JPH0979264A - Aluminum bearing - Google Patents

Aluminum bearing

Info

Publication number
JPH0979264A
JPH0979264A JP7262487A JP26248795A JPH0979264A JP H0979264 A JPH0979264 A JP H0979264A JP 7262487 A JP7262487 A JP 7262487A JP 26248795 A JP26248795 A JP 26248795A JP H0979264 A JPH0979264 A JP H0979264A
Authority
JP
Japan
Prior art keywords
aluminum
pure aluminum
bearing
layer
bearing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7262487A
Other languages
Japanese (ja)
Other versions
JP2944919B2 (en
Inventor
Masahito Fujita
正仁 藤田
Hiroe Okawa
広衛 大川
Kazuo Matsuo
一雄 松尾
Takeshi Sakai
武志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP7262487A priority Critical patent/JP2944919B2/en
Publication of JPH0979264A publication Critical patent/JPH0979264A/en
Application granted granted Critical
Publication of JP2944919B2 publication Critical patent/JP2944919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a withstanding load property of an aluminum bearing, by satisfying a prescribed condition in connecting strength of a connection interface, so as to suppress an interlayer slide generated between a bearing alloy and a back plate in the case of repeatedly applying a high load. SOLUTION: By assuming T for maximum thickness of a pure aluminum connection layer 3, Rmax for maximum height of a surface of a back plate 4 and WEM for maximum waviness of a rolling surface, at least one condition of T<Rmax and T<WEM is satisfied. In this way, without traversing shearing stress in a single layer formed of pure aluminum, a structure, meshing a layer of bearing alloy 2 with irregularity of the back plate 4 that makes difficult to slide, is obtained. Thus a slide is generated in the pure aluminum connection layer 3, a tendency generating shearing stress is provided, but in a circumferential direction, by meshing the bearing alloy 2 with irregularity of the back plate 4 through the connection layer 3, shearing stress acting in the connection layer 3 is relaxed, and destruction of the connection layer 3 is suppressed, so as to ensure also connection of the back plate 4 to the bearing alloy 2 by pure aluminum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、産業機械等に
使用するすべり軸受に係り、特に高負荷、高速回転用に
好適なアルミニウム系軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slide bearing used in automobiles, industrial machines and the like, and more particularly to an aluminum bearing suitable for high load and high speed rotation.

【0002】[0002]

【従来の技術及びその課題】従来のアルミニウム系軸受
1として、例えば図5,図6に示すようなものがある。
すなわち、アルミニウム−錫系、アルミニウム−鉛系等
の軸受合金2’と、鋼製の裏金4とを、99.00%以
上の純アルミニウム系接合層30を介して接合されてい
る。この純アルミニウム系接合層30は、軸受合金2’
中に含まれる潤滑成分である錫,鉛等が直接裏金4との
接合界面4aに介在し、軸受合金2’と裏金4との接合
を阻害することを防止するために、媒接層として設けら
れる。また、純アルミニウム系接合層30は、同時に軸
受合金2’と裏金4とを接着する接合層としての役割も
有している。具体的には、アルミニウム系軸受1は、軸
受合金2’と裏金4との間に純アルミニウム系接合層3
0を介装した状態で、ロールによつて圧接させて製作さ
れる。
2. Description of the Related Art As a conventional aluminum-based bearing 1, there are those shown in FIGS. 5 and 6, for example.
That is, the bearing alloy 2'of aluminum-tin system, aluminum-lead system, or the like and the steel backing metal 4 are joined via the pure aluminum-based joining layer 30 of 99.00% or more. This pure aluminum-based bonding layer 30 is a bearing alloy 2 '.
Provided as a medium contact layer in order to prevent the lubricating components contained therein such as tin and lead from directly intervening at the joint interface 4a with the back metal 4 and impeding the bonding between the bearing alloy 2 ′ and the back metal 4. To be Further, the pure aluminum-based bonding layer 30 also has a role as a bonding layer for bonding the bearing alloy 2 ′ and the back metal 4 at the same time. Specifically, the aluminum-based bearing 1 includes a pure aluminum-based bonding layer 3 between the bearing alloy 2 ′ and the back metal 4.
It is manufactured by press-contacting with a roll with 0 interposed.

【0003】この裏金4の表面に錫,鉛等の潤滑金属成
分を介在させず、かつ、アルミニウム系の軸受合金2’
と鋼製の裏金4という全く機械的性質が異なる異種物質
をロール圧接によつて所定の接合強度を与えて固着する
ために、圧接時に両者の間で発生する相対的なすべりを
吸収し、軸受合金2’を裏金4に強固に凝着するような
適切な接合層が必要不可欠である。従つて、接合層の必
要条件として、延性に富み、裏金4に凝着しやすいこと
が求められる。こうした要件を満たす物質として、従来
より純アルミニウム系接合層30が使われてきた。
The bearing metal 2 ', which is an aluminum-based alloy, has no lubricating metal component such as tin or lead interposed on the surface of the back metal 4.
And the steel backing 4 made of dissimilar materials having completely different mechanical properties are fixed by the roll pressure welding with a predetermined bonding strength, so that the relative slip generated between the two is absorbed and the bearing It is essential that a suitable joining layer is provided that firmly adheres the alloy 2'to the backing 4. Therefore, as a necessary condition for the bonding layer, it is required that the bonding layer is rich in ductility and easily adheres to the back metal 4. The pure aluminum-based bonding layer 30 has been conventionally used as a material satisfying these requirements.

