JPH04143254A - Hydrogen occluding alloy electrode - Google Patents

Hydrogen occluding alloy electrode

Info

Publication number
JPH04143254A
JPH04143254A JP2269155A JP26915590A JPH04143254A JP H04143254 A JPH04143254 A JP H04143254A JP 2269155 A JP2269155 A JP 2269155A JP 26915590 A JP26915590 A JP 26915590A JP H04143254 A JPH04143254 A JP H04143254A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen storage
battery
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269155A
Other languages
Japanese (ja)
Inventor
Akio Furukawa
明男 古川
Ikuro Yonezu
育郎 米津
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2269155A priority Critical patent/JPH04143254A/en
Publication of JPH04143254A publication Critical patent/JPH04143254A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To easily homogenize the alloy and to improve dry cell life and corrosion resistance against alkali electrolyte by adding specified amts. of V and elements which can easily form a solid solution with Ti-Fe alloy to an Ti-Fe alloy and alloying the mixture. CONSTITUTION:The hydrogen occluding alloy to be used as a negative electrode of metal-hydrogen alkali storage battery has the compsn. expressed by the formula. In this formula, A is one or more elements selected from Nb, Ta, Zr, W, Hf, Cr, Sn, and Ga, B is one or more elements selected from Co, Cr, Ir, Mn, Mo, Ni, Pt, Si, and Sn, and a, b, c, and d satisfy the relations 0.01<=a<=0.5, 0.01<=b<=0.5, 0.1<=c<=1.5, and 0.7<=d<=1.5. This alloy is plated with Cu, Ni, V, In, Zn, etc., to protect its surface. Or by coating thus alloy with hydrogen occluding alloy having a large amt. of residual hydrogen in a low hydrogenation pressure region or with metal oxide, corrosion resistance of the alloy can be improved and pulverization of the alloy accompanied with absorption and emission of hydrogen can be suppressed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、金属−水素アルカリ蓄電池の負極に用いられ
る水素吸蔵合金電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal-hydrogen alkaline storage battery.

(ロ)従来の技術 従来からよく用いられる蓄電池としては、鉛電池及びニ
ッケルーカドミウム電池がある。しかし、近年、これら
の電池よりも軽量で且つ高容量となる可能性があるとい
うことで、水素を可逆的に吸蔵及び放出することのでき
る水素吸蔵合金を負極に、水酸化ニッケルなどの金属酸
化物を正極に用いた金属−水素アルカ′り蓄電池が注目
されている。
(b) Prior Art Storage batteries commonly used in the past include lead batteries and nickel-cadmium batteries. However, in recent years, with the potential to be lighter and have higher capacity than these batteries, metal oxides such as nickel hydroxide have been developed using hydrogen storage alloys that can reversibly absorb and release hydrogen as negative electrodes. Metal-hydrogen alkali storage batteries that use hydrogen as the positive electrode are attracting attention.

一般に、この種の水素吸蔵合金電極は、以下のようにし
て作製される。゛ ■ 特公昭58−46827号公報に示すように、水素
を吸蔵する合金粉末と水素を吸蔵しない合金粉末との混
合物を焼結して焼結多孔体を作製し、これを水素吸蔵合
金電極とする方法。
Generally, this type of hydrogen storage alloy electrode is produced as follows.゛■ As shown in Japanese Patent Publication No. 58-46827, a mixture of an alloy powder that absorbs hydrogen and an alloy powder that does not absorb hydrogen is sintered to produce a sintered porous body, which is used as a hydrogen-absorbing alloy electrode. how to.

■ 特開昭53−103541号公報に示すように、水
素を吸蔵する合金粉末とアセチレンブラック及び電極支
持体とを耐電解液性の粒子状結着剤により相互に結合さ
せて水素吸蔵合金電極とする方法。
■ As shown in JP-A-53-103541, a hydrogen-absorbing alloy powder, acetylene black, and an electrode support are bonded to each other using an electrolyte-resistant particulate binder to form a hydrogen-absorbing alloy electrode. how to.

そして、上記電極に用いる水素吸蔵合金の一つとして、
特開昭61−176065号公報に示すTi−Fe合金
がある。このT i−F e合金は室温近傍で可逆的に
水素の吸蔵、放出が可能であること、及び原料が比較的
安価なこと等により有望視されている。
And, as one of the hydrogen storage alloys used for the above electrode,
There is a Ti--Fe alloy disclosed in Japanese Patent Application Laid-open No. 176065/1983. This T i-F e alloy is viewed as promising because it can reversibly absorb and release hydrogen near room temperature and because its raw materials are relatively inexpensive.

更に、上記T i−F e合金の特性改良を図るために
、特開昭62−184765号公報に示すように、Ti
−Fe合金にZr、Ni等を加えた合金が提案されてい
る。
Furthermore, in order to improve the characteristics of the Ti-Fe alloy, as shown in JP-A-62-184765, Ti
An alloy in which Zr, Ni, etc. are added to a -Fe alloy has been proposed.

(ハ)発明が解決しようとする課題 しかしながら、上記合金であっても、アルカリ電解液中
において電気化学的な水素の吸蔵、放出がなされ難く且
つ電極の放電容量が小さいため、実用化にあたっては更
に改良する必要がある。加えて、従来のT i−F e
合金は、初期活性化(化成処理)が希土類−Ni合金と
比較して困難であるという課題も有していた。
(c) Problems to be solved by the invention However, even with the above alloy, it is difficult to electrochemically absorb and release hydrogen in an alkaline electrolyte, and the discharge capacity of the electrode is small, so it is difficult to put it into practical use. Needs improvement. In addition, conventional T i-F e
The alloy also had the problem that initial activation (chemical conversion treatment) was difficult compared to rare earth-Ni alloys.

本発明は上記課題を考慮して、上記諸欠点を解消できる
ことになる水素吸蔵合金電極の提供を目的とする。
The present invention takes the above problems into consideration and aims to provide a hydrogen storage alloy electrode that can eliminate the various drawbacks mentioned above.

(ニ)課題を解決するための手段 本発明は上記目的を達成するために、金属−水素アルカ
リ蓄電池の負極に用いられる水素吸蔵合金電極において
、前記水素吸蔵合金電極に用いられる合金として、下記
一般式(1)で示される合金が用いられることを特徴と
する。
(d) Means for Solving the Problems In order to achieve the above object, the present invention provides a hydrogen storage alloy electrode used as a negative electrode of a metal-hydrogen alkaline storage battery. It is characterized in that an alloy represented by formula (1) is used.

