して活性化処理し
た。
[High rate discharge capacity at the beginning of charge / discharge cycle] The batteries A1 to A13 and the batteries B1 to B10 were stored at room temperature (about 25
After charging for 16 hours at 120mA at 60 ° C
At 120 mA, it was discharged to 0.95 V for activation treatment.

【0060】次いで、各電池を、1200mAで1.1
時間充電した後、4.8Aで0.95Vまで放電して、
高率放電容量を求めた。各電池3個について放電容量を
測定し、それらの平均を各電池の高率放電容量とした。
結果を先の表1又は表2に示す。
Then, each battery was set to 1.1 at 1200 mA.
After charging for an hour, discharge to 0.95V at 4.8A,
The high rate discharge capacity was determined. The discharge capacity of each of the three batteries was measured, and the average thereof was defined as the high rate discharge capacity of each battery.
The results are shown in Table 1 or Table 2 above.

【0061】〔サイクル寿命〕電池A1〜A13及び電
池B1〜B10について、先と同じ条件で活性化処理し
た後、室温にて、1200mAで1.1時間充電し、1
時間休止した後、1200mAで1.0Vまで放電する
工程を1サイクルとする充放電サイクル試験を行い、各
電池のサイクル寿命を調べた。各電池10個についてサ
イクル寿命を求め、最短寿命のものと最長寿命のものを
除く8個についての平均を各電池のサイクル寿命とし
た。また、サイクル寿命は、電池容量が960mAh以
下に下がるまでのサイクル数(回)として求めた。結果
を先の表1又は表2に示す。
[Cycle Life] The batteries A1 to A13 and the batteries B1 to B10 were activated under the same conditions as above, and then charged at 1200 mA for 1.1 hours at room temperature.
After pausing for a period of time, a charge / discharge cycle test in which one cycle is a process of discharging at 1200 mA to 1.0 V was performed to examine the cycle life of each battery. The cycle life of each of the 10 batteries was determined, and the average of 8 batteries excluding the one having the shortest life and the one having the longest life was taken as the cycle life of each battery. The cycle life was determined as the number of cycles (times) until the battery capacity dropped to 960 mAh or less. The results are shown in Table 1 or Table 2 above.

【0062】表1に示す電池A1〜A13は、充放電サ
イクル初期の高率放電特性に優れるとともに、長寿命で
あるのに対して、表2に示す電池B1〜B10は充放電
サイクル初期の高率放電特性に劣るか、サイクル寿命が
短いか、或いはこれらの両方に問題がある。この結果か
ら、充放電サイクル初期の高率放電特性及び充放電サイ
クル特性の両方に優れる金属−水素化物アルカリ蓄電池
を提供することを可能にする水素吸蔵合金電極を得るた
めには、ロール面側の結晶粒の大きさの最小が0.2μ
m以上、開放面側の結晶粒の大きさの最大が20μm以
下であり、且つ平均厚みが0.08〜0.35μmであ
る単ロール法により作製された薄帯状の希土類・ニッケ
ル系水素吸蔵合金を使用する必要があることが分かる。
The batteries A1 to A13 shown in Table 1 are excellent in high rate discharge characteristics at the beginning of the charge / discharge cycle and have a long life, whereas the batteries B1 to B10 shown in Table 2 are high at the beginning of the charge / discharge cycle. There are problems with inferior rate discharge characteristics, short cycle life, or both. From this result, in order to obtain a hydrogen storage alloy electrode that makes it possible to provide a metal-hydride alkaline storage battery that is excellent in both high rate discharge characteristics and charge / discharge cycle characteristics in the initial charge / discharge cycle, in order to obtain a hydrogen storage alloy electrode, Minimum grain size is 0.2μ
m or more, the maximum crystal grain size on the open surface side is 20 μm or less, and the average thickness is 0.08 to 0.35 μm. It turns out that you need to use.

【0063】電池A1〜A13が充放電サイクル初期の
高率放電特性に優れ、しかも長寿命であるのは、負極に
使用した水素吸蔵合金にMn等の偏析が少なく、且つ過
小又は過大な結晶粒が存在しないことによるものと考え
られる。
The batteries A1 to A13 are excellent in high rate discharge characteristics in the early stage of charge / discharge cycle and have a long service life because the hydrogen storage alloy used for the negative electrode has little segregation of Mn or the like and has an excessively small or large crystal grain. Is considered to be due to the absence of.

【0064】電池B1は、サイクル寿命は長いものの、
充放電サイクル初期の高率放電容量が小さい。これは、
Mnの分布が均一化されて偏析が解消した上に、結晶粒
が大きくなり過ぎたために、水素吸蔵合金が割れにくく
なったためと考えられる。
Although the battery B1 has a long cycle life,
The high rate discharge capacity at the beginning of the charge / discharge cycle is small. this is,
It is considered that the hydrogen storage alloy became hard to crack because the distribution of Mn was made uniform to eliminate the segregation and the crystal grains became too large.

【0065】電池B2は、充放電サイクル初期の高率放
電容量は大きいものの、サイクル寿命が短い。これは、
開放面側は割れ易いために活性化し易いが、ロール面側
は割れにくいために活性化しにくいので、開放面側の充
放電深度が深くなり、水素吸蔵合金がこなごなに微粉化
したためと考えられる。
The battery B2 has a large high rate discharge capacity at the beginning of the charge / discharge cycle, but has a short cycle life. this is,
It is considered that the open surface side is easily cracked and activated, but the roll surface side is hard to be broken and thus hard to be activated, so that the charge / discharge depth on the open surface side is deep and the hydrogen storage alloy is finely pulverized.

【0066】電池B3は、充放電サイクル初期の高率放
電容量は大きいものの、サイクル寿命が短い。これは、
アニール温度が低過ぎたために活性化が不十分な部分が
存在し、活性化した部分の充放電深度が深くなり、水素
吸蔵合金が微粉化したためと考えられる。
Battery B3 has a large high rate discharge capacity at the beginning of the charge / discharge cycle, but has a short cycle life. this is,
It is considered that there was a portion where activation was insufficient because the annealing temperature was too low, and the charge and discharge depth of the activated portion became deep, and the hydrogen storage alloy was pulverized.

【0067】電池B4は、充放電サイクル初期の高率放
電容量が小さく、サイクル寿命が短い。充放電サイクル
初期の高率放電容量が小さいのは、アニール温度が合金
の融点に近づいたため、水素吸蔵合金が結晶粒界で一部
再溶解し、非常に割れにくくなって、活性化しにくくな
ったためであり、またサイクル寿命が短いのは、活性化
しにくくなったことに伴い水素吸蔵合金の利用効率が低
下したためと考えられる。
Battery B4 has a small high rate discharge capacity at the beginning of the charge / discharge cycle and a short cycle life. The high rate discharge capacity at the beginning of the charge / discharge cycle is small because the annealing temperature was close to the melting point of the alloy, and the hydrogen storage alloy was partially redissolved at the crystal grain boundaries, making it very difficult to crack and difficult to activate. The reason why the cycle life is short is considered to be that the utilization efficiency of the hydrogen storage alloy is lowered due to the difficulty of activation.

【0068】電池B5は、充放電サイクル初期の高率放
電容量は大きいものの、サイクル寿命が短い。サイクル
寿命が短いのは、結晶粒は大きいものの、アニール処理
していないために水素吸蔵合金中にMnの偏析が存在す
るためである。
Battery B5 has a large high rate discharge capacity at the beginning of the charge / discharge cycle, but has a short cycle life. The reason why the cycle life is short is that segregation of Mn is present in the hydrogen storage alloy because the crystal grains are large but are not annealed.

【0069】電池B6は、充放電サイクル初期の高率放
電容量は大きいものの、サイクル寿命が短い。これは、
開放面側は割れ易いために活性化し易いが、ロール面側
は割れにくいために活性化しにくいので、開放面側の充
放電深度が深くなり、水素吸蔵合金がこなごなに微粉化
したためと考えられる。
Battery B6 has a large high rate discharge capacity at the beginning of the charge / discharge cycle, but has a short cycle life. this is,
It is considered that the open surface side is easily cracked and activated, but the roll surface side is hard to be broken and thus hard to be activated, so that the charge / discharge depth on the open surface side is deep and the hydrogen storage alloy is finely pulverized.

【0070】電池B7は、充放電サイクル初期の高率放
電容量が小さく、サイクル寿命が短い。サイクル寿命が
短いのは、アトマイズ凝固品は粒度分布にバラツキが大
きいため、アニール処理しても粒径により結晶粒の大き
さが異なり、特に30μmの小さい粒子の活性化が悪
く、合金粒子全体としての利用効率が悪いためと考えら
れる。
Battery B7 has a small high rate discharge capacity at the beginning of the charge / discharge cycle and a short cycle life. The cycle life is short because the atomized solidified product has a large variation in the particle size distribution, and therefore the size of the crystal grains varies depending on the particle size even after annealing, especially the activation of small particles of 30 μm is poor, and as a whole alloy particles It is thought that this is because the usage efficiency of is poor.

【0071】電池B8では、合金粒子のロール面側が
(hk0)面に強い選択配向性を有しているため、アニ
ール処理によりロール面側の結晶粒の大きさの最小が
0.02μmまで大きくなってはいても、充分な活性化
度が得られない。このため、高率放電容量が小さい。ま
た、電池B8では、平均粒径70μmの合金粉末が使用
されているが、薄帯の厚みが0.06mm(60μm)
と薄いために、扁平形状の粒子が多く、合金粒子間の接
触抵抗が大きい。このため、合金粒子全体としての利用
効率が悪く、サイクル寿命が短い。
In Battery B8, since the roll surface side of the alloy particles has a strong selective orientation on the (hk0) plane, the minimum grain size on the roll surface side increased to 0.02 μm by the annealing treatment. However, sufficient activation cannot be obtained. Therefore, the high rate discharge capacity is small. Further, in the battery B8, alloy powder having an average particle size of 70 μm is used, but the thickness of the ribbon is 0.06 mm (60 μm).
Since it is thin, there are many flat particles, and the contact resistance between alloy particles is large. Therefore, the utilization efficiency of the alloy particles as a whole is poor and the cycle life is short.

【0072】電池B9及び電池B10では、電池B8で
使用した薄帯よりさらに薄い薄帯を粉砕して得た合金粉
末が使用されているため、電池B8よりも高率放電容量
が小さく、且つサイクル寿命も短い。
In the batteries B9 and B10, alloy powder obtained by crushing a ribbon thinner than that used in the battery B8 is used, so that the high-rate discharge capacity is smaller than that of the battery B8 and the cycle is smaller. It has a short life.

【0073】〈MmRx 中のx(Mmに対するRの化学
量論比)と耐過充電特性の関係〉合金成分金属(いずれ
も純度99.9%以上)を秤取して混合し、真空下で高
周波溶解炉にて溶解した後、単ロール法(ロール径:3
50mm)によりロール周速度300cm/秒で冷却し
て、組成式:MmNi3.6 Co0.8 Al0.3 Mn
0.5 (MmRx 中のx=5.2)、MmNi3.4 Co
0.8 Al0.3 Mn0.5 (MmRx 中のx=5.0)、M
mNi3.3 Co0.8 Al0.3 Mn0.5 (MmRx 中のx
=4.9)、MmNi3.2 Co0.8 Al0.3 Mn
0.5 (MmRx 中のx=4.8)、MmNi3.1 Co
0.8 Al0.3 Mn0.5 (MmRx 中のx=4.7)、M
mNi3.0 Co0.8 Al0.3 Mn0.5 (MmRx 中のx
=4.6)、MmNi2.9 Co0.8 Al0.3 Mn
0.5 (MmRx 中のx=4.5)、MmNi2.8 Co
0.8 Al0.3 Mn0.5 (MmRx 中のx=4.4)又は
MmNi2.6 Co0.8 Al0.3 Mn0.5 (MmRx 中の
x=4.2)で表される9種の薄帯状のMm・Ni・C
o・Al・Mn合金を作製した。
<MmRxChemistry of R in the x (Mm
Relationship between stoichiometric ratio) and overcharge resistance> Alloy component metal (either
(Purity 99.9% or more) is weighed and mixed,
After melting in a frequency melting furnace, single roll method (roll diameter: 3
50 mm) to cool the roll at a peripheral speed of 300 cm / sec.
And composition formula: MmNi3.6Co0.8Al0.3Mn
0.5(MmRxX = 5.2), MmNi3.4Co
0.8Al0.3Mn0.5(MmRxX = 5.0), M
mNi3.3Co0.8Al0.3Mn0.5(MmRxInside x
= 4.9), MmNi3.2Co0.8Al0.3Mn
0.5(MmRxX = 4.8), MmNi3.1Co
0.8Al0.3Mn0.5(MmRxX = 4.7), M
mNi3.0Co0.8Al0.3Mn0.5(MmRxInside x
= 4.6), MmNi2.9Co0.8Al0.3Mn
0.5(MmRxX = 4.5), MmNi2.8Co
0.8Al0.3Mn0.5(MmRxX = 4.4) or
MmNi2.6Co0.8Al0.3Mn0.5(MmRxIn
x = 4.2) 9 kinds of ribbon-shaped Mm, Ni, C
An o.Al.Mn alloy was prepared.

【0074】次いで、これらの薄帯状のMm・Ni・C
o・Al・Mn合金を900°Cで、Arガス中にて6
時間アニール処理した後、不活性ガス(Arガス)雰囲
気下において機械的に粉砕して、平均粒径が70μm、
開放面側の結晶粒の大きさの最大が18μm、ロール面
側の結晶粒の大きさの最小が0.2μm、薄帯の平均厚
みが0.25mmである合金粉末を作製した。作製した
合金の化学量論比x(MmRx 中のx)、Mmに対する
Niのモル比、薄帯の厚み、結晶粒の大きさの最大及び
最小を、表3にまとめて示す。
Next, these strip-shaped Mm, Ni, C
o ・ Al ・ Mn alloy at 900 ° C in Ar gas 6
After annealing for a time, mechanically crushed in an inert gas (Ar gas) atmosphere to give an average particle size of 70 μm.
An alloy powder was prepared in which the maximum crystal grain size on the open surface side was 18 μm, the minimum crystal grain size on the roll surface side was 0.2 μm, and the average ribbon thickness was 0.25 mm. Table 3 collectively shows the stoichiometric ratio x ( x in MmR x ) of the produced alloy, the molar ratio of Ni to Mm, the thickness of the ribbon, and the maximum and minimum of the grain size.

【0075】[0075]

【表3】 [Table 3]

【0076】これらの水素吸蔵合金粉末を水素吸蔵材と
して使用したこと以外は参考例1〜13と同様にして、
AAサイズの正極支配型のニッケル・水素化物アルカリ
蓄電池(電池容量:1200mAh±10mAh)A1
4〜A17及びB11〜B14を作製した。
In the same manner as in Reference Examples 1 to 13 except that these hydrogen storage alloy powders were used as the hydrogen storage material,
AA size positive electrode dominant nickel-hydride alkaline storage battery (battery capacity: 1200 mAh ± 10 mAh) A1
4 to A17 and B11 to B14 were produced.

【0077】〔耐過充電特性〕電池A14〜A17及び
B11〜B14を、室温(約25°C)にて120mA
で16時間充電した後、60°Cにて120mAで0.
95Vまで放電して活性化処理した。
[Overcharge Resistance Characteristics] Batteries A14 to A17 and B11 to B14 were 120 mA at room temperature (about 25 ° C.).
After charging for 16 hours at 60 ° C, 120 mA at 60 ° C.
It was discharged to 95 V and activated.

【0078】次いで、各電池を40°Cにて240mA
(0.2C)で10日間充電し、1時間休止して周囲温
度を室温に戻した後、1200mAで1.0Vまで放電
する工程を1サイクルとする充放電サイクル試験を行
い、各電池の放電容量が1サイクル目の放電容量の80
%以下に低下するまでの充放電サイクル数を調べた。各
電池それぞれ10個についてこの充放電サイクル数を求
め、最も小さい充放電サイクル数及び最も大きい充放電
サイクル数を除く8つの充放電サイクル数の平均でもっ
て、各電池の耐過充電特性を評価した。結果を先の表3
に示す。
Next, each battery was 240 mA at 40 ° C.
The battery is charged at (0.2C) for 10 days, rested for 1 hour to return the ambient temperature to room temperature, and then discharged at 1.0 mA to 1.0 V. One cycle is a charge-discharge cycle test, and the discharge of each battery is performed. The capacity is 80 of the discharge capacity of the first cycle
The number of charging / discharging cycles until it decreased to below 10% was examined. The number of charge / discharge cycles was calculated for each of 10 batteries, and the overcharge resistance of each battery was evaluated by the average of 8 charge / discharge cycles excluding the smallest number of charge / discharge cycles and the largest number of charge / discharge cycles. . The results are shown in Table 3 above.
Shown in

【0079】表3に示すように、化学量論比xが4.5
〜4.9の合金を使用した電池A14〜A17は、該化
学量論比xがこの範囲を外れる合金を使用した電池B1
1〜B14に比べて、耐過充電特性に格段優れている。
電池B11,B12の耐過充電特性が良くないのは、合
金に割れが生じにくいために、酸素ガス消費時特性が悪
く、電解液の漏出が起こったためと考えられる。また、
電池B13,B14の耐過充電特性が悪いのは、母相と
異なる過充電時の酸素ガス消費反応が良好に起こらない
第二相(Mm2 7 相)が生成したために、合金の酸化
が進んだためと考えられる。この表3に示す結果と先の
結果とを総合すると、ロール面側の結晶粒の大きさの最
小が0.2μm以上、開放面側の結晶粒の大きさの最大
が18μm以下である、単ロール法により作製された平
均厚み0.08〜0.35mmの一般式:MmRx (M
mはミッシュメタル;RはNi、Co、Al及びMn;
xは4.5〜4.9)で表される薄帯状のMm・Ni・
Co・Al・Mn合金を、粉砕して得た合金粉末を水素
吸蔵材として使用することにより、充放電サイクル初期
の高率放電特性及び充放電サイクル特性のみならず、耐
過充電特性にも優れる金属−水素化物アルカリ蓄電池を
与える水素吸蔵合金電極が得られることが分かる。
As shown in Table 3, the stoichiometric ratio x is 4.5.
To batteries A14 to A17 using the alloy Nos. To 4.9 are batteries B1 using the alloy whose stoichiometric ratio x is outside this range.
Compared to 1 to B14, it is much superior in overcharge resistance.
It is considered that the batteries B11 and B12 did not have good overcharge resistance because the alloy did not crack easily, so the oxygen gas consumption characteristics were poor, and the electrolyte leaked out. Also,
The batteries B13 and B14 have poor overcharge resistance because the second phase (Mm 2 R 7 phase), which is different from the mother phase and does not cause a favorable oxygen gas consumption reaction during overcharge, causes oxidation of the alloy. Probably because it advanced. Combining the results shown in Table 3 and the above results, the minimum crystal grain size on the roll surface side is 0.2 μm or more, and the maximum crystal grain size on the open surface side is 18 μm or less. A general formula having an average thickness of 0.08 to 0.35 mm produced by the roll method: MmR x (M
m is misch metal; R is Ni, Co, Al and Mn;
x is 4.5 to 4.9), and is a strip-shaped Mm / Ni /
By using an alloy powder obtained by pulverizing a Co / Al / Mn alloy as a hydrogen storage material, not only high rate discharge characteristics and charge / discharge cycle characteristics at the beginning of the charge / discharge cycle but also excellent overcharge resistance characteristics are obtained. It can be seen that a hydrogen storage alloy electrode is obtained which gives a metal-hydride alkaline storage battery.

【0080】〈Mmに対するCoのモル比と充放電サイ
クル初期の高率放電特性及び耐過充電特性の関係〉合金
成分金属(いずれも純度99.9%以上)を秤取して混
合し、真空下で高周波溶解炉にて溶解した後、単ロール
法(ロール径:350mm)によりロール周速度300
cm/秒で冷却して、組成式:MmNi2.8 Co1.1
0.3 Mn0.5 (Mmに対するCoのモル比1.1)、
MmNi2.95Co0.95Al0.3 Mn0.5 (Mmに対する
Coのモル比0.95)、MmNi3.0 Co0.9 Al
0.3 Mn0.5 (Mmに対するCoのモル比0.9)、M
mNi3.2 Co0.7 Al0.3 Mn0.5 (Mmに対するC
oのモル比0.7)、MmNi3.3 Co0.6 Al0.3
0.5 (Mmに対するCoのモル比0.6)、MmNi
3.4 Co0.5 Al0.3 Mn0.5 (Mmに対するCoのモ
ル比0.5)、MmNi3.5 Co0.4 Al0.3 Mn0.5
(Mmに対するCoのモル比0.4)又はMmNi3.55
Co0.35Al0.3Mn0.5 (Mmに対するCoのモル比
0.35)で表される8種の薄帯状のMmNi・Co・
Al・Mn合金を作製した。
<Relationship between the molar ratio of Co to Mm and the high rate discharge characteristics at the beginning of the charge / discharge cycle and the overcharge resistance characteristics> Alloy component metals (all having a purity of 99.9% or more) are weighed and mixed, and the mixture is vacuumed. After melting in a high-frequency melting furnace below, roll peripheral speed 300 by single roll method (roll diameter: 350 mm)
Cooled at cm / sec, composition formula: MmNi 2.8 Co 1.1 A
l 0.3 Mn 0.5 (molar ratio of Co to Mm 1.1),
MmNi 2.95 Co 0.95 Al 0.3 Mn 0.5 (Co molar ratio to Mm 0.95), MmNi 3.0 Co 0.9 Al
0.3 Mn 0.5 (molar ratio of Co to Mm 0.9), M
mNi 3.2 Co 0.7 Al 0.3 Mn 0.5 (C for Mm
o molar ratio 0.7), MmNi 3.3 Co 0.6 Al 0.3 M
n 0.5 (molar ratio of Co to Mm of 0.6), MmNi
3.4 Co 0.5 Al 0.3 Mn 0.5 (Co molar ratio to Mm 0.5), MmNi 3.5 Co 0.4 Al 0.3 Mn 0.5
(Co molar ratio to Mm 0.4) or MmNi 3.55
Eight types of ribbon-shaped MmNi · Co · represented by Co 0.35 Al 0.3 Mn 0.5 (Co molar ratio of Mm to 0.35)
An Al / Mn alloy was prepared.

【0081】次いで、これらの薄帯状のMmNi・Co
・Al・Mn合金を900°Cで、Arガス中にて6時
間アニール処理した後、不活性ガス(Arガス)雰囲気
下において機械的に粉砕して、平均粒径70μmの合金
粉末を作製した。作製した合金のMmに対するCoのモ
ル比、薄帯の厚み、結晶粒の大きさの最大及び最小を、
表4にまとめて示す。
Then, these ribbon-shaped MmNi.Co
The Al / Mn alloy was annealed at 900 ° C. in Ar gas for 6 hours, and then mechanically pulverized in an inert gas (Ar gas) atmosphere to prepare an alloy powder having an average particle size of 70 μm. . The molar ratio of Co to Mm of the produced alloy, the thickness of the ribbon, the maximum and minimum of the grain size are
It is summarized in Table 4.

【0082】[0082]

【表4】 [Table 4]

【0083】次いで、水素吸蔵材としてこれらの合金粉
末を使用したこと以外は参考例1〜13と同様にして、
AAサイズの正極支配型のニッケル・水素化物アルカリ
蓄電池A18〜A21及びB15〜B18(電池容量:
1200mAh±10mAh)を作製した。
Then, in the same manner as in Reference Examples 1 to 13 except that these alloy powders were used as the hydrogen storage material,
AA size positive electrode dominant nickel-hydride alkaline storage batteries A18 to A21 and B15 to B18 (battery capacity:
1200 mAh ± 10 mAh) was prepared.

【0084】作製した各ニッケル−水素化物アルカリ蓄
電池について、先と同じ条件で高率放電試験及び耐過充
電特性試験を行い、各電池の充放電サイクル初期の高率
放電特性及び耐過充電特性を調べた。結果を先の表4に
示す。なお、表4には、電池A8(Mmに対するCoの
モル比0.8)の結果を表3より転記して示してある。
Each nickel-hydride alkaline storage battery produced was subjected to a high rate discharge test and an overcharge resistance characteristic test under the same conditions as above, and the high rate discharge characteristic and the overcharge resistance characteristic of each battery at the beginning of the charge / discharge cycle were evaluated. Examined. The results are shown in Table 4 above. In addition, in Table 4, the results of Battery A8 (molar ratio of Co to Mm of 0.8) are transcribed from Table 3.

【0085】表4より、Mm・Ni・Co・Al・Mn
合金の場合は、充放電サイクル初期の高率放電特性及び
耐過充電特性の両方に優れたニッケル−水素化物アルカ
リ蓄電池を与える水素吸蔵合金電極を得る上で、Mmに
対するCoのモル比が0.5〜0.9のMm・Ni・C
o・Al・Mn合金を使用することが好ましいことが分
かる。Mmに対するCoのモル比が0.9より大きい合
金を使用した電池B15,B16は、合金粉末の比表面
積が小さいために、高率放電容量が小さい。また、Mm
に対するCoのモル比が0.5より小さい電池B17,
B18は、比表面積が大きいために高率放電容量は大き
いものの、合金が割れて微粉化し易いために耐過充電特
性に劣る。
From Table 4, Mm / Ni / Co / Al / Mn
In the case of an alloy, in order to obtain a hydrogen storage alloy electrode that provides a nickel-hydride alkaline storage battery excellent in both high rate discharge characteristics and overcharge resistance at the beginning of a charge / discharge cycle, the molar ratio of Co to Mm is 0. 5-0.9 Mm ・ Ni ・ C
It can be seen that it is preferable to use o.Al.Mn alloy. Batteries B15 and B16 using alloys in which the molar ratio of Co to Mm is larger than 0.9 have small high-rate discharge capacity because the alloy powder has a small specific surface area. Also, Mm
B17 in which the molar ratio of Co to B is less than 0.5,
B18 has a large specific surface area and thus a large high-rate discharge capacity, but is inferior in overcharge resistance because the alloy is easily cracked and pulverized.

【0086】〈アニール温度と耐過充電特性の関係〉合
金成分金属(いずれも純度99.9%以上)を秤取して
混合し、真空下で高周波溶解炉にて溶解した後、単ロー
ル法(ロール径:350mm)によりロール周速度30
0cm/秒で冷却して、組成式:MmNi3.1 Co0.8
Al0.3 Mn0.5 (Mmに対するCoのモル比0.8)
で表される薄帯状のMm・Ni・Co・Al・Mn合金
を作製した。
<Relationship between Annealing Temperature and Overcharge Resistance> Alloy component metals (purity: 99.9% or more) are weighed and mixed, and melted in a high frequency melting furnace under vacuum, followed by a single roll method. (Roll diameter: 350mm) Roll peripheral speed 30
Cooled at 0 cm / sec, compositional formula: MmNi 3.1 Co 0.8
Al 0.3 Mn 0.5 (Co molar ratio to Mm 0.8)
A ribbon-shaped Mm / Ni / Co / Al / Mn alloy represented by

【0087】次いで、これらの薄帯状のMm・Ni・C
o・Al・Mn合金を種々の温度(700、750、8
00、900、950又は1000°C)で、Arガス
中にて6時間アニール処理した後、不活性ガス(Arガ
ス)雰囲気下において機械的に粉砕して、平均粒径70
μmの合金粉末を作製した。アニール温度、薄帯の厚
み、結晶粒の大きさの最大及び最小を、表5にまとめて
示す。
Next, these ribbon-shaped Mm.Ni.C
o ・ Al ・ Mn alloys at various temperatures (700, 750, 8
00, 900, 950 or 1000 ° C.), and then annealed in Ar gas for 6 hours, and then mechanically crushed in an inert gas (Ar gas) atmosphere to obtain an average particle size of 70.
A μm alloy powder was prepared. Table 5 shows the annealing temperature, the thickness of the ribbon, and the maximum and minimum of the grain size.

【0088】[0088]

【表5】 [Table 5]

【0089】次いで、水素吸蔵材としてこれらの水素吸
蔵合金粉末を使用したこと以外は参考例1〜13と同様
にして、AAサイズの正極支配型のニッケル・水素化物
アルカリ蓄電池A22〜A24及びB19,B20(電
池容量:1200mAh±10mAh)を作製した。
Then, in the same manner as in Reference Examples 1 to 13 except that these hydrogen storage alloy powders were used as the hydrogen storage material, the AA size positive electrode dominant nickel-hydride alkaline storage batteries A22 to A24 and B19, B20 (battery capacity: 1200 mAh ± 10 mAh) was produced.

【0090】作製した各ニッケル−水素化物アルカリ蓄
電池について、先と同じ条件で耐過充電特性試験を行
い、各電池の耐過充電特性を調べた。結果を先の表5に
示す。なお、表5には、電池A8(アニール温度900
°C)の結果を表3より転記して示してある。
Each nickel-hydride alkaline storage battery produced was subjected to an overcharge resistance test under the same conditions as above, and the overcharge resistance of each battery was examined. The results are shown in Table 5 above. In Table 5, battery A8 (annealing temperature 900
The results of (° C) are shown by transcription from Table 3.

【0091】表5より、充放電サイクル初期の高率放電
特性及び充放電サイクル特性のみならず、耐過充電特性
にも優れたニッケル−水素化物アルカリ蓄電池を与える
水素吸蔵合金電極を得るためには、750〜950°C
の温度でアニール処理したMm・Ni・Co・Al・M
n合金を使用する必要があることが分かる。
From Table 5, in order to obtain a hydrogen storage alloy electrode which provides a nickel-hydride alkaline storage battery excellent not only in high rate discharge characteristics and charge / discharge cycle characteristics in the early stage of charge / discharge cycle but also in overcharge resistance, , 750-950 ° C
・ Ni ・ Co ・ Al ・ M annealed at different temperatures
It can be seen that it is necessary to use n alloys.

【0092】[0092]

【発明の効果】本発明電極を負極として使用することに
より、充放電サイクル初期の高率放電特性、充放電サイ
クル特性及び耐過充電特性のいずれにも優れる金属−水
素化物アルカリ蓄電池を得ることが可能になる。また、
本発明方法によれば、斯かる優れた電極特性を有する本
発明電極を得ることが可能になる。
By using the electrode of the present invention as a negative electrode, it is possible to obtain a metal-hydride alkaline storage battery which is excellent in high rate discharge characteristics at the beginning of charge / discharge cycle, charge / discharge cycle characteristics and overcharge resistance. It will be possible. Also,
The method of the present invention makes it possible to obtain the electrode of the present invention having such excellent electrode characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】単ロール法により急冷凝固させた後、アニール
処理した水素吸蔵合金の断面に現れる結晶粒の様子を示
す模式図である。
FIG. 1 is a schematic view showing a state of crystal grains appearing in a cross section of a hydrogen storage alloy that is annealed after being rapidly solidified by a single roll method.

【図2】単ロール法により急冷凝固させた後、アニール
処理しなかった水素吸蔵合金の断面に現れる結晶粒の様
子を示す模式図である。
FIG. 2 is a schematic diagram showing a state of crystal grains appearing in a cross section of a hydrogen storage alloy that has not been annealed after being rapidly solidified by a single roll method.

【符号の説明】[Explanation of symbols]

A アニール処理した薄帯状の水素吸蔵合金 1 白色部(希土類元素及びコバルト濃度の高い層) 2 黒色部(希土類元素及びコバルト濃度の低い層) 3 開放面側Oの結晶粒の大きさ 4 ロール面側Rの結晶粒の大きさ 5 薄帯の厚み A Annealed strip-shaped hydrogen storage alloy 1 White part (layer with high concentration of rare earth elements and cobalt) 2 Black part (layer with low concentration of rare earth elements and cobalt) 3 Size of open side O crystal grain 4 Roll surface Size of crystal grain on side R 5 Thickness of ribbon

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東山 信幸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 黒田 靖 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Higashiyama 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasushi Kuroda 2-5, Keihanhondori, Moriguchi-shi, Osaka No. 5 in Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2 Keihanhondori, Moriguchi City, Osaka Prefecture 5-5, Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ロール面側の下記に定義する結晶粒の大き
さの最小が0.2μm以上、開放面側の下記に定義する
結晶粒の大きさの最大が18μm以下である、単ロール
法により作製された平均厚み0.08〜0.35mmの
一般式:MmRx (Mmはミッシュメタル;RはNi、
Co、Al及びMn;xは4.5〜4.9)で表される
薄帯状のMm・Ni・Co・Al・Mn合金を、粉砕し
て得た合金粉末が、水素吸蔵材として使用されているこ
とを特徴とする金属−水素化物アルカリ蓄電池用の水素
吸蔵合金電極。 結晶粒の大きさ:希土類元素の濃度が高い層と同濃度が
低い層とが交互に出現する多層構造に於けるこれら二層
の厚みの和をいう。
1. A single roll method in which the minimum size of crystal grains defined below on the roll side is 0.2 μm or more and the maximum size of crystal grains defined below on the open side is 18 μm or less. A general formula with an average thickness of 0.08 to 0.35 mm: MmR x (Mm is misch metal; R is Ni,
Co, Al and Mn; x is 4.5 to 4.9), and an alloy powder obtained by pulverizing a ribbon-shaped Mm / Ni / Co / Al / Mn alloy is used as a hydrogen storage material. A hydrogen-storing alloy electrode for a metal-hydride alkaline storage battery. Crystal grain size: The sum of the thicknesses of these two layers in a multilayer structure in which a layer having a high concentration of rare earth elements and a layer having a low concentration of the rare earth elements appear alternately.
【請求項2】前記Mm・Ni・Co・Al・Mn合金
が、Mm1モル部に対してCoを0.5〜0.9モル部
含有する請求項1記載の金属−水素化物アルカリ蓄電池
用の水素吸蔵合金電極。
2. The metal-hydride alkaline storage battery according to claim 1, wherein the Mm.Ni.Co.Al.Mn alloy contains 0.5 to 0.9 mol part of Co per 1 mol part of Mm. Hydrogen storage alloy electrode.
【請求項3】前記Mm・Ni・Co・Al・Mn合金
が、Mm1モル部に対してNiを2.9〜3.3モル部
含有する請求項1記載の金属−水素化物アルカリ蓄電池
用の水素吸蔵合金電極。
3. The metal-hydride alkaline storage battery according to claim 1, wherein the Mm.Ni.Co.Al.Mn alloy contains 2.9 to 3.3 parts by mole of Ni per 1 part by mole of Mm. Hydrogen storage alloy electrode.
【請求項4】前記Mm・Ni・Co・Al・Mn合金
が、Mm1モル部に対してCoを0.5〜0.9モル部
含有し、且つNiを2.9〜3.3モル部含有する請求
項1記載の金属−水素化物アルカリ蓄電池用の水素吸蔵
合金電極。
4. The Mm.Ni.Co.Al.Mn alloy contains 0.5 to 0.9 mol part of Co and 2.9 to 3.3 mol part of Ni per 1 mol part of Mm. A hydrogen storage alloy electrode for a metal-hydride alkaline storage battery according to claim 1, which contains.
【請求項5】不活性ガス又は真空中にてロール周速度5
0〜1000cm/秒で回転する単ロールの周面に合金
溶湯を流し込んで一般式:MmRx (Mmはミッシュメ
タル;RはNi、Co、Al及びMn;xは4.5〜
4.9)で表される薄帯状のMm・Ni・Co・Al・
Mn合金を作製し、該薄帯状のMm・Ni・Co・Al
・Mn合金を不活性ガス又は真空中にて750〜950
°Cの温度に所定時間加熱保持してアニール処理し、粉
砕して、合金粉末を作製し、該合金粉末を水素吸蔵材と
して使用して電極を作製することを特徴とする金属−水
素化物アルカリ蓄電池用の水素吸蔵合金電極の製造方
法。
5. A roll peripheral speed of 5 in an inert gas or vacuum.
General formula: MmR x (Mm is misch metal; R is Ni, Co, Al and Mn; x is 4.5 to 4.5) by pouring molten alloy on the peripheral surface of a single roll rotating at 0 to 1000 cm / sec
4.9) Mm, Ni, Co, Al
A Mn alloy is produced and the thin strips of Mm, Ni, Co, and Al are formed.
・ Mn alloy in an inert gas or vacuum at 750 to 950
A metal-hydride alkali, characterized in that it is annealed by heating at a temperature of ° C for a predetermined time, pulverized to produce an alloy powder, and the alloy powder is used as a hydrogen storage material to produce an electrode. A method of manufacturing a hydrogen storage alloy electrode for a storage battery.
JP7262097A 1994-11-25 1995-09-13 Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof Pending JPH0982322A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7262097A JPH0982322A (en) 1995-09-13 1995-09-13 Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof
US08/562,150 US5629000A (en) 1994-11-25 1995-11-22 Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
DE69523017T DE69523017T2 (en) 1994-11-25 1995-11-24 Hydrogen absorbing alloy electrode for alkaline metal hydride batteries and manufacturing process
EP95118539A EP0714143B1 (en) 1994-11-25 1995-11-24 Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
CNB951215035A CN1138310C (en) 1994-11-25 1995-11-25 Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262097A JPH0982322A (en) 1995-09-13 1995-09-13 Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0982322A true JPH0982322A (en) 1997-03-28

Family

ID=17371001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262097A Pending JPH0982322A (en) 1994-11-25 1995-09-13 Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0982322A (en)

Similar Documents

Publication Publication Date Title
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP2024023286A (en) Manufacturing method of hydrogen storage material
US5629000A (en) Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
JPWO2003054240A1 (en) Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
JP3432976B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH0982322A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof
JP2004127549A (en) Nickel-hydrogen storage battery
JP3432971B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
KR100348954B1 (en) Hydrogen storage alloy electrode for alkaline secondary battery
JP5455297B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
WO2020179752A1 (en) Negative electrode active material powder, negative electrode and nickel hydrogen secondary battery
JP3354365B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2004192965A (en) Manufacturing method of hydrogen storage alloy electrode, electrode, and secondary battery
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2000277106A (en) Hydrogen storage alloy electrode for alkaline storage battery and its manufacture
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2000243386A (en) Hydrogen storage alloy electrode and its manufacture
JP3360916B2 (en) Manufacturing method of hydrogen storage alloy
JP3423130B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH04143254A (en) Hydrogen occluding alloy electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110628

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120628

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130628

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250