【0004】一方、軸受合金2’と裏金4との間の接合
層として、ニッケルメッキ層を使用し、このニッケルメ
ッキ層を介して軸受合金2’と裏金4とを接合したアル
ミニウム系軸受も知られている。これによれば、ニッケ
ルメッキ層により、裏金4と軸受合金2’中の錫、鉛等
との直接接触が防止されるものの、ニッケル層では延性
が乏しいため、十分な接合強度が得られないという技術
的課題がある。
On the other hand, there is also known an aluminum bearing in which a nickel plating layer is used as a joining layer between the bearing alloy 2'and the back metal 4, and the bearing alloy 2'and the back metal 4 are joined via this nickel plating layer. Has been. According to this, although the nickel plating layer prevents direct contact between the back metal 4 and the tin, lead, etc. in the bearing alloy 2 ', the nickel layer has poor ductility, so that sufficient bonding strength cannot be obtained. There are technical challenges.

【0005】従つて、強固な接合を得るためには純アル
ミニウム系接合層30の使用が不可欠であるが、近年、
アルミニウム系軸受1に加えられる高負荷化のために、
軟質で強度の低いこの純アルミニウム系接合層30によ
る問題が顕在化するようになつてきた。すなわち、高温
下で繰り返し高負荷を受けた場合、この純アルミニウム
系接合層30が塑性変形を起こし、アルミニウム系の軸
受合金2’と裏金4との間ですべりを起こし、軸受合金
2’にクラックが入り、軸受合金2’層の破壊に至ると
いつた不具合が発生している。しかしながら、これは中
間の接合層30を強度のない純アルミニウムに求める以
上、不可避の問題であり、純アルミニウム自体によつて
十分な延性と十分な強度とを両立させることは物理的に
不可能であると考えられていた。そこで、こうした問題
に対処するために接合層を純アルミニウムでなくアルミ
ニウム合金に求めた特許(特開平5−99229号)も
見られるが、アルミニウム合金ではやはり延性が乏し
く、接合力はどうしても相対的に低下せざるを得ない。
Therefore, the use of the pure aluminum-based bonding layer 30 is indispensable for obtaining a strong bond.
In order to increase the load applied to the aluminum-based bearing 1,
The problem caused by this pure aluminum-based bonding layer 30 which is soft and has low strength has become apparent. That is, when repeatedly subjected to a high load at high temperatures, the pure aluminum-based bonding layer 30 undergoes plastic deformation, causing slippage between the aluminum-based bearing alloy 2'and the backing metal 4 and cracking in the bearing alloy 2 '. When the bearing alloy 2 ′ layer is destroyed due to the inclusion of a metal, a malfunction has occurred. However, this is an unavoidable problem as long as the intermediate bonding layer 30 is made of pure aluminum having no strength, and it is physically impossible to achieve both sufficient ductility and sufficient strength by pure aluminum itself. Was thought to be. Therefore, there is a patent (Japanese Patent Laid-Open No. 5-99229) in which an aluminum alloy is used for the joining layer instead of pure aluminum in order to deal with such a problem, but the aluminum alloy also has poor ductility, and the joining force is inevitably relatively high. It cannot help but decline.

【0006】図6に従来の純アルミニウム系接合層30
を有するアルミニウム系軸受1の材料の構造を示す。同
図において、純アルミニウム系接合層30の最大厚さを
T、裏金4の表面(純アルミニウム系接合層30と裏金
4との接合界面4a)の最大高さをRmax、裏金4の
表面(純アルミニウム系接合層30と裏金4との接合界
面4a)の転がり円最大うねりをWEM、剪断応力の発生
層の厚さをSとする。最大高さRmaxはJISBO6
01に定められ、断面曲線(接合界面4a)から基準長
さだけ抜き取つた部分の平均線に平行な2直線で抜取り
部分を挟んだとき、この2直線の間隔を断面曲線の縦倍
率の方向に測定して、この値をμmで表したものであ
る。また、転がり円最大うねりWEMはJISBO601
に定められ、半径Rの触針を断面曲線(接合界面4a)
に転動させて、触針の中心が描く曲線を転がり円うねり
曲線として求め、この転がり円うねり曲線の最大うねり
高さである。なお、最大高さRmaxと転がり円最大う
ねりWEMとの関係は、測定面である裏金4の表面の凹凸
変化が滑らかで触針の半径Rが十分に小さい場合には、
Rmax=WEMとなり、裏金4の表面の凹凸変化が比較
的急激で触針の半径Rが比較的大きい場合には、Rma
x>WEMとなる。
FIG. 6 shows a conventional pure aluminum-based bonding layer 30.
The structure of the material of the aluminum-based bearing 1 which has is shown. In the figure, the maximum thickness of the pure aluminum-based bonding layer 30 is T, the maximum height of the surface of the backing metal 4 (bonding interface 4a between the pure aluminum-based bonding layer 30 and the backing metal 4) is Rmax, and the surface of the backing metal 4 (pure Let W EM be the maximum rolling circle waviness of the joining interface 4a) between the aluminum-based joining layer 30 and the backing metal 4, and S be the thickness of the layer in which shear stress is generated. Maximum height Rmax is JISBO6
01, and when the extracted portion is sandwiched by two straight lines parallel to the average line of the portion extracted by the reference length from the sectional curve (bonding interface 4a), the interval between these two straight lines is the direction of the longitudinal magnification of the sectional curve. Is measured and the value is expressed in μm. Also, the maximum rolling circle waviness W EM is JISBO601.
The cross-section curve (bonding interface 4a)
Then, the curve drawn by the center of the stylus is obtained as a rolling circle waviness curve, and this is the maximum waviness height of this rolling circle waviness curve. The relationship between the maximum height Rmax and the maximum rolling circle waviness W EM is that when the unevenness of the surface of the backing metal 4 which is the measurement surface is smooth and the radius R of the stylus is sufficiently small,
When Rmax = W EM , the surface roughness of the back metal 4 changes relatively rapidly, and the radius R of the stylus is relatively large, Rma
x> W EM .