(T It−aA−)dF el−bB 、V%+++
+・(1)[但し、AはNb、 Ta、  Z r、 
W、 Hf、 Cr、 Sn、Gaから成る群から選ば
れた一種以上の元素、BはCo、 Cr、  I r、
 Mn、 Mo5Ni、Pi、Si、Snから成る群か
ら選ばれた一種以上の元素、0.01≦a≦0.5.0
.01≦b≦0.5.0.1≦c≦1.5.0.7≦d
≦1.5の範囲内である。](ホ)作用 本発明のベースはT i−F e合金であり、このTi
−Fe合金は安価且つ固気反応における水素吸蔵量が希
土類−Ni系合金よりも多い点で優れている。
(T It-aA-)dF el-bB , V%+++
+・(1) [However, A is Nb, Ta, Zr,
One or more elements selected from the group consisting of W, Hf, Cr, Sn, and Ga; B is Co, Cr, Ir,
One or more elements selected from the group consisting of Mn, Mo5Ni, Pi, Si, and Sn, 0.01≦a≦0.5.0
.. 01≦b≦0.5.0.1≦c≦1.5.0.7≦d
It is within the range of ≦1.5. ] (e) Effect The base of the present invention is a Ti-Fe alloy, and this Ti
-Fe alloys are superior in that they are inexpensive and have a larger hydrogen storage capacity in solid-gas reactions than rare earth-Ni alloys.

しかし、この合金は水素吸収初期の活性化が難しく、特
にアルカリ電解液中での電気化学的な水素の吸蔵、放出
が難しいため、電極の放電容量が極めて少なくなるとい
う課題を有していた。
However, this alloy has the problem that it is difficult to activate it at the initial stage of hydrogen absorption, and in particular, it is difficult to electrochemically absorb and release hydrogen in an alkaline electrolyte, resulting in an extremely low discharge capacity of the electrode.

しかしながら、上記構成の如くV等の前記元素をTi−
Fe合金に加えれば、アルカリ電解液中における水素の
吸蔵、放出の初期活性化及び電気化学的な水素の吸蔵、
放出が容易になされるので、電極の放電容量が飛躍的に
増大する。
However, as in the above structure, the elements such as V are replaced with Ti-
When added to Fe alloys, hydrogen absorption in alkaline electrolyte, initial activation of release, and electrochemical hydrogen absorption,
Since the discharge is facilitated, the discharge capacity of the electrode increases dramatically.

また、TiとFeに固溶し易い元素(前記A、 Bで表
される元素)を加え、合金化することにより、得られた
合金は、均質化し易くなり、アルカリ電解液に対する耐
食性が向上し、電池の寿命も向上する。
In addition, by adding elements that are easily dissolved in Ti and Fe (elements represented by A and B above) and alloying them, the resulting alloy becomes easier to homogenize and has improved corrosion resistance against alkaline electrolytes. , battery life will also be improved.

尚、合金作製方法として、通常のアーク溶解法、高周波
溶解性以外の作製方法(例、液体急冷法、スパッタ法、
フラッシュ蒸着法等の急冷法)を用いれば、前記合金成
分の化学量論比を大きくずらしても、アーク炉、高周波
炉等を用いて作製するよりも均質な非平衡相が得られる
。したがって、この合金を用いた電極の放電容量を更に
大きくすることができる。
In addition, as an alloy manufacturing method, manufacturing methods other than normal arc melting method and high frequency melting method (e.g., liquid quenching method, sputtering method,
If a rapid cooling method such as a flash vapor deposition method is used, a non-equilibrium phase that is more homogeneous than that produced using an arc furnace, high frequency furnace, etc. can be obtained even if the stoichiometric ratio of the alloy components is significantly shifted. Therefore, the discharge capacity of an electrode using this alloy can be further increased.

また、本発明合金に、Cu、Ni、V、In、Zn或い
はその化合物の一種以上の金属をメッキして本発明合金
の表面を保護したり、液体急冷法、スパッタ法、フラッ
シュ蒸着法から選ばれた一種の方法を用いて、本発明合
金よりも低水素化圧力域において残存水素量の多い水素
吸蔵合金を本発明合金の表面に被覆したり、金属酸化物
を本発明合金の表面に塗布、焼結、被覆することができ
る。
In addition, the surface of the alloy of the present invention may be protected by plating one or more metals selected from Cu, Ni, V, In, Zn, or their compounds, or by a method selected from liquid quenching, sputtering, and flash vapor deposition. Using a type of method, the surface of the alloy of the present invention may be coated with a hydrogen storage alloy that has a higher amount of residual hydrogen in a low hydrogenation pressure range than the alloy of the present invention, or a metal oxide may be coated on the surface of the alloy of the present invention. , can be sintered and coated.

このようにすれば、本発明合金のアルカリ電解液に対す
る耐食性を向上させ、且つ水素吸放出に伴う微粉化を抑
制すること等が可能となるので、電極の耐久性を向上さ
せることができる。尚、低水素圧力域において残存水素
量の多い水素吸蔵合金を本発明合金の表面に被覆すると
、内部合金(本発明合金)が水素を放出した後も表面合
金の残存水素によって内部合金の酸化を抑制するため、
内部合金の耐久性が向上することになる。
In this way, it is possible to improve the corrosion resistance of the alloy of the present invention against alkaline electrolytes and to suppress pulverization due to hydrogen absorption and release, thereby improving the durability of the electrode. Furthermore, if the surface of the present alloy is coated with a hydrogen storage alloy that has a large amount of residual hydrogen in a low hydrogen pressure region, even after the internal alloy (the present alloy) releases hydrogen, the residual hydrogen in the surface alloy will prevent oxidation of the internal alloy. In order to suppress
The durability of the internal alloy will be improved.

更に、本発明合金(第1の成分)と異種金属または酸化
物(第2の成分)とを各々粉砕し粉末化した後、これら
を混合焼結した合金を直接用いたり、或いはこれに加え
て混合焼結した合金の表面を上記の如く表面処理すれば
、水素吸蔵量の大きな第1の成分と、腐食を防止する第
2の成分とが一部融着或いは合金化する。したがって、
第1成分のみから成る合金では酸化物や水酸化物への組
成変化による水素吸蔵量の低下が認められるのに対し、
前記混合焼結した合金では、充放電を繰り返した場合で
あっても、第1成分の組成が安定に保たれるため、容量
低下の少ない長寿命の電極が得られることになる。
Furthermore, after crushing and powdering the alloy of the present invention (first component) and a different metal or oxide (second component), an alloy obtained by mixing and sintering them can be used directly, or in addition to this. If the surface of the mixed and sintered alloy is treated as described above, the first component, which has a large hydrogen storage capacity, and the second component, which prevents corrosion, are partially fused or alloyed. therefore,
In alloys consisting only of the first component, a decrease in hydrogen storage capacity is observed due to compositional changes to oxides and hydroxides.
In the mixed and sintered alloy, the composition of the first component is kept stable even when charging and discharging are repeated, so that a long-life electrode with little capacity loss can be obtained.

また更に、本発明合金(第1の成分)と異種金属或いは
合金(第2の成分)とをメカニカル・グラインディング
法を用いて処理すれば、第1の成分の表面が第2の成分
の拡散層によって被覆される。したがって、アルカリ電
解液に対する耐食性が向上すると共に、第1成分の組成
が安定に保たれるため、容量低下の少ない長寿命の電極
が得られることになる。
Furthermore, if the alloy of the present invention (the first component) and a dissimilar metal or alloy (the second component) are treated using a mechanical grinding method, the surface of the first component will be absorbed by the diffusion of the second component. covered by a layer. Therefore, the corrosion resistance against alkaline electrolytes is improved, and the composition of the first component is kept stable, so that an electrode with a long life and less capacity loss can be obtained.

(へ)実施例 1上寒凰男 本発明の第1実施例を、以下に説明する。(f) Example 1st Kanoman A first embodiment of the invention will be described below.

[実施例1] 先ず、市販のTi(純度99%以上)と、下記(1)式
に示す組成式のAとしての市販のNbと、市販のFe(
純度99z以上)と下記(1)式に示す組成式のBとし
ての市販のCo(純度992以上)と、市販のV(純度
99%以上)とを、原子比で0.8:0.2:0.9+
0.1:1の割合となるように秤量した後、アルゴン雰
囲気中のアーク溶解炉で溶解し、T ie、 aN b
e、F ea、 *COo、 、 V 、で 示される合金を作製した。
[Example 1] First, commercially available Ti (purity of 99% or more), commercially available Nb as A in the composition formula shown in formula (1) below, and commercially available Fe (
commercially available Co (purity 992 or more) as B in the composition formula shown in formula (1) below, and commercially available V (purity 99% or more) in an atomic ratio of 0.8:0.2. :0.9+
After weighing to give a ratio of 0.1:1, it is melted in an arc melting furnace in an argon atmosphere to obtain T ie, aN b
An alloy represented by e, F ea, *COo, , V was prepared.

(Ti+−、A、)aFe+−bBbVc ・・・(1
)次に、この合金を機械的に50μm以下に粉砕した後
、この粉末80wtZに、導電剤としてのニッケル粉末
10wtχと、結着剤としてのフッ素樹脂粉末10wt
χを添加して更にこれらを混合することにより、上記フ
ッ素街脂を繊維化させる。
(Ti+-, A,)aFe+-bBbVc...(1
) Next, after mechanically crushing this alloy to 50 μm or less, 80 wt Z of this powder was mixed with 10 wt χ of nickel powder as a conductive agent and 10 wt of fluororesin powder as a binder.
By adding χ and further mixing these, the above-mentioned fluorine street resin is made into fibers.

この後、ニッケル金網で上記混合物を包み込んだ後、3
ton/cがの圧力で加圧成型して水素吸蔵合金電極を
作製した。尚、この電極に用いられる水素吸蔵合金粉末
の量は1.5gである。
After this, after wrapping the above mixture in a nickel wire mesh,
A hydrogen storage alloy electrode was produced by pressure molding at a pressure of ton/c. Note that the amount of hydrogen storage alloy powder used in this electrode was 1.5 g.

しかる後、上記水素吸蔵合金電極と、理論放電容量が6
00mAl1の公知の焼結式ニッケル電極とを組合わせ
て密閉型ニッケルー水素アルカリ蓄電池を作製した。
After that, the hydrogen storage alloy electrode and the theoretical discharge capacity of 6.
A sealed nickel-metal hydride alkaline storage battery was fabricated by combining it with a known sintered nickel electrode of 00mAl1.

尚、アルカリ電解液としては、30wtZの水酸化カリ
ウム水溶液を用いている。
Note that a 30 wtZ potassium hydroxide aqueous solution is used as the alkaline electrolyte.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

[実施例2〜16コ 上記(1)式に示す組成式Aとして、市販の純度99%
以上のTa、Zr、W、Hf、Cr、Sn、Gaの何れ
かを用い、且つ、Bとして、市販の純度992以上のN
i、 Cr、  I r%MnSMo、 Pt5Si、
 Snの何れかを用いて、下記第1表(A)、(B)に
示す合金を作製し、この合金を用いて負極を作製する他
は、上記実施例1と同様に電池を作製した。
[Examples 2 to 16 As the composition formula A shown in the above formula (1), commercially available purity 99%
Any of the above Ta, Zr, W, Hf, Cr, Sn, and Ga is used, and as B, commercially available N with a purity of 992 or higher is used.
i, Cr, Ir%MnSMo, Pt5Si,
A battery was produced in the same manner as in Example 1 above, except that alloys shown in Tables 1 (A) and (B) below were produced using either Sn, and a negative electrode was produced using this alloy.

このようにして作製した電池を、以下(A、)電池〜(
At−)電池と称する。
The batteries produced in this way are described below as (A,) battery ~ (
It is called an At-) battery.

[比較例] TiFe合金を用いて負極を作製する他は、上記実施例
1と同様にして電池を作製した。
[Comparative Example] A battery was produced in the same manner as in Example 1 above, except that a negative electrode was produced using a TiFe alloy.

このようにして作製した電池を、以下(X)電池と称す
る。
The battery thus produced is hereinafter referred to as the (X) battery.

[実験1] 上記本発明の(A、)電池〜(Aug)電池と比較例の
(X)電池との充放電サイクル試験を行い100サイク
ル後の充電容量を調べたので、その結果を下記第1表に
併せて示す。尚、実験条件は、8時間率(0,125C
)の電流で10時間充電した後、5時間率(0,2C)
の電流で電池電圧が1.OVになる迄放電するという条
件である。
[Experiment 1] A charge/discharge cycle test was conducted on the batteries (A,) to (Aug) of the present invention and the battery (X) of the comparative example, and the charging capacity after 100 cycles was investigated.The results are summarized in the following section. It is also shown in Table 1. The experimental conditions were 8 hour rate (0,125C
) after charging for 10 hours at a current of 5 hours (0,2C)
With a current of , the battery voltage is 1. The condition is to discharge until it reaches OV.

第1表(A) 第1表(B) 前記第1表(A)、(B)に示すように、(A1)電池
〜(A、、)!池は(X )it池に比べて放電容量が
格段に大きくなっていることが認められる。
Table 1 (A) Table 1 (B) As shown in Table 1 (A) and (B), (A1) Battery ~ (A,,)! It is recognized that the discharge capacity of the battery is significantly larger than that of the (X)it battery.

尚、1000サイクル後における放電容量も調べたが、
(A1)電池〜(A、、)電池では10〜16%だけ容
量が減少するだけで、大きな変化は認められなかった。
In addition, the discharge capacity after 1000 cycles was also investigated.
For the (A1) battery to (A,,) battery, the capacity decreased by only 10 to 16%, and no major change was observed.

[実験2] T j+−aN baF eo、 *COs、、V 、
で表される合金の、aの量と放電容量との関係を調べた
ので、その結果を第1図に示す。
[Experiment 2] T j+-aN baF eo, *COs,,V,
The relationship between the amount of a and the discharge capacity of the alloy represented by was investigated, and the results are shown in FIG.

0.01≦a≦0.5の範囲で放電容量が大きくなって
いることが認められ、特に0.1≦a≦0.3の範囲(
a=0.2のとき放電容量が最高の330mAll/g
となっている)であれば放電容量が著しく大きくなって
いることが認められる。
It is recognized that the discharge capacity increases in the range of 0.01≦a≦0.5, and especially in the range of 0.1≦a≦0.3 (
When a=0.2, the highest discharge capacity is 330mAll/g
), it is recognized that the discharge capacity is significantly increased.

したがって、aの値は0.01≦a≦0.5の範囲が好
ましく、特に0.1≦a≦0.3の範囲が好ましい。
Therefore, the value of a is preferably in the range of 0.01≦a≦0.5, particularly preferably in the range of 0.1≦a≦0.3.

[実験3] T l01Nbo、F e+−bc ObV +で表さ
れる合金のbの量と放電容量との関係を調べたので、そ
の結果を第2図に示す。0.01≦b≦0.5の範囲で
放電容量が大きくなっていることが認められ、特に0.
05≦b≦0.2の範囲(b=0.1のとき放電容量が
最高330mAH/gとなっている)であれば放電容量
が著しく大きくなっていることが認められる。したがっ
て、bの値は0.01≦b≦0.5の範囲が好ましく、
特に0.05≦b≦0.2の範囲が好ましい。
[Experiment 3] The relationship between the amount of b in the alloy expressed as T101Nbo, Fe+-bcObV+ and the discharge capacity was investigated, and the results are shown in FIG. It is recognized that the discharge capacity increases in the range of 0.01≦b≦0.5, especially in the range of 0.01≦b≦0.5.
It is recognized that the discharge capacity is significantly large in the range of 05≦b≦0.2 (the maximum discharge capacity is 330 mAH/g when b=0.1). Therefore, the value of b is preferably in the range of 0.01≦b≦0.5,
In particular, the range of 0.05≦b≦0.2 is preferable.

[実験4コ T i、、、Nbo、tFeo、5Coo、 +Vcで
表される合金のCの量と放電容量との関係を調べたので
、その結果を第3図に示す。0.1≦c≦1.5の範囲
で放電容量が大きくなっていることが認められ、特に0
.4≦c≦1.2の範囲(C=1のとき放電容量が最高
の330mAlとなっている)であれば放電容量が著し
く大きくなっていることが認められる。したがって、C
の値は0.1≦c≦1.5の範囲が好ましく、特に0.
4≦c≦1.2の範囲が好ましい。
[Experiment 4] The relationship between the amount of C in the alloy represented by T i,..., tFeo, 5Coo, +Vc and the discharge capacity was investigated, and the results are shown in FIG. It is recognized that the discharge capacity increases in the range of 0.1≦c≦1.5, especially in the range of 0.
.. It is recognized that the discharge capacity is significantly large in the range of 4≦c≦1.2 (when C=1, the discharge capacity is the highest, 330 mAl). Therefore, C
The value of c is preferably in the range of 0.1≦c≦1.5, particularly 0.
The range of 4≦c≦1.2 is preferable.

[実験5] (T io、 5Nbo、 *)aF eo、 5co
o、 、v lで表される合金のdの量を変化させた場
合の、dの量と放電容量との関係を調べたのでその結果
を第4図(図中(B、)を池)に示す。0.7≦d≦1
.4の範囲で放電容量が大きくなっていることが認めら
れ、特に0.9≦d≦1.35の範囲(d=1.2のと
き放電容量が最高の340mAH/gとなっている)で
あれば放電容量が著しく大きくなっていることが認めら
れる。したがって、dの値は0.7≦d≦1.4の範囲
が好ましく、特に0.9≦d≦1.3の範囲が好ましい
[Experiment 5] (T io, 5Nbo, *) aF eo, 5co
We investigated the relationship between the amount of d and the discharge capacity when the amount of d in the alloy represented by o, , v l was changed, and the results are shown in Figure 4 ((B,) in the figure). Shown below. 0.7≦d≦1
.. It is recognized that the discharge capacity increases in the range of 4, especially in the range of 0.9≦d≦1.35 (when d=1.2, the discharge capacity is the highest at 340 mAH/g). If so, it is recognized that the discharge capacity is significantly increased. Therefore, the value of d is preferably in the range of 0.7≦d≦1.4, particularly preferably in the range of 0.9≦d≦1.3.

尚、 式(1)に示すAとしては上記に示す他、Ta、
Zr、W、Hf、Cr、Sn、Gaであっても良く、式
(1)に示すBとしては、上記に示す他、Ni、Cr、
I r、 Mn、Mo、  Pt、  Si、Snであ
っても良い。
In addition, as A shown in formula (1), in addition to those shown above, Ta,
Zr, W, Hf, Cr, Sn, Ga may be used, and B shown in formula (1) may include Ni, Cr,
It may be Ir, Mn, Mo, Pt, Si, or Sn.

第2実施例 本発明の第2実施例を以下に説明する。尚、本実施例で
は、主として合金を急冷した場合について述べる。
Second Embodiment A second embodiment of the present invention will be described below. In this example, the case where the alloy is rapidly cooled will be mainly described.

[実施例1] 本実施例は、急冷法として液体急冷法を用いた場合であ
る。
[Example 1] This example is a case where a liquid quenching method is used as the quenching method.

先ず、Ti、Fe、Nb、Co、Vの各市販原料(純度
99z以上)を用いて、上記第1実施例の実施例1と同
様にアルゴン不活性雰囲気アーク溶解炉内で下記(2)
式で表される水素吸蔵合金を作製した。
First, using commercially available raw materials (purity 99z or higher) of Ti, Fe, Nb, Co, and V, the following (2) was carried out in an argon inert atmosphere arc melting furnace in the same manner as in Example 1 of the first example above.
A hydrogen storage alloy represented by the formula was created.

(Ti61Nbo、z)  dFeo、*COo、+V
+  ”  ”  ” (2)尚、dの値は0.6〜1
.6の範囲で変化させている。      −7 次にこれらの合金を5〜15mm角程度の小片に砕いた
後に、透明石英ノズル(ノズル穴:丸穴1.0mm’)
の中に入れ、高純度アルゴンガス(純度99.992以
上)で置換後、高周波電源により高周波誘導過熱コイル
に3kwの高周波を加え、加熱した。次いで、合金が溶
融した後、前記石英ノズル内をアルゴンガスで加圧し、
アルゴンガス(純度99.99Z以上)のlatm雰囲
気内で高速回転(2000r、 p、 m、 ) して
いる銅製ローラー(300mm’、幅40mm )上に
、前記合金の溶湯を噴出させて急冷凝固し、リボン状の
急冷水素吸蔵合金を得た。
(Ti61Nbo, z) dFeo, *COo, +V
+ ” ” ” (2) The value of d is 0.6 to 1
.. It is varied within a range of 6. -7 Next, after crushing these alloys into small pieces of about 5 to 15 mm square, they were inserted into transparent quartz nozzles (nozzle hole: round hole 1.0 mm').
After replacing with high-purity argon gas (purity of 99.992 or higher), 3 kW of high-frequency power was applied to the high-frequency induction heating coil using a high-frequency power source to heat it. Next, after the alloy is melted, the inside of the quartz nozzle is pressurized with argon gas,
The molten metal of the alloy was spouted onto a copper roller (300 mm, width 40 mm) rotating at high speed (2000 r, p, m, ) in a latm atmosphere of argon gas (purity 99.99 Z or higher) and rapidly solidified. , a ribbon-shaped quenched hydrogen storage alloy was obtained.

このようにして作製した急冷水素吸蔵合金を用いて負極
を作製する他は、前記第1実施例の実施例1と同様にし
て電池を作製した。
A battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using the quenched hydrogen storage alloy thus produced.

このようにして作製した電池を、以下(B、)を池と称
する。
The battery thus produced is hereinafter referred to as a pond (B,).

[実施例2] 本実施例では、急冷法としてスパッタ法を用いた場合で
ある。先ず、上記実施例1と同様にして作製した上記(
2)式に示す合金(dの値は、0.6〜1.6の範囲で
変化させている)を、スパッタ・ターゲット(4inc
h“X5mm’のディスク状)に成型した。このスパッ
タ・ターゲットを用い、高周波マグネトロンスパッタ装
置(アルゴンガス雰囲気下、圧力I X 10−”To
rr)でニッケル基板上に上記合金のスパッタ膜を形成
した。この際、高周波電力の出力は500W(1],5
6MHz)であり、スパッタ時間は10時間である。そ
の後、ニッケル基板を装置がら取り出し、基板に付着し
た上記合金のスパッタ膜をスクレーパー(ステンレス製
)により剥離し、水素吸蔵合金の薄片を約8g得た。こ
のようにして作製した急冷水素吸蔵合金を用いて負極を
作製する他は、前記第1実施例の実施例1と同様にして
電池を作製した。
[Example 2] In this example, a sputtering method is used as the rapid cooling method. First, the above (
2) The alloy shown in the formula (the value of d is varied in the range of 0.6 to 1.6) was heated to a sputter target (4 inch
Using this sputtering target, a high-frequency magnetron sputtering device (under an argon gas atmosphere, under a pressure of I
A sputtered film of the above-mentioned alloy was formed on a nickel substrate using the following steps. At this time, the output of high frequency power is 500W (1), 5
6 MHz), and the sputtering time was 10 hours. Thereafter, the nickel substrate was taken out of the apparatus, and the sputtered film of the alloy adhering to the substrate was peeled off using a scraper (made of stainless steel) to obtain about 8 g of thin pieces of the hydrogen storage alloy. A battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using the quenched hydrogen storage alloy thus produced.

このように作製した電池を、以下(B、)電池と称する
The battery thus produced is hereinafter referred to as a (B,) battery.

[実施例3] 先ず、上記実施例1と同様にして作製した(2)式に示
す合金(dの値は0.6〜1.6の範囲で変化させてい
る)をフラッシュ蒸着法により急冷し、この急冷水素吸
蔵合金を用いて負極を作製する他は、前記第1実施例の
実施例1と同様にして電池を作製した。
[Example 3] First, an alloy shown in formula (2) produced in the same manner as in Example 1 above (the value of d was varied in the range of 0.6 to 1.6) was rapidly cooled by flash vapor deposition. However, a battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using this quenched hydrogen storage alloy.

このようにして作製した電池を、以下(B4)電池と称
する。
The battery thus produced is hereinafter referred to as a (B4) battery.

[実験] 上記(B、)電池〜(B、)を池におけるdの値と水素
吸蔵合金電極の放電容量との関係を調べたので、その結
果を第4図に示す。
[Experiment] The relationship between the value of d in the battery (B,) and the discharge capacity of the hydrogen storage alloy electrode was investigated, and the results are shown in FIG.

第4図から明らかなように、全ての電池において0.7
≦d≦1.5の範囲で放電容量が280mAH/gを越
えていることが認められる。したがって、dの値は上記
範囲内であることが好ましい。
As is clear from Figure 4, 0.7 for all batteries.
It is recognized that the discharge capacity exceeds 280 mAH/g in the range of ≦d≦1.5. Therefore, the value of d is preferably within the above range.

尚、(B、)電池〜(B、)電池は前記の(B1)電池
に比べて水素吸蔵量が大きくなっていることが認められ
る。更に(B 、)電池ではZの値が1.2を越えると
急激な容量低下が認められるのに対して、(B、)電池
〜(B、)電池ではdの値が約1.3まで放電容量が大
きくなっていることが認められる。したがって、放電容
量の点からは水素吸蔵合金を急冷処理することが好まし
い。
In addition, it is recognized that the hydrogen storage capacity of the batteries (B,) to (B,) is larger than that of the battery (B1). Furthermore, in the (B,) battery, a rapid capacity drop is observed when the value of Z exceeds 1.2, whereas in the (B,) battery ~ (B,) battery, the value of d is up to approximately 1.3. It is recognized that the discharge capacity has increased. Therefore, from the viewpoint of discharge capacity, it is preferable to subject the hydrogen storage alloy to rapid cooling treatment.

さらに、(B1)電池−(B、)電池ニラいて、100
0サイクル後における放電容量も調べたが、10〜2゜
2だけ容量が減少するだけで、大きな変化は認められな
かった。
Furthermore, (B1) battery - (B,) battery is 100
The discharge capacity after 0 cycles was also examined, but no major change was observed, with the capacity only decreasing by 10 to 2°2.

第3実施例 本実施例では、合金の耐久性を向上させるべく、前記合
金の表面に他の金属等を被覆する場合について述べる。
Third Embodiment In this embodiment, a case where the surface of the alloy is coated with another metal or the like will be described in order to improve the durability of the alloy.

[実施例1] 実施例1では、合金の表面被覆法としてメッキ法を用い
ている。母合金として、前記第1実施例の実施例1に示
すTi、、 5N1)a、 Jeo、 5coo、 l
vlの合金粉末(100メツシユ以下)を用い、この合
金の表面に湿式無電解銅メッキ処理により約1μmの銅
メッキ層を形成した。このように表面被覆された水素吸
蔵合金を用いて負極を作製する他は、前記第1実施例の
実施例1と同様にして電池を作製した。
[Example 1] In Example 1, a plating method is used as a surface coating method for the alloy. As a mother alloy, Ti shown in Example 1 of the first example, 5N1)a, Jeo, 5coo, l
A copper plating layer of about 1 μm was formed on the surface of this alloy by wet electroless copper plating using an alloy powder of vl (100 mesh or less). A battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using the surface-coated hydrogen storage alloy.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery thus produced is hereinafter referred to as a (C1) battery.

[実施例2〜6] メッキ用金属としてNi、V、In、Zn、N io、
 m5−P o、。1をそれぞれ用いる他は、上記実施
例1と同月にして電池を作製した。
[Examples 2 to 6] As plating metals, Ni, V, In, Zn, Nio,
m5-P o,. Batteries were produced in the same month as in Example 1 above, except that 1 was used in each case.

このようにして作製した電池を、以下(C2)電池〜(
C,)を池と称する。
The batteries produced in this way are described below as (C2) batteries ~ (
C,) is called a pond.

[実施例7] 実施例7は、合金の表面被覆法としてスパッタ法を用い
た場合である。母合金として前記第1実施例の実施例1
に示す水素吸蔵合金の粉末(100メツシユ以下)を用
い、その表面に上記母合金よりも低水業圧力城において
残存水素量の多いZrNi、、合金の薄層(約1μm)
を通常のスパッタ法により形成した。
[Example 7] Example 7 is a case where sputtering was used as a surface coating method for the alloy. Example 1 of the first example as a master alloy
A thin layer (approximately 1 μm) of ZrNi alloy, which has a higher amount of residual hydrogen at low hydraulic pressure than the above-mentioned mother alloy, is applied to the surface of the hydrogen-absorbing alloy powder (100 mesh or less) shown in
was formed by a normal sputtering method.

このように表面被覆された水素吸蔵合金を用いて負極を
作製する他は、前記第1実施例の実施例1と同様にして
電池を作製した。
A battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using the surface-coated hydrogen storage alloy.

このようにして作製した電池を、以下(C7)電池と称
する。
The battery thus produced is hereinafter referred to as a (C7) battery.

[実施例8] 合金の表面被覆法としてフラッシュ蒸着法を用いる他は
、上記実施例7と同様にして電池を作製した。
[Example 8] A battery was produced in the same manner as in Example 7, except that flash vapor deposition was used as the surface coating method for the alloy.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery thus produced is hereinafter referred to as a (C1) battery.

[実施例9コ 実施例9は、合金の表面被覆法として金属酸化物を塗布
した後、焼結させる方法を用いた場合である。母合金と
して第1実施例の実施例1に示す水素吸蔵合金の粉末(
100メツシユ以下)を用いており、N d = 0 
*を有機溶媒に分散させた溶液を上記母合金表面に塗布
した後、1000℃で3時間真空状態で焼結した。この
ように表面被覆された水素吸蔵合金を用いて負極を作製
する他は、前記第1実施例の実施例1と同様にして電池
を作製した。
[Example 9] In Example 9, a method of coating the surface of the alloy by applying a metal oxide and then sintering was used. Powder of the hydrogen storage alloy shown in Example 1 of the first example was used as the mother alloy (
100 meshes or less), and N d = 0
A solution prepared by dispersing * in an organic solvent was applied to the surface of the mother alloy, and then sintered in a vacuum at 1000° C. for 3 hours. A battery was produced in the same manner as in Example 1 of the first embodiment, except that a negative electrode was produced using the surface-coated hydrogen storage alloy.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery thus produced is hereinafter referred to as a (C1) battery.

[実験lコ 上記本発明の(C1)〜(C9)電池の充放電サイクル
試験を行い100サイクル後の放電サイクル後の放電容
量を調べたので、その結果を下記第2表に示す。
[Experiment 1] The batteries (C1) to (C9) of the present invention were subjected to a charge/discharge cycle test to examine the discharge capacity after 100 cycles, and the results are shown in Table 2 below.

尚、実験条件は、第1実施例の実験1と同様の条件であ
る。
Note that the experimental conditions are the same as those in Experiment 1 of the first example.

以下余白 第2表 第2表より明らかなように、(C0)電池〜(C9)電
池は前記(A、)!池に比べて、放電容量が若干増加し
ていることが認められる。
As is clear from Table 2 in Table 2 below, the (C0) to (C9) batteries are the (A,)! It is observed that the discharge capacity is slightly increased compared to the pond.

尚、(C1)電池〜(C9)電池について、1000サ
イクル後における充電容量も調べた。この結果、容量の
減少がわずかに5〜1oz程度であり、(A、)電池よ
りも更に耐久性が向上したことを確認した。
In addition, the charge capacity after 1000 cycles was also investigated for the batteries (C1) to (C9). As a result, it was confirmed that the decrease in capacity was only about 5 to 1 oz, and the durability was further improved than that of the battery (A,).

第4実施例 先ず、前記第1実施例の実施例1と同様にして、Ti、
Nb、Fe、Co、Vを用いて、第1成分としてのT+
6sNbo、 Jeo、 *COo、 1v1合金鋳塊
を作製すると共に、第2成分としてのM m N i@
 Co を合金鋳塊を作製する。次に、上記第1成分及
び第2成分の各々の合金鋳塊を100メツシユ以下(約
0.15mm以下)に粉砕した後、両者を混合する。尚
、混合比率は重量比で第1成分:第2成分=1:1とし
た。その後、この混合物を約30kg/cm”の圧力で
円筒形(約20mm’ X約10mm)にプレス成型し
た後、この成型品を真空排気(10−″Torr以下)
された電気炉内(温度:約1000℃)で約8時間加熱
処理して焼結した。しかる後、このようにして作製した
水素吸蔵合金を用いて負極を作製する他は、前記第1実
施例の実施例1と同様にして電池を作製した。
Fourth Example First, in the same manner as in Example 1 of the first example, Ti,
T+ as the first component using Nb, Fe, Co, V
6sNbo, Jeo, *COo, 1v1 alloy ingot was prepared and M m N i@ as the second component.
A Co alloy ingot is produced. Next, after the alloy ingots of the first component and the second component are crushed into 100 meshes or less (approximately 0.15 mm or less), both are mixed. The mixing ratio was 1:1 (first component: second component) by weight. Thereafter, this mixture was press-molded into a cylindrical shape (approximately 20 mm' x approximately 10 mm) at a pressure of approximately 30 kg/cm'', and the molded product was evacuated (below 10-'' Torr).
It was heat-treated in an electric furnace (temperature: about 1000°C) for about 8 hours and sintered. Thereafter, a battery was fabricated in the same manner as in Example 1 of the first example, except that a negative electrode was fabricated using the hydrogen storage alloy thus fabricated.

このようにして作製した電池を、以下(Dl)電池と称
する。
The battery thus produced is hereinafter referred to as a (Dl) battery.

[比較例] 焼結を行わず第1成分と第2成分とを混合しただけの水
素吸蔵合金を用いて負極を作製する他は、上記実施例1
と同様にして作製した電池を、以下(D2)電池と称す
る。
[Comparative Example] Example 1 above except that the negative electrode was produced using a hydrogen storage alloy that was simply a mixture of the first component and the second component without sintering.
A battery produced in the same manner as above is hereinafter referred to as a (D2) battery.

[実験] 上記本発明の(Dl)電池、(D、)電池の放電サイク
ル試験を行い100サイクル後の放電容量を調べたので
、その結果を第3表に示す。
[Experiment] A discharge cycle test was conducted on the (Dl) battery and (D,) battery of the present invention to examine the discharge capacity after 100 cycles, and the results are shown in Table 3.

尚、実験条件は、第1実施例の実験1と同様の条件であ
る。
Note that the experimental conditions are the same as those in Experiment 1 of the first example.

第3表 第3表から明らかなように、(Dl)電池は(D、)電
池よりも更に放電容量が大きくなっていることが認めら
れる。
Table 3 As is clear from Table 3, it is recognized that the (Dl) battery has an even larger discharge capacity than the (D,) battery.

尚、両電池について、1000サイクル後における放電
容量も調べた。この結果、(D、)では約20χの容量
減少が認められたが、(D、)を池では約1]χしか容
量が減少しておらず、この点からも(D、)!池の方が
優れている。
In addition, the discharge capacity of both batteries after 1000 cycles was also investigated. As a result, a capacity decrease of about 20χ was observed in (D,), but in the pond (D,), the capacity decreased by only about 1]χ, and from this point of view, (D,)! Ponds are better.

また、混合焼結材料の表面に前記第3実施例に示す表面
被覆を施したところ、1000サイクル後の容量の減少
を5〜1ozに抑制することができた。
Further, when the surface coating shown in the third example was applied to the surface of the mixed sintered material, the decrease in capacity after 1000 cycles could be suppressed to 5 to 1 oz.

従って、混合焼結法と表面被覆とを併用することが望ま
しい。
Therefore, it is desirable to use the mixed sintering method and surface coating in combination.

第5実施例 [実施例コ 本実施例は、合金作製方法としてメカニカル・グライン
ディング法を用いた場合である。上記第4実施例と同様
にして作製した第1成分としてのTlo aNbo x
Feo *COo、+V+の合金粉末49g(100メ
ツシユ以下)と、第2成分としてのMmNixCo*の
粉末1gとをArガスが封入された金属ポット中に装填
し、室温にてメカニカル・グラインディングを行った。
Fifth Example [Example 7] This example is a case where a mechanical grinding method is used as an alloy manufacturing method. Tlo aNbox as the first component produced in the same manner as in the fourth example above
Feo *COo, +V+ alloy powder 49g (100 mesh or less) and MmNixCo* powder 1g as the second component were loaded into a metal pot filled with Ar gas, and mechanical grinding was performed at room temperature. Ta.

ポットの回転数は約10Or、 p、 m、であり、処
理時間は約10時間である。このメカニカル・グライン
ディング法により、第2成分のMm、Niが第1成分の
粉末表面層に拡散された合金粉末が作製される。このよ
うな合金を用いて負極を作製する他は、前記第1実施例
の実施例1と同様にして電池を作製した。このようにし
て作製した電池を、以下(E)電池と称する。
The rotation speed of the pot was about 10 Or, p, m, and the treatment time was about 10 hours. By this mechanical grinding method, an alloy powder is produced in which the second components Mm and Ni are diffused into the first component powder surface layer. A battery was manufactured in the same manner as in Example 1 of the first example, except that the negative electrode was manufactured using such an alloy. The battery thus produced is hereinafter referred to as the (E) battery.

[実験] 上記本発明の(E)電池の放電容量を調べたので、その
結果を下記第4表に示す。
[Experiment] The discharge capacity of the battery (E) of the present invention was investigated, and the results are shown in Table 4 below.

第4表 第4表から明らかなように、(E)電池は上記第4実施
例の(D、)電池よりも高容量となっていることが認め
られる。
Table 4 As is clear from Table 4, it is recognized that the battery (E) has a higher capacity than the battery (D,) of the fourth example.

尚、両電池について、1000サイクル後における放電
容量も調べた。この結果、20χ容量が減少するのみで
耐久性に優れていることが認められた。
In addition, the discharge capacity of both batteries after 1000 cycles was also investigated. As a result, it was found that the durability was excellent with only a decrease in the 20χ capacity.

また、メカニカル・アロイング法で水素吸蔵合金を作製
した場合にも同様の結果が得られた。
Similar results were also obtained when a hydrogen storage alloy was produced using a mechanical alloying method.

(ト)発明の詳細 な説明したように本発明によれば、アルカリ電解液中に
おいて電気化学的な水素の吸蔵、放出がなされ易く且つ
電極の放電容量が大きくなる。
(g) As described in detail, according to the present invention, hydrogen is easily absorbed and released electrochemically in an alkaline electrolyte, and the discharge capacity of the electrode is increased.

加えて、従来のTiFe合金に比べて初期活性化が容易
となる。これらのことから、高エネルギー密度を有する
等、電池特性を格段に向上することができるという効果
を奏する。
In addition, initial activation is easier than with conventional TiFe alloys. For these reasons, the battery characteristics can be significantly improved, such as having a high energy density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi +−aNbaFeo、 sco。、 l
vlで表される合金のaの量を変化させた場合のaの値
と放電容量との関係を示す図、第2図はTie、@Nb
o、 Je+4CObV+で表される合金のbの量を変
化させた場合のbの値と放電容量との関係を示す図、第
3図はTi、 。 tllb++ Jeo、 *COo、 IvCで表され
る合金のCの量を変化させた場合のCの値と放電容量と
の関係を示す図、第4図は(Ti、、5Nt)al)J
eo、 5cOa、 +V+で表される合金のdの量を
変化させた場合のdの値と放電容量との関係を示す図で
ある。 第1図  QOl 0.3 0.4 0.5 yi、−。 NbaFe6.q Co01t V+4++=h+76
asイ5L第2図 0001αO5Q+       0.2      
03       OAT!os Nbo2Fe1−1
. Cob V+(ν診+=h゛ケ’bbs4直第3図 TiOβ Nb0.2 Feo、9  C00,1vC1〕−べi
〉+:b Sブシecf)イJ1第4図 (Tins NbcL2)d
Figure 1 shows Ti+-aNbaFeo, sco. , l
A diagram showing the relationship between the value of a and the discharge capacity when the amount of a in the alloy represented by vl is changed. Figure 2 is Tie, @Nb
Figure 3 shows the relationship between the value of b and the discharge capacity when the amount of b in the alloy expressed as Je+4CObV+ is changed. tllb++ Jeo, *COo, A diagram showing the relationship between the value of C and discharge capacity when the amount of C in the alloy is changed, expressed as IvC. Figure 4 is (Ti,,5Nt)al)J
5 is a diagram showing the relationship between the value of d and the discharge capacity when the amount of d of the alloy represented by eo, 5cOa, and +V+ is changed. FIG. Figure 1 QOl 0.3 0.4 0.5 yi, -. NbaFe6. q Co01t V+4++=h+76
asi 5L Fig. 2 0001αO5Q+ 0.2
03 OAT! os Nbo2Fe1-1
.. Cob V+ (ν diagnosis + = h゛ke'bbs4 shift 3rd figure TiOβ Nb0.2 Feo, 9 C00, 1vC1] - Bei
〉+:b S bushie ecf) i J1 Fig. 4 (Tins NbcL2) d

Claims (1)

【特許請求の範囲】 [1]金属−水素アルカリ蓄電池の負極に用いられる水
素吸蔵合金として、下記一般式(1)で示される合金が
用いられることを特徴とする水素吸蔵合金電極。 (Ti_1_−_aA_a)_dFe_1_−_bB_
bV_c・・・・・・(1)但し、Aは、Nb、Ta、
Zr、W、Hf、Cr、Sn、Gaから成る群から選ば
れた一種以上の元素であり、Bは、Co、Cr、Ir、
Mn、Mo、Ni、Pt、Si、Sn、から成る群から
選ばれた一種以上の元素であり、aの範囲が、0.01
≦a≦0.5、bの範囲が、0.01≦b≦0.5、c
の範囲が、0.1≦c≦1.5、dの範囲が0.7≦a
≦1.5である。 [2]上記合金は非平衡状態である合金が用いられるこ
とを特徴とする請求項[1]記載の水素吸蔵合金電極。 [3]上記非平衡状態の合金は、急冷凝固法を用いて製
造されることを特徴とする請求項[2]記載の水素吸蔵
合金電極。 [4]上記急冷凝固法として、液体急冷法、スパッタ法
、フラッシュ蒸着法のうち1種が用いられていることを
特徴とする請求項[3]記載の水素吸蔵合金電極。 [5]上記非平衡状態の合金は、混合焼結、メカニカル
・グラインディング法、メカニカル・アロイング法の内
の一種を用いて製造されることを特徴とする請求項[3
]記載の水素吸蔵合金電極。 [6]上記合金の表面に腐食防止用の膜が用いられてい
ることを特徴とする請求項[1]、[2]、[3]、[
4]、又は[5]記載の水素吸蔵合金電極。 [7]上記腐食防止用の膜に、酸化物が用いられている
ことを特徴とする請求項[6]記載の水素吸蔵合金電極
。 [8]上記腐食防止用の膜が、Cu、Ni、V、In、
Zn或いはその化合物の1種をメッキにより作製される
ことを特徴とする請求項[6]記載の水素吸蔵合金電極
。 [9]上記腐食防止用の膜として、上記合金よりも低水
素圧力域において、残存水素量の多い水素吸蔵合金が用
いられていることを特徴とする請求項[6]記載の水素
吸蔵合金電極。
[Scope of Claims] [1] A hydrogen storage alloy electrode characterized in that an alloy represented by the following general formula (1) is used as a hydrogen storage alloy for use in the negative electrode of a metal-hydrogen alkaline storage battery. (Ti_1_-_aA_a)_dFe_1_-_bB_
bV_c...(1) However, A is Nb, Ta,
B is one or more elements selected from the group consisting of Zr, W, Hf, Cr, Sn, and Ga, and B is Co, Cr, Ir,
One or more elements selected from the group consisting of Mn, Mo, Ni, Pt, Si, Sn, and the range of a is 0.01
The range of ≦a≦0.5, b is 0.01≦b≦0.5, c
The range of is 0.1≦c≦1.5, and the range of d is 0.7≦a
≦1.5. [2] The hydrogen storage alloy electrode according to claim [1], wherein the alloy is an alloy in a non-equilibrium state. [3] The hydrogen storage alloy electrode according to claim 2, wherein the non-equilibrium alloy is manufactured using a rapid solidification method. [4] The hydrogen storage alloy electrode according to claim [3], wherein one of a liquid rapid cooling method, a sputtering method, and a flash vapor deposition method is used as the rapid solidification method. [5] Claim [3] wherein the non-equilibrium alloy is manufactured using one of mixed sintering, mechanical grinding, and mechanical alloying.
] Hydrogen storage alloy electrode described. [6] Claims [1], [2], [3], [2] characterized in that a corrosion prevention film is used on the surface of the alloy.
4] or the hydrogen storage alloy electrode described in [5]. [7] The hydrogen storage alloy electrode according to claim [6], wherein an oxide is used for the corrosion prevention film. [8] The corrosion prevention film may include Cu, Ni, V, In,
The hydrogen storage alloy electrode according to claim 6, characterized in that it is produced by plating with Zn or one of its compounds. [9] The hydrogen storage alloy electrode according to claim [6], wherein a hydrogen storage alloy having a higher amount of residual hydrogen than the alloy in a lower hydrogen pressure region is used as the corrosion prevention film. .
JP2269155A 1990-10-05 1990-10-05 Hydrogen occluding alloy electrode Pending JPH04143254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269155A JPH04143254A (en) 1990-10-05 1990-10-05 Hydrogen occluding alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269155A JPH04143254A (en) 1990-10-05 1990-10-05 Hydrogen occluding alloy electrode

Publications (1)

Publication Number Publication Date
JPH04143254A true JPH04143254A (en) 1992-05-18

Family

ID=17468444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269155A Pending JPH04143254A (en) 1990-10-05 1990-10-05 Hydrogen occluding alloy electrode

Country Status (1)

Country Link
JP (1) JPH04143254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480740A (en) * 1993-02-22 1996-01-02 Matushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
JP2001234261A (en) * 2000-02-22 2001-08-28 Japan Steel Works Ltd:The Producing method for hydrogen storage alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480740A (en) * 1993-02-22 1996-01-02 Matushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
JP2001234261A (en) * 2000-02-22 2001-08-28 Japan Steel Works Ltd:The Producing method for hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP2925615B2 (en) Hydrogen storage alloy electrode
JP2895848B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP3054477B2 (en) Hydrogen storage alloy electrode
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JPH04143254A (en) Hydrogen occluding alloy electrode
JP3011437B2 (en) Hydrogen storage alloy electrode
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPH03188236A (en) Hydrogen storage electrode and its manufacture
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2000243388A (en) Hydrogen storage alloy electrode, manufacture of electrode and alkaline storage battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10280112A (en) Production of hydrogen storage nickel base alloy contributing suppression of secular reduction of discharge capacitance
JPH05222474A (en) Hydrogen occluding alloy for ni-hydrogen battery and its production
JP3360916B2 (en) Manufacturing method of hydrogen storage alloy
JP3432976B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries