JP2000277106A - Hydrogen storage alloy electrode for alkaline storage battery and its manufacture - Google Patents
Hydrogen storage alloy electrode for alkaline storage battery and its manufactureInfo
- Publication number
- JP2000277106A JP2000277106A JP11078998A JP7899899A JP2000277106A JP 2000277106 A JP2000277106 A JP 2000277106A JP 11078998 A JP11078998 A JP 11078998A JP 7899899 A JP7899899 A JP 7899899A JP 2000277106 A JP2000277106 A JP 2000277106A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen storage
- electrode
- storage alloy
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、アルカリ蓄電池用
の水素吸蔵合金電極及びその製造方法に係わり、詳しく
は、保存特性の良いアルカリ蓄電池を与える水素吸蔵合
金電極を提供することを目的とした、水素吸蔵材たる水
素吸蔵合金の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for an alkaline storage battery and a method for producing the same, and more particularly, to provide a hydrogen storage alloy electrode for providing an alkaline storage battery having good storage characteristics. The present invention relates to improvement of a hydrogen storage alloy as a hydrogen storage material.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用したアルカリ蓄電池が、
単位重量及び単位体積当たりのエネルギー密度が高く、
高容量化が可能であることから、ニッケル・カドミウム
蓄電池に代わる次世代のアルカリ蓄電池として注目され
ている。2. Description of the Related Art In recent years,
Alkaline storage batteries using a metal compound such as nickel hydroxide for the positive electrode and a new material hydrogen storage alloy for the negative electrode
High energy density per unit weight and unit volume,
Because of the ability to increase the capacity, it is attracting attention as a next-generation alkaline storage battery that replaces nickel-cadmium storage batteries.
【0003】アルカリ蓄電池用の水素吸蔵合金として
は、通常、鋳型内の合金溶湯を水冷凝固させた後、粉砕
して得たものが使用されている(以下、この水素吸蔵合
金を「通常凝固品」と称する。)。As a hydrogen storage alloy for an alkaline storage battery, an alloy obtained by solidifying a molten alloy in a mold with water cooling and then pulverizing the same is used (hereinafter, this hydrogen storage alloy is referred to as a “normally solidified product”). ").
【0004】しかしながら、通常凝固品には偏析(成分
元素濃度の偏り)が多く存在するために、充放電時に水
素を吸蔵又は放出する際に合金粒子に割れが生じて、比
表面積が増加し易い。このため、通常凝固品を負極材料
として使用したアルカリ蓄電池は、充放電サイクル初期
の高率放電特性は良い反面、偏析部分が酸化劣化(腐
食)の起点になり易いことからサイクル寿命が一般に短
いという問題を有していた。However, since usually segregation (concentration of component element concentration) is large in a solidified product, alloy particles crack when absorbing or releasing hydrogen during charge and discharge, and the specific surface area tends to increase. . For this reason, an alkaline storage battery using a normally coagulated product as a negative electrode material has good high-rate discharge characteristics at the beginning of a charge / discharge cycle, but generally has a short cycle life because a segregated portion tends to be a starting point of oxidation deterioration (corrosion). Had a problem.
【0005】サイクル寿命を改善する方法としては、通
常凝固品にアニール処理(所定温度に所定時間加熱保持
する処理)を施したものを使用することが、先に提案さ
れている(特開昭60−89066号公報参照)。As a method of improving the cycle life, it has been previously proposed to use a product obtained by subjecting a solidified product to an annealing treatment (a treatment of heating and holding at a predetermined temperature for a predetermined time) (Japanese Patent Application Laid-Open No. Sho 60/1985). -89066).
【0006】しかしながら、通常凝固品にアニール処理
を施すと、偏析が少なくなるため、未処理のものに比べ
てサイクル寿命は長くなる反面、このように偏析が少な
くなる上に、結晶粒の大きさ(希土類元素の濃度が高い
層と同濃度が低い層とが交互に出現する層状構造に於け
る隣接する二層の厚みの和)が大きくなり過ぎるため
に、粒子に割れが生じにくくなり、充放電サイクル初期
の高率放電特性が未処理のものに比べて著しく低下す
る。However, when an annealing treatment is usually applied to a solidified product, segregation is reduced, so that the cycle life is longer than that of an untreated product, but the segregation is reduced and the size of crystal grains is reduced. (The sum of the thicknesses of two adjacent layers in a layered structure in which a layer with a high concentration of the rare earth element and a layer with a low concentration of the rare earth appear alternately) becomes too large, so that the particles are less likely to crack, and The high-rate discharge characteristics at the beginning of the discharge cycle are significantly reduced as compared with the untreated one.
【0007】通常凝固品に上述した解決困難な問題があ
ることに鑑み、最近、高速回転するロールの周面に合金
溶湯を噴出させて急冷凝固させるロール法により作製し
た水素吸蔵合金がアルカリ蓄電池用の負極材料として提
案されている(特開平6−187979号公報参照)。[0007] In view of the above-mentioned difficult problems to be solved in a solidified product, a hydrogen storage alloy manufactured by a roll method in which a molten alloy is ejected onto the peripheral surface of a roll rotating at a high speed and rapidly solidified has recently been used for an alkaline storage battery. (See Japanese Patent Application Laid-Open No. 6-187979).
【0008】このロール法により作製した水素吸蔵合金
は、合金溶湯を急冷凝固させて得たものであるので、合
金溶湯が凝固する際に重力場の影響を受けにくく、通常
凝固品に比べて、偏析が少ない。[0008] Since the hydrogen storage alloy produced by the roll method is obtained by rapidly solidifying a molten alloy, it is hardly affected by a gravitational field when the molten alloy is solidified. Less segregation.
【0009】ロール法には、単ロール法と双ロール法と
がある。単ロール法により作製した水素吸蔵合金は、結
晶粒の大きさのバラツキ(結晶粒の大きさの最大と最小
の差)が大きいため、割れ易い部分(結晶粒の大きさが
大きい開放面側)と、割れにくい部分(結晶粒の大きさ
が小さいロール面側)とが存在する。The roll method includes a single roll method and a twin roll method. Since the hydrogen storage alloy produced by the single roll method has a large variation in crystal grain size (difference between the maximum and minimum crystal grain sizes), it is easily broken (open side where the crystal grains are large). And a portion that is difficult to crack (the roll surface side where the crystal grain size is small).
【0010】図4は、単ロール法により作製した水素吸
蔵合金S1を、帯長方向に沿って帯面に垂直な面でカッ
トしたときの断面に現れる結晶粒の様子を模式的に示す
断面図である(一部のみ描写)。図中、白色部41は希
土類元素の濃度が高い層であり、黒色部42は同濃度が
低い層であり、隣接するこれら二層の厚みの和が結晶粒
の大きさを示す。45は、帯状体の厚みである。図4に
示すように、開放面側Oの結晶粒の大きさ43は大き
く、ロール面側Rの結晶粒の大きさ44は小さい。結晶
粒の大きさ43が大きい開放面側Oは割れ易く、結晶粒
の大きさ44が小さいロール面側Rは割れにくい。充放
電を繰り返すと、割れ易い開放面側Oにクラックが集中
的に発生して、生じたクラックを起点にして微粉化が起
こる。微粉化により生じた新生面は、保存中に酸化して
自己放電し易く、これが保存特性低下の原因となる。FIG. 4 is a cross-sectional view schematically showing a state of crystal grains appearing in a cross section when the hydrogen storage alloy S1 produced by the single roll method is cut along a plane perpendicular to the band surface along the band length direction. (Only a part is described). In the figure, a white portion 41 is a layer having a high concentration of a rare earth element, a black portion 42 is a layer having a low concentration, and the sum of the thicknesses of these two adjacent layers indicates the size of a crystal grain. 45 is the thickness of the strip. As shown in FIG. 4, the size 43 of the crystal grains on the open surface side O is large, and the size 44 of the crystal grains on the roll surface side R is small. The open surface side O where the crystal grain size 43 is large is easily broken, and the roll surface side R where the crystal grain size 44 is small is hard to crack. When charge and discharge are repeated, cracks are intensively generated on the open surface O which is easily broken, and pulverization starts from the generated cracks. The new surface generated by the pulverization is easily oxidized and self-discharged during storage, which causes a deterioration in storage characteristics.
【0011】単ロール法により作製した水素吸蔵合金S
1をアニール処理することにより、ロール面側Rの結晶
粒の大きさが大きくなり、これにより結晶粒の大きさの
バラツキが小さくなる(特開平8−213004号公報
参照)。Hydrogen storage alloy S prepared by single roll method
Annealing of No. 1 increases the size of the crystal grains on the roll surface side R, thereby reducing the variation in the size of the crystal grains (see JP-A-8-213004).
【0012】図3は、単ロール法により急冷凝固して得
た水素吸蔵合金S1をアニール処理することにより得た
水素吸蔵合金S2を、帯長方向に沿って帯面に垂直な面
でカットしたときの断面に現れる結晶粒の様子を模式的
に示す断面図である(一部のみ描写)。図中、白色部3
1は希土類元素の濃度が高い層であり、黒色部32は同
濃度が低い層であり、隣接するこれら二層の厚みの和が
結晶粒の大きさを示す。35は、帯状体の厚みである。FIG. 3 shows a hydrogen storage alloy S2 obtained by annealing a hydrogen storage alloy S1 obtained by rapid solidification by a single roll method and cut along a direction perpendicular to the band surface along the band length direction. FIG. 4 is a cross-sectional view schematically showing a state of crystal grains appearing in a cross section at this time (only a part is drawn). In the figure, white part 3
Reference numeral 1 denotes a layer having a high concentration of a rare earth element, black portions 32 have a low concentration, and the sum of the thicknesses of these two adjacent layers indicates the size of the crystal grains. 35 is the thickness of the strip.
【0013】しかし、水素吸蔵合金S2の結晶粒の大き
さのバラツキは、水素吸蔵合金S1に比べると小さいも
のの、依然かなり大きいので、この水素吸蔵合金S2で
は、保存特性を大きく改善することは困難である。However, although the variation in the crystal grain size of the hydrogen storage alloy S2 is smaller than that of the hydrogen storage alloy S1, it is still considerably large, so that it is difficult to greatly improve the storage characteristics of the hydrogen storage alloy S2. It is.
【0014】一方、双ロール法により作製した水素吸蔵
合金は、帯状体の両面(いずれもロール面側)がロール
により急冷凝固されたものであるので、両表面部は中央
部に比べていずれも結晶粒の大きさが小さい。On the other hand, in the hydrogen storage alloy produced by the twin roll method, both sides of the strip (both roll sides) are rapidly solidified by rolls, so that both surface portions are compared with the central portion. The size of crystal grains is small.
【0015】図2は、双ロール法により作製した水素吸
蔵合金T1を、帯長方向に沿って帯面に垂直な面でカッ
トしたときの断面に現れる結晶粒の様子を模式的に示す
断面図である(一部のみ描写)。図中、白色部21は希
土類元素の濃度が高い層であり、黒色部22は同濃度が
低い層であり、隣接するこれら二層の厚みの和が結晶粒
の大きさを示す。25は、帯状体の厚みである。図2に
示すように、急冷凝固された両表面部は、比較的緩やか
に凝固された中央部に比べて、結晶粒の大きさが小さ
い。結晶粒の大きさが大きい中央部は割れ易く、結晶粒
の大きさが小さい表面部は割れにくい。このため、中央
部に発生したクラックを起点にして、微粉化が起こり易
い。FIG. 2 is a cross-sectional view schematically showing a state of crystal grains appearing in a cross section when the hydrogen storage alloy T1 produced by the twin roll method is cut along a band length direction and a plane perpendicular to the band surface. (Only a part is described). In the figure, a white portion 21 is a layer having a high concentration of a rare earth element, a black portion 22 is a layer having a low concentration, and the sum of the thicknesses of these two adjacent layers indicates the size of a crystal grain. 25 is the thickness of the strip. As shown in FIG. 2, the size of the crystal grains is smaller in both the rapidly solidified surfaces than in the central portion that is relatively slowly solidified. The central part where the crystal grain size is large is easily broken, and the surface part where the crystal grain size is small is hard to crack. For this reason, pulverization is likely to occur starting from a crack generated in the center.
【0016】このように、従来のロール法により作製し
た水素吸蔵合金は、いずれもクラックが集中的に発生し
て、微粉化し易いために、自己放電し易く、これが保存
特性低下の原因となっていた。As described above, all of the hydrogen storage alloys manufactured by the conventional roll method are apt to cause self-discharge because cracks are intensively generated and easily pulverized, which causes a deterioration in storage characteristics. Was.
【0017】したがって、本発明は、保存特性が良いア
ルカリ蓄電池を与える水素吸蔵合金電極及びその製造方
法を提供することを目的とする。Therefore, an object of the present invention is to provide a hydrogen storage alloy electrode which provides an alkaline storage battery having good storage characteristics, and a method for producing the same.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用の水素吸蔵合金電極
(以下、「本発明電極」と称する。)は、下記に定義す
る結晶粒の大きさの、最小が0.01μm以上、最大が
0.19μm以下である、双ロール法により作製された
帯状の希土類・ニッケル系水素吸蔵合金を、粉砕して得
た合金粉末を水素吸蔵材として使用したものである。In order to achieve the above object, a hydrogen storage alloy electrode for an alkaline storage battery according to the present invention (hereinafter referred to as the "electrode of the present invention") has a crystal grain size defined below. The alloy powder obtained by pulverizing a strip-shaped rare-earth / nickel-based hydrogen storage alloy produced by the twin-roll method with a minimum of 0.01 μm or more and a maximum of 0.19 μm or less is used as a hydrogen storage material. It was done.
【0019】結晶粒の大きさ:希土類元素の濃度が高い
層と同濃度が低い層とが交互に出現する多層構造に於け
る隣接するこれら二層の厚みの和をいう。Crystal grain size: The sum of the thicknesses of two adjacent layers in a multilayer structure in which layers with a high concentration of rare earth elements and layers with a low concentration of rare earth elements appear alternately.
【0020】本発明における希土類・ニッケル系水素吸
蔵合金は、結晶粒の大きさの最小が0.01μm以上、
最大が0.19μm以下である。最小及び最大が上記範
囲に限定される理由は次のとおりである。The rare earth / nickel based hydrogen storage alloy according to the present invention has a minimum crystal grain size of 0.01 μm or more,
The maximum is 0.19 μm or less. The reason why the minimum and maximum are limited to the above range is as follows.
【0021】水素の吸蔵及び放出に伴う結晶格子の膨張
・収縮による歪みはクラックとなって現れる。クラック
は、結晶粒の大きさが大きい部分に発生し易く、微粉化
は、クラックが集中的に発生した部分を起点にして起こ
り易い。このことは、結晶粒の大きさが比較的均一でバ
ラツキが小さい場合は、クラックが分散して発生するた
めに、微粉化が起こりにくいことを意味する。したがっ
て、水素吸蔵合金の微粉化を抑制して保存特性を高める
ためには、結晶粒の大きさのバラツキが小さい水素吸蔵
合金を使用する必要があるのである。The strain caused by the expansion and contraction of the crystal lattice accompanying the occlusion and release of hydrogen appears as cracks. Cracks are likely to occur in portions where crystal grains are large, and pulverization is likely to occur starting from portions where cracks are concentrated. This means that when the crystal grains are relatively uniform in size and small in variation, cracks are dispersed and generated, so that pulverization hardly occurs. Therefore, in order to suppress the pulverization of the hydrogen storage alloy and improve the storage characteristics, it is necessary to use a hydrogen storage alloy having a small variation in crystal grain size.
【0022】好適な希土類・ニッケル系水素吸蔵合金と
しては、一般式:MmRx (Mmはミッシュメタル;R
はNi、Co、Al及びMn;xは4.6〜5.2)で
表されるMm・Ni・Co・Al・Mn合金が挙げられ
る。A preferred rare earth / nickel based hydrogen storage alloy is represented by the general formula: MmR x (Mm is a misch metal; R
Is Ni, Co, Al and Mn; x is an Mm-Ni-Co-Al-Mn alloy represented by 4.6 to 5.2).
【0023】上記Mm・Ni・Co・Al・Mn合金の
好適なCo含有量は、Mm1モル部に対してCo0.3
〜0.9モル部である。また、上記Mm・Ni・Co・
Al・Mn合金の好適なNi含有量は、Mm1モル部に
対してNi3.0〜3.6モル部である。The preferred Co content of the above-mentioned Mm-Ni-Co-Al-Mn alloy is such that Co0.3
0.90.9 mol part. In addition, the above Mm-Ni-Co-
The preferred Ni content of the Al-Mn alloy is 3.0 to 3.6 mol parts Ni per 1 mol part of Mm.
【0024】本発明電極は、例えば、合金溶湯を双ロー
ル法により50〜1000cm/秒のロール周速度で不
活性ガス又は真空中にて急冷凝固して帯状の希土類・ニ
ッケル系水素吸蔵合金を作製し、該帯状の希土類・ニッ
ケル系水素吸蔵合金を不活性ガス又は真空中にて600
〜1000°Cの温度でアニール処理し、粉砕して合金
粉末を作製し、該合金粉末と結着剤溶液とを混合して得
たスラリーを電極基材に塗布又は充填することにより作
製される。合金溶湯を双ロール法により50〜1000
cm/秒のロール周速度で急冷凝固し、且つ600〜1
000°Cの温度でアニール処理することにより、結晶
粒の大きさの最小を0.01μm以上、最大を0.19
μm以下にすることができる。The electrode of the present invention is prepared by, for example, rapidly solidifying a molten alloy by a twin roll method at a roll peripheral speed of 50 to 1000 cm / sec in an inert gas or vacuum to produce a strip-shaped rare earth / nickel hydrogen storage alloy. Then, the band-shaped rare-earth / nickel-based hydrogen storage alloy is placed in an inert gas or vacuum for 600 hours.
Annealed at a temperature of ~ 1000 ° C, pulverized to prepare an alloy powder, and a slurry obtained by mixing the alloy powder and a binder solution is applied or filled to an electrode substrate. . 50-1000 of molten alloy by twin roll method
Rapid solidification at a roll peripheral speed of cm / sec.
By annealing at a temperature of 000 ° C., the minimum of the crystal grain size is 0.01 μm or more and the maximum is 0.19 μm.
μm or less.
【0025】結晶粒の大きさは、アニール処理時のアニ
ール温度に依存する。通常、アニール温度を高くすると
結晶粒の大きさの最小は大きくなるが、最大は殆ど変化
しない。すなわちアニール処理により結晶粒の大きさの
バラツキが減少する。しかし、アニール温度が1000
°Cを越えて合金の融点(1200°C程度)に近づく
と、水素吸蔵合金の結晶粒界が一部再溶解し、極めて割
れにくくなって不活性化する。アニール時間は1〜10
時間程度である。通常、10時間程度でアニール処理の
効果が飽和する。The size of the crystal grains depends on the annealing temperature during the annealing process. Normally, when the annealing temperature is increased, the minimum of the crystal grain size increases, but the maximum hardly changes. That is, the variation in crystal grain size is reduced by the annealing process. However, if the annealing temperature is 1000
When the melting point of the alloy approaches (about 1200 ° C.) exceeding the temperature of ° C., the crystal grain boundary of the hydrogen storage alloy partially re-melts, and becomes extremely hard to be cracked and inactivated. Annealing time is 1-10
About an hour. Usually, the effect of the annealing treatment is saturated in about 10 hours.
【0026】[0026]
【作用】本発明における希土類・ニッケル系水素吸蔵合
金は、結晶粒の大きさのバラツキが小さいため、微粉化
しにくく、酸化されにくい。このため、本発明電池は、
自己放電しにくく、保存特性が良い。The rare-earth / nickel-based hydrogen storage alloy according to the present invention is hardly pulverized and oxidized because the dispersion of crystal grains is small. For this reason, the battery of the present invention
It is hard to self-discharge and has good storage characteristics.
【0027】[0027]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.
【0028】(実験1)本発明電極及び比較電極を作製
し、それぞれを使用してアルカリ蓄電池を作製し、各電
池の保存特性を調べた。(Experiment 1) An electrode of the present invention and a comparative electrode were prepared, an alkaline storage battery was prepared using each of them, and the storage characteristics of each battery were examined.
【0029】〔水素吸蔵合金の作製〕合金成分金属(い
ずれも純度99.9%以上)を秤取して混合し、真空下
で高周波溶解炉にて溶解した後、双ロール法によりロー
ル周速度300cm/秒で冷却して、組成式:MmNi
3.4 Co0.8 Al0.3 Mn0.5 で表される帯状の希土類
・ニッケル系水素吸蔵合金(帯状体の厚み:約0.1m
m)を作製した。[Preparation of Hydrogen Storage Alloy] Alloy component metals (all having a purity of 99.9% or more) were weighed and mixed, melted in a high-frequency melting furnace under vacuum, and then rolled by a twin roll method. After cooling at 300 cm / sec, the composition formula: MmNi
3.4 Strip-shaped rare earth / nickel-based hydrogen storage alloy represented by Co 0.8 Al 0.3 Mn 0.5 (thickness of strip: about 0.1 m)
m) was prepared.
【0030】次いで、この希土類・ニッケル系水素吸蔵
合金を表1に示す種々の温度(500、600、70
0、800、900、1000及び1100°C)で、
Ar雰囲気にて6時間アニール処理した。Next, the rare-earth / nickel-based hydrogen storage alloy was heated at various temperatures (500, 600, 70
0, 800, 900, 1000 and 1100 ° C.)
Annealing was performed in an Ar atmosphere for 6 hours.
【0031】アニール処理した各希土類・ニッケル系水
素吸蔵合金を、帯長方向に沿って帯面に垂直にカット
し、断面の反射電子線像を走査型電子顕微鏡(日本電子
線株式会社製、品番「JEOL866」)にて観察し、
結晶粒の大きさの最大及び結晶粒の大きさの最小を求め
た。最大及び最小は、いずれも各合金10サンプルにつ
いての平均値である。各合金の結晶粒の大きさの最大と
最小を表1に示す。Each of the annealed rare earth / nickel-based hydrogen storage alloys is cut perpendicularly to the band surface along the band length direction, and the cross section reflected electron beam image is taken by a scanning electron microscope (manufactured by JEOL Ltd. "JEOL866")
The maximum crystal grain size and the minimum crystal grain size were determined. The maximum and minimum are both average values for 10 samples of each alloy. Table 1 shows the maximum and minimum crystal grain sizes of each alloy.
【0032】図1は、アニール処理した水素吸蔵合金T
2を、帯長方向に沿って帯面に垂直な面でカットしたと
きの断面に現れる結晶粒の様子を模式的に示す断面図で
ある(一部のみ描写)。図中、白色部11は希土類元素
の濃度が高い層であり、黒色部12は同濃度が低い層で
あり、隣接するこれら二層の厚みの和が結晶粒の大きさ
を示す。15は、帯状体の厚みである。図1に示すよう
に、アニール処理により表面部の結晶粒の大きさが大き
くなり、その結果、表面部と中央部との結晶粒の大きさ
のバラツキが、アニール処理前の水素吸蔵合金T1(図
2参照)に比べて、小さくなっている。FIG. 1 shows an annealed hydrogen storage alloy T
FIG. 2 is a cross-sectional view schematically showing a state of crystal grains appearing in a cross section when No. 2 is cut along a plane perpendicular to the band surface along the band length direction (only a part is drawn). In the figure, a white portion 11 is a layer having a high concentration of a rare earth element, a black portion 12 is a layer having a low concentration, and the sum of the thicknesses of these two adjacent layers indicates the size of a crystal grain. 15 is the thickness of the strip. As shown in FIG. 1, the size of the crystal grains at the surface portion is increased by the annealing process. As a result, the variation in the size of the crystal grains at the surface portion and the central portion is caused by the hydrogen storage alloy T1 ( (See FIG. 2).
【0033】〔水素吸蔵合金電極の作製〕アニール処理
した上記の各合金を、Ar雰囲気にて機械的に粉砕し、
篩にかけて、平均粒径約60μm、最大粒径100メッ
シュ以下の粉末とした(以下の実験においても、最大粒
径を全て100メッシュ以下に調節した。)。次いで、
この合金粉末10重量部と、ポリエチレンオキシドの5
重量%水溶液1重量部とを混合して、スラリーを調製
し、このスラリーを鉄にニッケルめっきしてなるパンチ
ングメタルに塗布し、乾燥し、圧延して、水素吸蔵合金
電極E1〜E7を作製した。水素吸蔵合金電極E2〜E
6は本発明電極であり、水素吸蔵合金電極E1及びE7
は比較電極である。[Preparation of hydrogen storage alloy electrode] Each of the above-mentioned annealed alloys is mechanically pulverized in an Ar atmosphere.
The mixture was sieved to obtain a powder having an average particle size of about 60 μm and a maximum particle size of 100 mesh or less (in the following experiments, the maximum particle size was all adjusted to 100 mesh or less). Then
10 parts by weight of this alloy powder and 5 parts of polyethylene oxide
A slurry was prepared by mixing with 1 part by weight of a 1% by weight aqueous solution, and this slurry was applied to a punching metal formed by nickel plating on iron, dried, and rolled to produce hydrogen storage alloy electrodes E1 to E7. . Hydrogen storage alloy electrodes E2 to E
Reference numeral 6 denotes an electrode of the present invention, and the hydrogen storage alloy electrodes E1 and E7
Is a reference electrode.
【0034】〔アルカリ蓄電池の作製〕上記の水素吸蔵
合金電極E1〜E7を負極として、順にAAサイズの正
極容量規制のアルカリ蓄電池(電池容量:1200mA
h)A1〜A7を作製した。なお、正極としては従来公
知の焼結式ニッケル極を、セパレータとしてはポリアミ
ド製の不織布を、アルカリ電解液としては30重量%水
酸化カリウム水溶液を、それぞれ使用した。[Preparation of Alkaline Storage Battery] The above-mentioned hydrogen storage alloy electrodes E1 to E7 were used as negative electrodes, and AA size positive-electrode capacity regulated alkaline storage batteries (battery capacity: 1200 mA)
h) A1 to A7 were prepared. A conventionally known sintered nickel electrode was used as the positive electrode, a nonwoven fabric made of polyamide was used as the separator, and a 30% by weight aqueous solution of potassium hydroxide was used as the alkaline electrolyte.
【0035】〈保存特性〉電池A1〜A7を、25°C
にて120mAで16時間充電し、60°Cで24時間
放置した後、25°Cに戻し、120mAで1.0Vま
で放電して活性化処理した。<Storage Characteristics> The batteries A1 to A7 were stored at 25 ° C.
The battery was charged at 120 mA for 16 hours, left at 60 ° C. for 24 hours, returned to 25 ° C., discharged to 1.0 V at 120 mA, and activated.
【0036】各電池を、25°Cにて、120mA
(0.1C)で16時間充電し、1200mA(1C)
で1.0Vまで放電して、放電容量C1を求めた。次い
で、各電池を、120mA(0.1C)で16時間充電
し、40°Cで15日間保存し、25°Cに戻した後、
1200mAで1.0Vまで放電して、放電容量C2を
求め、放電容量C2の放電容量C1に対する比率P
〔(C2/C1)×100〕を算出した。各電池5個に
ついて比率Pを求め、それらの平均値でもって各電池の
保存特性を評価した。各電池の放電容量C2及び比率P
を表1に示す。Each battery was subjected to 120 mA at 25 ° C.
(0.1C) for 16 hours, 1200mA (1C)
And discharged to 1.0 V to determine a discharge capacity C1. Next, each battery was charged at 120 mA (0.1 C) for 16 hours, stored at 40 ° C. for 15 days, returned to 25 ° C.,
Discharging was performed at 1200 mA to 1.0 V to obtain a discharge capacity C2, and a ratio P of the discharge capacity C2 to the discharge capacity C1 was obtained.
[(C2 / C1) × 100] was calculated. The ratio P was determined for each of the five batteries, and the storage value of each battery was evaluated using the average value. Discharge capacity C2 and ratio P of each battery
Are shown in Table 1.
【0037】[0037]
【表1】 [Table 1]
【0038】表1に示すように、本発明電極E2〜E6
を使用した電池A2〜A6は、比率Pが86〜89%と
大きく、保存特性が良いのに対して、比較電極E1を使
用した電池A1は比率Pが73%と小さく、保存特性が
良くない。電池A1の保存特性が良くない理由は、結晶
粒の大きさの最小が小さいために、結晶粒の大きさのバ
ラツキが大きくなり、結晶粒が大きい部分にクラックが
集中的に発生して、その部分を起点にして微粉化が起こ
ったためと考えられる。なお、電池A1の保存後の放電
容量C2が小さいのは、アニール温度が低すぎたため
に、合金の活性化が充分になされなかったからである。
比較電極E7を使用した電池A7は、比率Pが85%と
大きく、保存特性は良い。これは、結晶粒界で一部再溶
解が起こって合金が割れにくくなり、酸化されにくくな
ったためと考えられる。しかし、電池A7の保存後の放
電容量C2は、電池A2〜A6に比べて、遙に小さい。
これは、合金が割れにくくなって活性化されにくかった
ために、合金の利用率が低下したことによるものと考え
られる。As shown in Table 1, the electrodes E2 to E6 of the present invention
The batteries A2 to A6 using the comparative electrode E1 have a large ratio P of 86 to 89% and have good storage characteristics, whereas the batteries A1 using the comparative electrode E1 have a small ratio P of 73% and have poor storage characteristics. . The reason that the storage characteristics of the battery A1 are not good is that the minimum size of the crystal grains is small, so that the variation in the size of the crystal grains is large, and cracks are intensively generated in a portion where the crystal grains are large. It is considered that pulverization occurred from the part as a starting point. The reason why the discharge capacity C2 after storage of the battery A1 is small is that the alloy was not sufficiently activated because the annealing temperature was too low.
Battery A7 using comparative electrode E7 has a large ratio P of 85% and good storage characteristics. This is considered to be because the alloy was hardly cracked due to partial re-melting at the crystal grain boundaries and hardly oxidized. However, the discharge capacity C2 of the battery A7 after storage is much smaller than that of the batteries A2 to A6.
This is considered to be due to the fact that the alloy was hard to be cracked and was hardly activated, so that the utilization rate of the alloy was reduced.
【0039】(実験2)Mm・Ni・Co・Al・Mn
合金のCo含有量とサイクル寿命の関係を調べた。(Experiment 2) Mm-Ni-Co-Al-Mn
The relationship between the Co content of the alloy and the cycle life was examined.
【0040】合金成分金属中のCo量を種々変えたこと
以外は実験1(ロール周速度:300cm/秒)と同様
にして組成式:MmNi4.2-y Coy Al0.3 Mn0.5
(y=0.2、0.3、0.5、0.7、0.9又は
1.0)で表される6種の水素吸蔵合金粉末を作製し
た。[0040] Experiment except for variously changing the Co content of the alloy component in the metal 1 (roll peripheral speed: 300 cm / sec) and the same way the composition formula: MmNi 4.2-y Co y Al 0.3 Mn 0.5
Six kinds of hydrogen storage alloy powders represented by (y = 0.2, 0.3, 0.5, 0.7, 0.9 or 1.0) were produced.
【0041】次いで、水素吸蔵材としてこれらの各水素
吸蔵合金粉末を使用したこと以外は実験1と同様にし
て、水素吸蔵合金電極E8〜E13及びアルカリ蓄電池
A8〜A13を作製した。Next, hydrogen storage alloy electrodes E8 to E13 and alkaline storage batteries A8 to A13 were prepared in the same manner as in Experiment 1, except that each of these hydrogen storage alloy powders was used as a hydrogen storage material.
【0042】作製した各アルカリ蓄電池について、実験
1で行ったものと同じ条件の充放電試験を行い、各電池
の保存特性を調べた。また、実験1で行ったものと同じ
条件の活性化処理を施した後の各電池を、1200mA
で充電し、150%充電時の電池内圧を調べた。電池内
圧は、電池の缶底に圧力計を取り付けて測定した。これ
らの結果を表2に示す。表2には、実験1で作製した電
池A4についての結果も示してある。Each of the produced alkaline storage batteries was subjected to a charge / discharge test under the same conditions as those performed in Experiment 1, and the storage characteristics of each battery were examined. Each battery after the activation treatment under the same conditions as those performed in Experiment 1 was 1200 mA
, And the internal pressure of the battery at the time of 150% charging was examined. The battery internal pressure was measured by attaching a pressure gauge to the bottom of the battery can. Table 2 shows the results. Table 2 also shows the results for Battery A4 produced in Experiment 1.
【0043】[0043]
【表2】 [Table 2]
【0044】表2より、Mm・Ni・Co・Al・Mn
合金の場合、保存特性及び内圧特性の両方に優れたアル
カリ蓄電池を得る上で、Mm1モル部に対してCoを
0.3〜0.9モル部含有するものを使用することが好
ましいことが分かる。電池A8の過充電後の電池内圧が
高いのは、Co含有量が過少なために割れが生じて、合
金表面が酸化されたために、酸素ガス吸収能が低下した
ためと考えられる。また、電池A13の過充電後の電池
内圧が高いのは、Co含有量が過多なために合金が割れ
にくくなって活性が低下し、酸素ガス吸収能が低下した
ためと考えられる。From Table 2, it can be seen that Mm-Ni-Co-Al-Mn
In the case of an alloy, it can be seen that it is preferable to use an alloy containing 0.3 to 0.9 mol part of Co with respect to 1 mol part of Mm in order to obtain an alkaline storage battery excellent in both storage characteristics and internal pressure characteristics. . It is considered that the reason why the internal pressure of the battery after the overcharge of the battery A8 is high is that the oxygen content is reduced due to the occurrence of cracks due to the insufficient Co content and the oxidation of the alloy surface. Further, it is considered that the reason why the battery internal pressure after the overcharge of the battery A13 is high is that the alloy is difficult to be cracked due to the excessive Co content, the activity is reduced, and the oxygen gas absorbing ability is reduced.
【0045】(実験3)Mm・Ni・Co・Al・Mn
合金のNi含有量とサイクル寿命の関係を調べた。(Experiment 3) Mm-Ni-Co-Al-Mn
The relationship between the Ni content of the alloy and the cycle life was examined.
【0046】合金成分金属中のNi量を種々変えたこと
以外は実験1(ロール周速度:300cm/秒)と同様
にして組成式:MmNiz Co0.8 Al0.3 Mn
0.5 (z=2.8、3.0、3.2、3.6又は3.
8)で表される5種の水素吸蔵合金粉末を作製した。The alloys except that the components were changed variously amount of Ni in the metal Experiment 1 (roll peripheral speed: 300 cm / sec) and the same way the composition formula: MmNi z Co 0.8 Al 0.3 Mn
0.5 (z = 2.8, 3.0, 3.2, 3.6 or 3.
8) Hydrogen storage alloy powders represented by 8) were produced.
【0047】次いで、水素吸蔵材としてこれらの水素吸
蔵合金粉末を使用したこと以外は実験1と同様にして、
水素吸蔵合金電極E14〜E18及びアルカリ蓄電池A
14〜A18を作製した。Then, except that these hydrogen storage alloy powders were used as the hydrogen storage material,
Hydrogen storage alloy electrodes E14 to E18 and alkaline storage battery A
14 to A18 were produced.
【0048】作製した各アルカリ蓄電池について、実験
1で行ったものと同じ条件の充放電試験を行い、各電池
の保存特性を調べた。結果を表3に示す。表3には、電
池A4についての結果も示してある。For each of the manufactured alkaline storage batteries, a charge / discharge test was performed under the same conditions as those performed in Experiment 1, and the storage characteristics of each battery were examined. Table 3 shows the results. Table 3 also shows the results for battery A4.
【0049】[0049]
【表3】 [Table 3]
【0050】表3より、Mm・Ni・Co・Al・Mn
合金の場合、保存特性が良いアルカリ蓄電池を得る上
で、Mm1モル部に対してNiを3.0〜3.6モル部
含有するものを使用することが好ましいことが分かる。From Table 3, it can be seen that Mm / Ni / Co / Al / Mn
In the case of an alloy, it can be seen that in order to obtain an alkaline storage battery having good storage characteristics, it is preferable to use an alloy containing 3.0 to 3.6 mol parts of Ni with respect to 1 mol part of Mm.
【0051】上記実施例では、Mm・Ni・Co・Al
・Mn合金を例に挙げて説明したが、希土類・ニッケル
系水素吸蔵合金の場合は、組成が異なっても凝固時の希
土類元素の分布に共通した傾向があるので、本発明は、
希土類・ニッケル系水素吸蔵合金を水素吸蔵材とする水
素吸蔵合金電極に広く適用可能である。In the above embodiment, Mm.Ni.Co.Al
-Although the Mn alloy has been described as an example, in the case of a rare earth / nickel-based hydrogen storage alloy, since the distribution of the rare earth element at the time of solidification tends to be common even if the composition is different, the present invention
The present invention can be widely applied to a hydrogen storage alloy electrode using a rare earth / nickel-based hydrogen storage alloy as a hydrogen storage material.
【0052】[0052]
【発明の効果】保存特性の良いアルカリ蓄電池を与える
水素吸蔵合金電極が提供される。The present invention provides a hydrogen storage alloy electrode which provides an alkaline storage battery having good storage characteristics.
【図1】双ロール法により急冷凝固させた後、アニール
処理した帯状の水素吸蔵合金T2の断面に現れる結晶粒
の様子を示す模式図である。FIG. 1 is a schematic diagram showing a state of crystal grains appearing in a cross section of a band-shaped hydrogen storage alloy T2 that has been rapidly solidified by a twin roll method and then annealed.
【図2】双ロール法により急冷凝固させた後、アニール
処理しなかった帯状の水素吸蔵合金T1の断面に現れる
結晶粒の様子を示す模式図である。FIG. 2 is a schematic diagram showing crystal grains appearing in a cross section of a band-shaped hydrogen storage alloy T1 that has not been annealed after being rapidly solidified by a twin-roll method.
【図3】単ロール法により急冷凝固させた後、アニール
処理した帯状の水素吸蔵合金S2の断面に現れる結晶粒
の様子を示す模式図である。FIG. 3 is a schematic diagram showing crystal grains appearing in a cross section of a band-shaped hydrogen storage alloy S2 which has been rapidly solidified by a single roll method and then annealed.
【図4】単ロール法により急冷凝固させた後、アニール
処理しなかった帯状の水素吸蔵合金S1の断面に現れる
結晶粒の様子を示す模式図である。FIG. 4 is a schematic diagram showing crystal grains appearing in a cross section of a band-shaped hydrogen storage alloy S1 that has not been annealed after being rapidly solidified by a single roll method.
T2 双ロール法により急冷凝固させた後、アニール処
理した帯状の水素吸蔵合金 11 白色部(希土類元素濃度の高い層) 12 黒色部(希土類元素濃度の低い層) 15 帯状体の厚みT2 Strip-shaped hydrogen storage alloy which has been rapidly solidified by the twin-roll method and then annealed. 11 White portion (layer with high concentration of rare earth element) 12 Black portion (layer with low concentration of rare earth element) 15 Thickness of strip
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 田中 忠佳 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA03 BA00 BA01 BA04 BB02 BC01 BD00 BD01 BD03 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Katsuhiko Niiyama 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Tadayoshi Tanaka 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Ikuo Yonezu Keihanmoto, Moriguchi City, Osaka 2-5-5, Sanyo Electric Co., Ltd. F-term (reference) 5H003 AA03 BA00 BA01 BA04 BB02 BC01 BD00 BD01 BD03
Claims (6)
0.01μm以上、最大が0.19μm以下である、双
ロール法により作製された帯状の希土類・ニッケル系水
素吸蔵合金を、粉砕して得た合金粉末が、水素吸蔵材と
して使用されていることを特徴とするアルカリ蓄電池用
の水素吸蔵合金電極。結晶粒の大きさ:希土類元素の濃
度が高い層と同濃度が低い層とが交互に出現する多層構
造に於ける隣接するこれら二層の厚みの和をいう。1. A strip-shaped rare-earth / nickel-based hydrogen-absorbing alloy produced by a twin-roll method, having a minimum grain size of 0.01 μm or more and a maximum of 0.19 μm or less as defined below, A hydrogen storage alloy electrode for an alkaline storage battery, wherein an alloy powder obtained by pulverization is used as a hydrogen storage material. Crystal grain size: The sum of the thicknesses of two adjacent layers in a multilayer structure in which layers with a high concentration of rare earth elements and layers with a low concentration of the rare earth elements appear alternately.
一般式:MmRx (Mmはミッシュメタル;RはNi、
Co、Al及びMn;xは4.6〜5.2)で表される
Mm・Ni・Co・Al・Mn合金である請求項1記載
のアルカリ蓄電池用の水素吸蔵合金電極。2. The rare earth / nickel hydrogen storage alloy according to claim 1,
General formula: MmR x (Mm is misch metal; R is Ni,
The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein Co, Al, and Mn; x is an Mm-Ni-Co-Al-Mn alloy represented by 4.6 to 5.2).
が、Mm1モル部に対してCoを0.3〜0.9モル部
含有する請求項2記載のアルカリ蓄電池用の水素吸蔵合
金電極。3. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 2, wherein said Mm.Ni.Co.Al.Mn alloy contains 0.3 to 0.9 mol part of Co with respect to 1 mol part of Mm. .
が、Mm1モル部に対してNiを3.0〜3.6モル部
含有する請求項2記載のアルカリ蓄電池用の水素吸蔵合
金電極。4. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 2, wherein said Mm.Ni.Co.Al.Mn alloy contains 3.0 to 3.6 mol parts of Ni with respect to 1 mol part of Mm. .
合金電極を負極として有するアルカリ蓄電池。5. An alkaline storage battery having the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
0〜1000cm/秒で回転する双ロールの周面に合金
溶湯を流し込んで帯状の希土類・ニッケル系水素吸蔵合
金を作製し、該帯状の希土類・ニッケル系水素吸蔵合金
を不活性ガス又は真空中にて600〜1000°Cの温
度に所定時間加熱保持してアニール処理し、粉砕して合
金粉末を作製し、該合金粉末を水素吸蔵材として使用し
て電極を作製することを特徴とするアルカリ蓄電池用の
水素吸蔵合金電極の製造方法。6. A roll peripheral speed of 5 in an inert gas or vacuum.
A molten alloy is poured into the peripheral surface of a twin roll rotating at 0 to 1000 cm / sec to produce a strip-shaped rare earth / nickel-based hydrogen storage alloy, and the strip-shaped rare earth / nickel-based hydrogen storage alloy is placed in an inert gas or vacuum. An alkaline storage battery characterized in that it is heated and held at a temperature of 600 to 1000 ° C. for a predetermined time, annealed, pulverized to produce an alloy powder, and an electrode is produced using the alloy powder as a hydrogen storage material. Production method of hydrogen storage alloy electrode for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11078998A JP2000277106A (en) | 1999-03-24 | 1999-03-24 | Hydrogen storage alloy electrode for alkaline storage battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11078998A JP2000277106A (en) | 1999-03-24 | 1999-03-24 | Hydrogen storage alloy electrode for alkaline storage battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000277106A true JP2000277106A (en) | 2000-10-06 |
Family
ID=13677574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11078998A Pending JP2000277106A (en) | 1999-03-24 | 1999-03-24 | Hydrogen storage alloy electrode for alkaline storage battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000277106A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114635070A (en) * | 2022-02-21 | 2022-06-17 | 杭州永磁集团有限公司 | Preparation method of high-toughness alnico magnetic steel |
-
1999
- 1999-03-24 JP JP11078998A patent/JP2000277106A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114635070A (en) * | 2022-02-21 | 2022-06-17 | 杭州永磁集团有限公司 | Preparation method of high-toughness alnico magnetic steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3432873B2 (en) | Hydrogen storage alloy for alkaline storage batteries | |
JP2002105563A (en) | Hydrogen storage alloy and nickel-hydrogen secondary battery using the same | |
EP0714143B1 (en) | Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same | |
JP2000038606A (en) | Hydrogen storage alloy powder, its production and alkali secondary battery | |
EP0653796B1 (en) | Method of producing alloys suitable for hydrogen storage | |
JP3054477B2 (en) | Hydrogen storage alloy electrode | |
JP4815738B2 (en) | Method for producing hydrogen storage alloy powder | |
JP2000277106A (en) | Hydrogen storage alloy electrode for alkaline storage battery and its manufacture | |
CN113631302B (en) | Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using same as negative electrode, and vehicle | |
WO2020195542A1 (en) | Hydrogen-intercalated alloy for alkaline battery, alkaline battery using same as negative electrode, and vehicle | |
JP3354365B2 (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
JP5278411B2 (en) | Hydrogen storage alloy powder and nickel metal hydride storage battery using the same. | |
JPH06145851A (en) | Hydrogen storage alloy and its production | |
JP3432976B2 (en) | Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries | |
JP3432870B2 (en) | Method for producing metal hydride electrode | |
JPH11269501A (en) | Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode | |
JP3639494B2 (en) | Nickel-hydrogen storage battery | |
JPH08120364A (en) | Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery | |
JP2002003975A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JP3423130B2 (en) | Method for producing hydrogen storage alloy electrode for alkaline storage battery | |
KR100348954B1 (en) | Hydrogen storage alloy electrode for alkaline secondary battery | |
JP3432971B2 (en) | Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries | |
JP3071003B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP3678281B2 (en) | Hydrogen storage electrode | |
JPH08185860A (en) | Hydrogen storage alloy electrode for metal-hydride alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050412 |