【0007】そして、従来材の場合には、T>Rmax
及びT>WEMの両者を満たす形態となつている。すなわ
ち、図6に示すように裏金4の表面(接合界面4a)に
は、粗さ、うねりが存在しているが、純アルミニウム系
接合層30の上面と軸受合金2’との界面2’aは軽度
のうねりはあるがほぼ平坦であり、また、純アルミニウ
ム系接合層30が裏金4の凹凸に比べて厚いので裏金4
の凹凸の大部分を吸収し、軸受合金2’の界面2’aに
沿つて所定高さの純アルミニウム層Sが存在する形態を
呈している。本発明者等は、この純アルミニウム系接合
層30内の周方向に連続した純アルミニウム層Sが、強
度の弱い剪断応力の発生する層となり、高温下で繰り返
し高負荷を受けた場合、この連続した純アルミニウム層
Sが塑性変形を起こし、アルミニウム系の軸受合金2’
と裏金4との間ですべりを起こし、軸受合金2’にクラ
ックが入り、軸受合金2’層の破壊に至るという現象を
見出した。
In the case of the conventional material, T> Rmax
And T> W EM . That is, as shown in FIG. 6, roughness and undulation are present on the surface of the backing metal 4 (bonding interface 4a), but the interface 2'a between the upper surface of the pure aluminum-based bonding layer 30 and the bearing alloy 2'a. Has a slight waviness, but is almost flat, and since the pure aluminum-based bonding layer 30 is thicker than the unevenness of the back metal 4, the back metal 4
It absorbs most of the irregularities and has a form in which the pure aluminum layer S having a predetermined height exists along the interface 2'a of the bearing alloy 2 '. The inventors of the present invention have found that the pure aluminum layer S that is continuous in the circumferential direction in the pure aluminum-based bonding layer 30 becomes a layer in which shearing stress with weak strength is generated and is repeatedly subjected to a high load at high temperature. The pure aluminum layer S that has undergone plastic deformation causes aluminum-based bearing alloy 2 '.
It has been found that a slip occurs between the back metal 4 and the back metal 4, cracks occur in the bearing alloy 2 ′, and the bearing alloy 2 ′ layer is destroyed.

【0008】純アルミニウム系接合層30内の純アルミ
ニウム層Sですべりが発生し、アルミニウム系の軸受合
金2’層が破壊に至る場合の力学的背景について、図7
を参照して説明する。高速・高負荷下での油切れを起こ
した境界潤滑条件下では、軸(図示せず)の回転力が、
円筒状の軸受合金2’の表面(摺動面)において接線方
向に引つ張る力Pとして働き、軸受合金2’内を伝播
し、純アルミニウム系接合層30内で応力方向が反転
し、裏金4内に引つ張り力P’を生じ、結果的に最も弱
い純アルミニウム系接合層30内に剪断応力が発生する
ことになる。従つて、軸受合金2’が破壊に至る場合、
こうした純アルミニウム系接合層30内の連続した純ア
ルミニウム層Sをクラックが伝播し、軸受合金2’との
剥離を起こし、剥離した軸受合金2’が飛散し、場合に
よつては軸の焼付に発展する。
The mechanical background in the case where slippage occurs in the pure aluminum layer S in the pure aluminum-based joining layer 30 and the aluminum-based bearing alloy 2'layer is destroyed is shown in FIG.
This will be described with reference to FIG. Under boundary lubrication conditions where oil runs out under high speed and high load, the rotational force of the shaft (not shown)
It acts as a force P that pulls in the tangential direction on the surface (sliding surface) of the cylindrical bearing alloy 2 ', propagates in the bearing alloy 2', the stress direction is reversed in the pure aluminum-based bonding layer 30, and the back metal A tensile force P'is generated in the inner layer 4, and as a result, shearing stress is generated in the weakest pure aluminum-based bonding layer 30. Therefore, when the bearing alloy 2 ′ is destroyed,
A crack propagates through the continuous pure aluminum layer S in the pure aluminum-based bonding layer 30 to cause separation from the bearing alloy 2 ', and the separated bearing alloy 2'is scattered. In some cases, seizure of the shaft may occur. Develop.

【0009】また、図8に示すようにニッケルメッキ等
からなる接合層30’を有する軸受1’では、軸受合金
2’の表面に引つ張り力Pが発生したとき、ニッケルメ
ッキと軸受合金2’との接合界面2’aにきわめて大き
な剪断応力(P1 +P2 )が働き、許容応力以上の剪断
応力が働けば、界面2’aから容易に剥離してしまう。
Further, in the bearing 1'having the joining layer 30 'made of nickel plating or the like as shown in FIG. 8, when the tensile force P is generated on the surface of the bearing alloy 2', the nickel plating and the bearing alloy 2 are formed. If a very large shear stress (P 1 + P 2 ) acts on the joint interface 2 ′ a with ′ and a shear stress exceeding the allowable stress is exerted, it is easily separated from the interface 2 ′ a.

【0010】本発明の目的は、アルミニウム系軸受1に
おいて、純アルミニウム系接合層30を使用してアルミ
ニウム系の軸受合金2’層と裏金4との接合力の低下を
防止しながら、周方向に連続した純アルミニウム層Sを
形成しないようにし、繰り返し高負荷がかかつた際に軸
受合金2’層と裏金4との間に発生する層間すべりを抑
え、結果的にアルミニウム系軸受1の耐荷重性を増進さ
せることにある。
It is an object of the present invention to use the pure aluminum-based bonding layer 30 in the aluminum-based bearing 1 while preventing a decrease in the bonding force between the aluminum-based bearing alloy 2'layer and the backing metal 4 while maintaining the circumferential direction. By not forming a continuous pure aluminum layer S, interlayer slip that occurs between the bearing alloy 2 ′ layer and the backing metal 4 when repeatedly subjected to a high load is suppressed, and as a result, the load bearing capacity of the aluminum-based bearing 1 is increased. To improve sex.

【0011】[0011]

【課題を解決するための手段】本発明は、このような従
来の技術的課題に鑑みてなされたものであり、その構成
は次の通りである。請求項1の発明の構成は、裏金4に
純アルミニウム系接合層3を介在させて軸受合金2が接
合されるアルミニウム系軸受おいて、純アルミニウム系
接合層3の最大厚さをT、該接合層3と裏金4との接合
界面4aのJIS表面粗さ(BO601)、表面うねり
(BO610)に定める最大高さをRmax、転がり円
最大うねりをWEMとし、T<Rmax及びT<WEMの内
の少なくとも一方を満たすことを特徴とするアルミニウ
ム系軸受である。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional technical problems, and has the following configuration. In the aluminum-based bearing in which the bearing alloy 2 is bonded to the back metal 4 with the pure aluminum-based bonding layer 3 interposed therebetween, the maximum thickness of the pure aluminum-based bonding layer 3 is T, and the bonding is performed. JIS surface roughness of the bonding interface 4a between the layer 3 and the backing 4 (BO601), the maximum height as stipulated in the surface waviness (BO610) Rmax, the rolling circle maximum waviness and W EM, T <the Rmax and T <W EM The aluminum-based bearing is characterized by satisfying at least one of the above.

【0012】[0012]

【作用】請求項1の発明によれば、純アルミニウム系接
合層3内ですべりが発生し、アルミニウム系の軸受合金
2層が破壊に至ることが良好に抑制される。すなわち、
高速・高負荷下では、軸の回転力が軸受合金2の表面を
接線方向に引つ張る大きな力として働き、軸受合金2層
内を伝播し、純アルミニウム系接合層3内で応力方向が
反転し、最も弱い純アルミニウム系接合層3内に剪断応
力が発生して層間すべりを生ずる傾向を呈する。しかし
ながら、軸受合金2及び裏金4の凹凸が純アルミニウム
系接合層3を介して噛み合つているので、純アルミニウ
ム系接合層3に作用する剪断応力が緩和され、純アルミ
ニウム系接合層3が破壊されることが良好に抑制され、
かつ、純アルミニウムによつて裏金4と軸受合金2との
接合も確保される。その結果、アルミニウム系軸受1の
耐荷重性が増進され、純アルミニウム系接合層3内をク
ラックが伝播し、軸受合金2に剥離を起こし、剥離した
軸受合金2が飛散し、軸の焼付に発展するという不具合
が防止される。
According to the first aspect of the present invention, slippage in the pure aluminum-based joining layer 3 and destruction of the two aluminum-based bearing alloy layers can be effectively suppressed. That is,
Under high speed and high load, the rotational force of the shaft acts as a large force that pulls the surface of the bearing alloy 2 tangentially, propagates in the bearing alloy 2 layer, and the stress direction is reversed in the pure aluminum-based joining layer 3. However, there is a tendency that shear stress is generated in the weakest pure aluminum-based bonding layer 3 to cause interlayer slip. However, since the irregularities of the bearing alloy 2 and the back metal 4 are meshed with each other through the pure aluminum-based bonding layer 3, the shear stress acting on the pure aluminum-based bonding layer 3 is relaxed and the pure aluminum-based bonding layer 3 is destroyed. Is well suppressed,
Moreover, the joining of the back metal 4 and the bearing alloy 2 is secured by pure aluminum. As a result, the load bearing capacity of the aluminum-based bearing 1 is increased, cracks propagate in the pure aluminum-based bonding layer 3, peeling occurs in the bearing alloy 2, the peeled bearing alloy 2 scatters, and seizure of the shaft develops. The trouble of doing is prevented.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1〜図4は、本発明の1
実施の形態に係るアルミニウム系軸受を示す。図1中に
おいて符号1は半円筒形状をなすアルミニウム系軸受で
あり、アルミニウム系軸受1は、摺動摩擦面となる軸受
合金2と、純アルミニウム系接合層3と、鋼製の裏金4
とを有している。軸受合金2は、アルミニウム−錫系、
アルミニウム−鉛系、アルミニウム−シリコン系又はア
ルミニウム−マグネシウム系の合金であり、純アルミニ
ウム系接合層3は、99.00%以上の純アルミニウム
(JISに定める1000番台のアルミニウム)によつ
て形成され、この軸受合金2と裏金4とが、純アルミニ
ウム系接合層3を介在してロール圧接によつて接合され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show a first embodiment of the present invention.
1 shows an aluminum bearing according to an embodiment. In FIG. 1, reference numeral 1 is an aluminum bearing having a semi-cylindrical shape, and the aluminum bearing 1 includes a bearing alloy 2 serving as a sliding friction surface, a pure aluminum joining layer 3, and a steel backing 4.
And Bearing alloy 2 is an aluminum-tin system,
An aluminum-lead alloy, an aluminum-silicon alloy, or an aluminum-magnesium alloy, and the pure aluminum-based bonding layer 3 is formed of 99.00% or more of pure aluminum (1000 series aluminum). The bearing alloy 2 and the back metal 4 are joined by roll pressure welding with the pure aluminum-based joining layer 3 interposed.

【0014】このアルミニウム系軸受1の純アルミニウ
ム系接合層3は、図2に示す構造を有している。すなわ
ち、純アルミニウム系接合層3の最大厚さをT、裏金4
表面(純アルミニウム系接合層3と裏金4との接合界面
4a)の最大高さをRmax(JISBO601に定め
る)、転がり円最大うねりをWEM(JISBO610に
定める)として、T<Rmax及びT<WEMの内の少な
くとも一方の条件を満たしている。
The pure aluminum-based bonding layer 3 of the aluminum-based bearing 1 has the structure shown in FIG. That is, the maximum thickness of the pure aluminum-based bonding layer 3 is T, and the back metal 4 is
As a surface maximum (pure aluminum-based bonding interface 4a between the bonding layer 3 and the backing 4) (specified in JISBO601) height Rmax, the rolling circle maximum waviness (defined in JISBO610) W EM, T <Rmax and T <W Meets at least one of the EM requirements.

【0015】裏金4の純アルミニウム系接合層3との界
面4aのみならず純アルミニウム系接合層3の軸受合金
2との界面2aにも、それぞれ所定の粗さ及びうねりが
存在する。両界面4a,2a間の凸部が対向する凹部に
入り込んだ状態は、純アルミニウム系接合層3の厚さが
裏金4の凹凸よりも薄くなるように設定し、純アルミニ
ウム系接合層3のみでは硬い裏金4の凹凸を吸収してし
まわないようにすることで達成される。このような両界
面4a,2aの凹凸は、裏金4については所定砥粒を付
着させた研削ベルトにより、接合直前に裏金4の表面を
研削して所定の凹凸を積極的に形成して界面4aとな
し、その後、ロール圧接することにより、形成すること
が可能である。従つて、純アルミニウム系接合層3は、
半円筒形状をなすアルミニウム系軸受1の周方向に所定
厚さの平面的な層をなして延在する部分を有していな
い。これにより、連続した強度の弱い純アルミニウム層
(S)は存在せず、純アルミニウム系接合層3に周方向
の剪断応力の発生する連続層が存在しないことになる。
Predetermined roughness and waviness are present not only at the interface 4a of the backing metal 4 with the pure aluminum-based bonding layer 3 but also at the interface 2a of the pure aluminum-based bonding layer 3 with the bearing alloy 2. When the convex portions between both interfaces 4a, 2a enter the opposite concave portions, the thickness of the pure aluminum-based bonding layer 3 is set to be thinner than the unevenness of the backing metal 4, and the pure aluminum-based bonding layer 3 alone is used. This is achieved by preventing the unevenness of the hard backing metal 4 from being absorbed. As for the unevenness of both the interfaces 4a and 2a, the surface of the backing metal 4 is ground immediately before joining by a grinding belt having predetermined abrasive grains adhered to the backing metal 4, and the predetermined unevenness is positively formed to form the interface 4a. After that, it is possible to form by pressing with a roll. Therefore, the pure aluminum-based bonding layer 3 is
The aluminum-based bearing 1 having a semi-cylindrical shape does not have a portion extending in a circumferential direction in a planar layer having a predetermined thickness. As a result, the continuous pure aluminum layer (S) having low strength does not exist, and the pure aluminum-based bonding layer 3 does not include the continuous layer in which shear stress in the circumferential direction is generated.

【0016】このように、T<Rmax及びT<WEM
内の少なくとも一方の条件を満たすアルミニウム系軸受
1によれば、純アルミニウムからなる単一層内を剪断応
力が横切ることはなく、軸受合金2層と裏金4の凹凸が
噛み合つてきわめてすべりにくい構造となる。なお、実
際には、アルミニウム系軸受1の周方向のみならず、中
心軸線方向においても、軸受合金2層と裏金4の凹凸が
純アルミニウム系接合層3を介して噛み合つて、すべり
にくい構造となつている。但し、最大高さRmaxと転
がり円最大うねりWEMとの関係は、通常、Rmax≧W
EMであるから、T<Rmaxを満たせば、軸受合金2層
と裏金4とに凹凸噛み合つた形態を与えることができる
が、この凹凸噛み合い状態を十分に与えるためには、T
<WEMを満たすことが望まれる。
As described above, according to the aluminum-based bearing 1 satisfying at least one of T <Rmax and T <W EM , the shear stress does not cross the single layer made of pure aluminum, and the bearing alloy The unevenness of the two layers and the back metal 4 mesh with each other to form a structure that is extremely non-slip. Actually, not only in the circumferential direction of the aluminum-based bearing 1, but also in the direction of the central axis, the irregularities of the bearing alloy 2 layer and the back metal 4 mesh with each other through the pure aluminum-based bonding layer 3 to prevent slipping. I'm running. However, the relationship between the maximum height Rmax and the maximum rolling circle waviness W EM is usually Rmax ≧ W
Since it is EM , if T <Rmax is satisfied, it is possible to give the bearing alloy 2 layer and the backing metal 4 a shape in which unevenness is engaged, but in order to sufficiently give this unevenness engagement state, T
<It is desired to satisfy W EM .

【0017】しかして、このアルミニウム系軸受1によ
れば、純アルミニウム系接合層3内ですべりが発生し、
アルミニウム系の軸受合金2層が破壊に至ることが良好
に抑制される。すなわち、高速・高負荷下での油切れを
起こした境界潤滑条件下では、軸の回転力が軸受合金2
の表面を接線方向に引つ張る大きな力として働き、軸受
合金2層内を伝播し、純アルミニウム系接合層3内で応
力方向が反転し、最も弱い純アルミニウム系接合層3内
に剪断応力が発生する傾向を呈する。しかしながら、ア
ルミニウム系軸受1の少なくとも周方向において、軸受
合金2及び裏金4の凹凸が純アルミニウム系接合層3を
介して噛み合つているので、純アルミニウム系接合層3
に作用する剪断応力が緩和されて、純アルミニウム系接
合層3が破壊されることが良好に抑制され、かつ、純ア
ルミニウムによつて裏金4と軸受合金2との接合も確保
される。その結果、純アルミニウム系接合層3内をクラ
ックが伝播し、軸受合金2に剥離を起こし、剥離した軸
受合金2が飛散し、軸の焼付に発展するという不具合が
防止される。
However, according to this aluminum-based bearing 1, slip occurs in the pure aluminum-based bonding layer 3,
The destruction of the two layers of the aluminum-based bearing alloy is well suppressed. In other words, under the boundary lubrication condition where the oil runs out under high speed and high load, the rotational force of the shaft causes the bearing alloy 2
Acts as a large force to pull the surface of the alloy in the tangential direction, propagates in the bearing alloy 2 layer, the stress direction is reversed in the pure aluminum-based bonding layer 3, and the shear stress is generated in the weakest pure aluminum-based bonding layer 3. Exhibit a tendency to occur. However, since the irregularities of the bearing alloy 2 and the back metal 4 are engaged with each other through the pure aluminum-based bonding layer 3 in at least the circumferential direction of the aluminum-based bearing 1, the pure aluminum-based bonding layer 3
The shearing stress that acts on the aluminum alloy is relaxed, and the pure aluminum-based bonding layer 3 is effectively prevented from being broken, and the bonding between the back metal 4 and the bearing alloy 2 is also secured by the pure aluminum. As a result, it is possible to prevent a problem that cracks propagate in the pure aluminum-based bonding layer 3, the bearing alloy 2 is peeled off, the peeled bearing alloy 2 scatters, and seizure of the shaft develops.

【0018】[0018]

【実施例1】先ず、表1,表2に示す構成のアルミニウ
ム系軸受1をそれぞれ作成した。その作成方法は、所定
のアルミニウム−錫系の軸受合金2(Al−13重量%
Sn−2重量%Pb−3重量%Si−1重量%Cu)を
連続鋳造し、上下面を面削し、続いて冷間圧延により圧
延し、最終的に表1,表2の純アルミニウム系接合層3
の厚さを実現させるために、1.2mm、0.9mm、
0.6mm、0.3mmの厚さの純アルミニウム(JI
SA1050合金)と一旦接合し、最後に厚さ1.5m
mの裏金4とロール圧接し、テスト試料を作成した。ま
た、このとき、裏金4の接合界面4aは、完成材で最大
高さRmax及び転がり円最大うねりWEMが共に25μ
mとなるように調整した。すなわち、上記の厚さの純ア
ルミニウムを圧接することで、表1,表2の純アルミニ
ウム系接合層3の厚さが45μm、30μmの従来品
(試料No.1,2,6,7)を形成し、また、本発明
品として、純アルミニウム系接合層3の最大厚さTが2
0μm、15μmのものを試料No.4,5,9,10
として得た。一方、純アルミニウム系接合層3に代えて
ニッケルメッキ層を形成したものも、試料No.3,8
として従来品に加えた。なお、表1は、本発明品がT<
Rmaxを充足する場合の試験結果を示し、表2は、本
発明品がT<WEMを充足する場合の試験結果を示す。
Example 1 First, aluminum-based bearings 1 having the configurations shown in Tables 1 and 2 were produced. The manufacturing method is as follows: a predetermined aluminum-tin based bearing alloy 2 (Al-13% by weight)
Sn-2% by weight Pb-3% by weight Si-1% by weight Cu) is continuously cast, the upper and lower surfaces are chamfered, and subsequently rolled by cold rolling, and finally the pure aluminum type of Tables 1 and 2 is used. Bonding layer 3
To achieve the thickness of 1.2 mm, 0.9 mm,
Pure aluminum with a thickness of 0.6 mm and 0.3 mm (JI
SA1050 alloy) and once joined, and finally thickness 1.5m
A test sample was prepared by pressing the back metal 4 of m with a roll. At this time, the joint interface 4a of the backing 4 has a maximum height Rmax and a rolling circle maximum waviness W EM both of which are 25 μ in the finished material.
m. That is, by pressing the pure aluminum having the above-mentioned thickness, the conventional products (Sample Nos. 1, 2, 6, 7) having the pure aluminum-based bonding layers 3 in Tables 1 and 2 having the thicknesses of 45 μm and 30 μm were prepared. In addition, as a product of the present invention, the maximum thickness T of the pure aluminum-based bonding layer 3 is 2
Sample Nos. 0 and 15 μm were used. 4, 5, 9, 10
As obtained. On the other hand, in the case where the nickel-plated layer was formed instead of the pure aluminum-based bonding layer 3, Sample No. 3,8
As a conventional product. Table 1 shows that the product of the present invention has T <
The test result when Rmax is satisfied is shown, and Table 2 shows the test result when the product of the present invention satisfies T <W EM .

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】作成されたこれらの試料を次の2つの方法
で評価した。その一つは、剪断接合力をみる剪断テス
ト、もう一つは軸受性能を総合的に評価する疲労テスト
である。
These prepared samples were evaluated by the following two methods. One of them is a shear test to see the shear joining force, and the other is a fatigue test to comprehensively evaluate the bearing performance.

【0022】先ず、剪断接合力をみるテストの方法は、
各試料(No.1〜10)を幅1mm、長さ15mmの
大きさに切り出し、図3,図4に示すように剪断テスト
用治具にセットした。すなわち、軸受合金2を突出させ
た状態として裏金4を第1治具6に固定ねじ7によつて
固定し、軸受合金2に第2治具8を係合させ、軸受合金
2と裏金4との接合界面4aの純アルミニウム系接合層
3が剪断されるようにした。そして、第2治具8に圧下
力Nを作用させ、純アルミニウム系接合層3(又はニッ
ケルメッキ層)が剪断される際の応力の最大値を剪断応
力とした。その結果を表1及び表2に示す。なお、剪断
応力の単位は、kgf/mm2 で示した。
First, the test method for examining the shear bonding force is as follows.
Each sample (No. 1 to 10) was cut into a size having a width of 1 mm and a length of 15 mm and set in a shear test jig as shown in FIGS. That is, with the bearing alloy 2 projected, the backing metal 4 is fixed to the first jig 6 with the fixing screw 7, and the second jig 8 is engaged with the bearing alloy 2 to form the bearing alloy 2 and the backing metal 4. The pure aluminum-based bonding layer 3 at the bonding interface 4a was sheared. Then, a reduction force N was applied to the second jig 8 and the maximum value of the stress when the pure aluminum bonding layer 3 (or the nickel plating layer) was sheared was defined as the shear stress. The results are shown in Tables 1 and 2. The unit of shear stress is kgf / mm 2 .

【0023】一方、疲労試験には、いわゆるアンダーウ
ッド試験機と呼ばれるものを使用した。これは実際のエ
ンジンの条件とほぼ同じようにすべり軸受をコンロッド
に固定し、軸に偏心荷重をかける試験機であり、軸受合
金2が剥離せず、正常な状態を維持できた耐久時間(疲
労時間)で評価するものである。以下にテスト条件を記
す。
On the other hand, a so-called underwood tester was used for the fatigue test. This is a tester that fixes the sliding bearing to the connecting rod and applies an eccentric load to the shaft in almost the same way as the actual engine conditions. The bearing alloy 2 did not peel off, and the durability time (fatigue Time). The test conditions are described below.

【0024】 面圧 800kgf/cm2 回転数 3500rpm 相手材 FCD70 粗さ0.8〜1.5S 使用オイル SAE30 油温 150℃±5℃ なお、上記各テストは各試料数n=5として行い、これ
らの平均値をデータとして表1,表2に示した。
Surface pressure 800 kgf / cm 2 Number of revolutions 3500 rpm Counterpart material FCD70 Roughness 0.8 to 1.5S Oil used SAE30 Oil temperature 150 ° C. ± 5 ° C. In addition, each of the above tests was performed with each sample number n = 5. The average values of are shown in Tables 1 and 2.

【0025】この表1,表2に示す結果をみれば、本発
明の純アルミニウム系接合層3の最大厚さT<接合層3
と裏金4との接合界面4aの最大高さをRmax、及び
純アルミニウム系接合層3の最大厚さT<転がり円最大
うねりWEMのいずれの条件をも満たさない従来品No.
1、2、6、7及びニッケルメッキボンド品(試料N
o.3、8)は、剪断応力から分かる接合力も弱く、従
つてアンダーウッド試験でも75〜95時間と短い時間
しかもたないのに比べて、本発明品は剪断応力も大き
く、疲労時間も130〜150時間と格段に改善されて
いる。すなわち、こうした接合界面2a,4aの合理的
な改良が、アルミニウム系軸受1の耐荷重性を飛躍的に
向上させることが裏付けられた。
From the results shown in Tables 1 and 2, the maximum thickness T of the pure aluminum-based joining layer 3 of the present invention <the joining layer 3
The maximum height of the joining interface 4a between the backing metal 4 and the back metal 4 is Rmax, and the maximum thickness T of the pure aluminum-based joining layer 3 <Rolling circle maximum waviness W EM .
1, 2, 6, 7 and nickel-plated bond products (Sample N
o. Nos. 3 and 8) have a weak joining force which can be seen from the shear stress, and accordingly, the underwood test lasts only a short time of 75 to 95 hours, whereas the product of the present invention has a large shear stress and a fatigue time of 130 to 150. It has been improved significantly with time. That is, it was proved that such a rational improvement of the joint interfaces 2a and 4a dramatically improves the load bearing capacity of the aluminum-based bearing 1.

【0026】[0026]

【発明の効果】以上の説明によつて理解されるように、
本発明に係るアルミニウム系軸受によれば、接合界面の
剪断応力によつて代表される接合強度が、所定の条件を
満たさない従来品に比べて著しく改善され、耐荷重80
0kgf/cm2 という高負荷条件においても有効な疲
労強度を有するすべり軸受が製造可能になつた。すなわ
ち、アルミニウム系軸受の支承能力が飛躍的に向上し、
特に高負荷、高速回転用に好適なアルミニウム系軸受の
提供が可能となる。
As will be understood from the above description,
According to the aluminum-based bearing of the present invention, the joint strength represented by the shear stress at the joint interface is remarkably improved as compared with the conventional product that does not satisfy the predetermined condition, and the load bearing capacity is 80%.
It has become possible to manufacture a slide bearing having an effective fatigue strength even under a high load condition of 0 kgf / cm 2 . In other words, the bearing capacity of aluminum bearings has dramatically improved,
In particular, it is possible to provide an aluminum bearing suitable for high load and high speed rotation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の1実施の形態に係るアルミニウム系
軸受を示す断面図。
FIG. 1 is a sectional view showing an aluminum bearing according to an embodiment of the present invention.

【図2】 同じく要部を拡大して示す断面図。FIG. 2 is a sectional view showing an enlarged main part of the same.

【図3】 同じく剪断テスト用治具を示す概略図。FIG. 3 is a schematic view showing a shear test jig.

【図4】 同じく要部を拡大して示す断面図。FIG. 4 is a sectional view showing an enlarged main part of the same.

【図5】 従来のアルミニウム系軸受を示す断面図。FIG. 5 is a cross-sectional view showing a conventional aluminum-based bearing.

【図6】 同じく要部を拡大して示す断面図。FIG. 6 is a sectional view showing an enlarged main part of the same.

【図7】 同じく純アルミニウム系接合層を有するアル
ミニウム系軸受の応力分布図。
FIG. 7 is a stress distribution diagram of an aluminum bearing having the same pure aluminum joint layer.

【図8】 同じくニッケルメッキ層を有するアルミニウ
ム系軸受の応力分布図。
FIG. 8 is a stress distribution diagram of an aluminum bearing which also has a nickel plating layer.

【符号の説明】[Explanation of symbols]

1:アルミニウム系軸受、2:軸受合金、3:純アルミ
ニウム系接合層、4:裏金、T:最大厚さ、Rmax:
最大高さ、WEM:転がり円最大うねり。
1: Aluminum-based bearing, 2: Bearing alloy, 3: Pure aluminum-based bonding layer, 4: Back metal, T: Maximum thickness, Rmax:
Maximum height, W EM : Maximum rolling circle waviness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂井 武志 千葉県習志野市実籾町1丁目687番地 エ ヌデーシー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Sakai 1-687 Mitomicho, Narashino, Chiba Prefecture NDC Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 裏金(4)に純アルミニウム系接合層
(3)を介在させて軸受合金(2)が接合されるアルミ
ニウム系軸受おいて、純アルミニウム系接合層(3)の
最大厚さをT、該接合層(3)と裏金(4)との接合界
面(4a)のJIS表面粗さ(BO601)、表面うね
り(BO610)に定める最大高さをRmax、転がり
円最大うねりをWEMとし、T<Rmax及びT<WEM
内の少なくとも一方を満たすことを特徴とするアルミニ
ウム系軸受。
1. In an aluminum bearing in which a bearing alloy (2) is bonded to a backing metal (4) with a pure aluminum bonding layer (3) interposed, the maximum thickness of the pure aluminum bonding layer (3) is set. T, the bonding layer (3) and JIS surface roughness of the backing (4) bonding with the surface (4a) (BO601), the maximum height as stipulated in the surface waviness (BO610) Rmax, the rolling circle maximum waviness and W EM , T <Rmax and T <W EM , at least one of which is satisfied.
JP7262487A 1995-09-14 1995-09-14 Aluminum bearing Expired - Fee Related JP2944919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262487A JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262487A JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Publications (2)

Publication Number Publication Date
JPH0979264A true JPH0979264A (en) 1997-03-25
JP2944919B2 JP2944919B2 (en) 1999-09-06

Family

ID=17376481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262487A Expired - Fee Related JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Country Status (1)

Country Link
JP (1) JP2944919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157650A1 (en) * 2013-03-29 2014-10-02 大豊工業株式会社 Aluminum alloy, slide bearing, and slide bearing manufacturing method
JP2015514933A (en) * 2012-01-25 2015-05-21 ミーバ グライトラガー ゲゼルシャフト ミット ベシュレンクテル ハフツング Sliding bearing manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514933A (en) * 2012-01-25 2015-05-21 ミーバ グライトラガー ゲゼルシャフト ミット ベシュレンクテル ハフツング Sliding bearing manufacturing method
WO2014157650A1 (en) * 2013-03-29 2014-10-02 大豊工業株式会社 Aluminum alloy, slide bearing, and slide bearing manufacturing method

Also Published As

Publication number Publication date
JP2944919B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US4696867A (en) Aluminum based bearing alloys
JP3388501B2 (en) Plain bearing
KR940002490B1 (en) Aluminum based alloy bearing having strengthened intermediate bonding layer
JPH0819946B2 (en) Multi-layer aluminum base alloy bearing with excellent compatibility and fatigue resistance
GB1577059A (en) Composite metal bearings
KR19980080189A (en) Second pressure ring for aluminum cylinder and manufacturing method thereof
JPH0979264A (en) Aluminum bearing
JPH084771A (en) Plain bearing
Sarkar et al. Wear characteristics, friction and surface topography observed in the dry sliding of as-cast and agehardening Al-Si alloys
Masoumi et al. Interface characterization and formability of two and three-layer composite sheets manufactured by roll bonding
WO1999041512A1 (en) Sliding-contact bearings
JP3754315B2 (en) Multi-layer sliding material
EP2095940B1 (en) Sliding member
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
KR101288336B1 (en) Bearing having embedded hard particle layer and overlay and method of manufacture
JPS60230952A (en) Sliding aluminum alloy
KR100235835B1 (en) Material for slide bearing
Gebretsadik et al. Seizure behaviour of Pb-free engine bearing materials under dry condition
JPH11223219A (en) Sliding bearing
JP2001207230A (en) Bearing material
JPH10159853A (en) Sliding member, supporting member, and combination of them with excellent fretting damage resistance
JPS62224722A (en) Bearing material
JP3045000B2 (en) Processing equipment for plain bearings
Navidirad et al. Investigation on the strain induced oxide layer fracture and bonding during cold rolling of aluminum alloys
JP2667874B2 (en) Photosensitive drum

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees