JP3754315B2 - Multi-layer sliding material - Google Patents

Multi-layer sliding material Download PDF

Info

Publication number
JP3754315B2
JP3754315B2 JP2001109853A JP2001109853A JP3754315B2 JP 3754315 B2 JP3754315 B2 JP 3754315B2 JP 2001109853 A JP2001109853 A JP 2001109853A JP 2001109853 A JP2001109853 A JP 2001109853A JP 3754315 B2 JP3754315 B2 JP 3754315B2
Authority
JP
Japan
Prior art keywords
layer
tin
copper
based overlay
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001109853A
Other languages
Japanese (ja)
Other versions
JP2002310158A (en
Inventor
秀雄 辻
日出夫 石川
隆之 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2001109853A priority Critical patent/JP3754315B2/en
Priority to GB0206056A priority patent/GB2375801B/en
Publication of JP2002310158A publication Critical patent/JP2002310158A/en
Application granted granted Critical
Publication of JP3754315B2 publication Critical patent/JP3754315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/30Alloys based on one of tin, lead, antimony, bismuth, indium, e.g. materials for providing sliding surfaces
    • F16C2204/34Alloys based on tin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銅系またはアルミニウム系の軸受合金層上に中間層を介して錫−銅系の錫基オーバレイ層を設けてなる複層摺動材料に関する。
【0002】
【従来の技術】
自動車、農業機械、産業機械の分野では、鋼裏金上に銅系またはアルミニウム系の軸受合金を設けたすべり軸受が多く用いられている。この銅系またはアルミニウム系の軸受合金を用いたすべり軸受では、なじみ性や異物埋収性の向上を図るために、軸受合金層の表面にオーバレイ層を設けることが行なわれている。
【0003】
上記オーバレイ層としては、従来より、鉛基合金が知られているが、最近では、地球環境上の問題および耐食性向上のため、錫基合金が良く用いられる。この錫基オーバレイ層を設けたすべり軸受では、軸受合金層とオーバレイ層との間に、中間層として例えばニッケルめっき層が形成されている。ニッケルめっき層は、軸受合金がアルミニウム系の場合、錫基オーバレイ層の接着性を高めるために設けられ、銅系の場合には、錫基オーバレイ層中の錫が軸受合金中に拡散することを防止するために設けられる。
【0004】
ところが、オーバレイ層が錫−銅系の錫基合金である場合、高温で長時間使用されると、熱的影響によってオーバレイ層中の銅がニッケルめっき層中に拡散してオーバレイ層中の銅が減少し、耐疲労性、非焼付性が低下する。オーバレイ層中の銅がニッケルめっき層に拡散することを防止するために、特開2000−64085には、中間層を、1〜3μm厚さのニッケル層およびその上に析出される2〜10μm厚さのニッケル−錫層により構成することが開示されている。
【0005】
【発明が解決しようとする課題】
特開2000−64085に開示された構成では、中間層のうち、下層であるニッケル層は硬く、上層であるニッケル−錫層は更に硬い。そして、相当期間の使用によりオーバレイ層が摩耗すると、硬いニッケル−錫層やニッケル層が表面に露出する。これらニッケル−錫層やニッケル層は、厚さが合計で3〜13μmと相当厚く、しかも硬くて摩耗し難いので、なじみ性が悪くなり、焼付きを生ずるおそれがある。
【0006】
本発明は上記の事情に鑑みてなされたもので、その目的は、錫基オーバレイ層と軸受合金との間に形成される中間層の厚さを厚くしなくとも、錫基オーバレイ層の表層中の銅が拡散によって減少することを極力防止できる複層摺動材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、軸受合金層上に中間層を介して錫−銅系の錫基オーバレイ層を設けてなる複層摺動材料において、前記錫基オーバレイ層は銅の含有量が異なる複数層からなり、その複数層のうち、前記中間層に接する最下層は、銅を5〜20質量%含有し、厚さが〜3μmであることを特徴とする(請求項1)。
【0008】
軸受合金層は、銅系合金またはアルミニウム系合金とすることができる(請求項5)。銅系やアルミニウム系の軸受合金は、高荷重、高速回転に対して優れた軸受特性を呈し、自動車、農業機械、産業機械などの、特にエンジン用のすべり軸受として適する。銅系合金としては、青銅系および鉛青銅系のいずれも使用することができる。アルミニウム系合金としては、軟質相形成のために亜鉛、錫、鉛などを1種以上含ませたものを用いることができ、強化元素として銅、マグネシウムなど、疲労強度向上のためのクロム、珪素などを含有させることもできる。
【0009】
上記のような銅系またはアルミニウム系の軸受合金層と錫−銅系の錫基オーバレイ層との間には、錫基オーバレイ層中の錫が軸受合金層中に拡散することを防止するため、或いは軸受合金層に対する錫基オーバレイ層の接着性を向上させるために中間層が設けられる。この中間層は、ニッケル、鉄、コバルトのいずれかにより構成することができる。その厚さは、0.5〜3μmであることが好ましい(請求項4)。
摺動材料が高温で使用されると、錫基オーバレイ層中の銅が中間層へ拡散する。本発明によれば、錫基オーバレイ層の最下層は銅の含有量が比較的多いので、錫基オーバレイ層から中間層への銅の拡散は、錫基オーバレイ層の最下層から進む。このため、相手材と接する錫基オーバレイ層の最上層については銅の減少程度は少ない。従って、中間層の厚さとしては、それ程厚くしなくても済み、錫基オーバレイ層が摩耗して中間層に露出するようになった場合でも、なじみ性を失わず、優れた非焼付性を維持する。
【0010】
上記錫基オーバレイ層の最上層の銅含有量は、0.5〜10質量%とすることが好ましい(請求項2)。
この錫基オーバレイ層の最上層には、亜鉛、インジウム、アンチモン、銀のうち、1種または2種以上を総量で5質量%以下含ませることができる(請求項3)。
ここで、上述のような成分割合にしたことの理由を説明する。
(1)錫基オーバレイ層の最下層の銅:5〜20質量%
銅が5質量%未満では、最上層の銅の拡散防止効果が低下し、20質量%を越えると、耐疲労性が低下する。
この錫基オーバレイ層の最下層の厚さは、1〜3μmが好ましい。1μm未満であると、最上層の銅の拡散防止効果が得られず、3μmを越えると、耐疲労性が低下する。
【0011】
(2)錫基オーバレイ層の最上層の銅:0.5〜10質量%
錫マトリックスは耐食性、なじみ性、異物埋収性を担うが、銅は錫マトリックスの強度を高め、非焼付性、耐疲労性、耐摩耗性を向上させる。0.5質量%未満ではその効果が低く、10質量%を越えると、非焼付性、耐疲労性が低下する。
錫基オーバレイ層の最上層の厚さは、10〜40μmが好ましい。10μm未満であると、なじみ性、異物埋収性が低下し、40μmを越えると、耐疲労性が低下する。
【0012】
(3)錫基オーバレイ層の最上層の亜鉛、インジウム、アンチモン、銀:総量で5質量%以下
これらの元素は、錫基オーバレイ層の最上層の非焼付性、耐摩耗性を向上させる。5質量%を越えると、最上層が硬くなり過ぎ、なじみ性、異物埋収性を低下させる。
【0013】
(5)中間層:ニッケル、鉄、コバルトのいずれか
ニッケル、鉄、コバルトは、錫基オーバレイ層中の錫が軸受合金層へ拡散することを防止し(銅系軸受合金の場合)、或いは軸受合金層への錫基オーバレイ層の接着性を高める(アルミニウム系軸受合金の場合)。
中間層の厚さは、0.5〜3μmが好ましい。中間層の厚さが0.5μm未満では、ダム効果や接着強度が得られず、3μmを越えると、錫基オーバレイが摩耗した後の非焼付性を低下させる。
【0014】
【発明の実施の形態】
以下、本発明を実施例により図面を参照して説明する。
鋼板上に、鉛:23質量%、錫:3.5質量%、残り銅からなる銅系軸受合金用粉末を焼結、圧延して軸受用素材としてのバイメタルを製造した。このバイメタルをプレス成形して厚さ1.5mmの半割軸受にし、更に、この半割軸受を機械加工して所定寸法に仕上げた。その後、半割軸受の内面に電気めっきによって厚さ1.5μmのニッケル層を形成し、その上に、比較例品1〜4を除き表1の下層に示す成分の錫基合金を電気めっきし、更に下層の上に表1の上層に示す成分の錫基合金を電気めっきした。比較例品1〜4については、ニッケル層の上に表1の上層に示した成分の錫基合金を1層だけ15μmの厚さに電気めっきした。
【0015】
以上により、図1に示すように、鋼裏金層1上に銅系軸受合金層2を形成し、この軸受合金層2上にニッケルめっき層からなる中間層3を形成し、更に、中間層3上に銅の含有量の異なる下層4および上層5の2層からなる錫基オーバレイ層6を設けた構造の実施例品1〜10、比較例品5〜7を得た。また、図示はしないが、鋼裏金上に銅系軸受合金層を形成し、この軸受合金層上にニッケルめっき層からなる中間層を介して単層の錫基オーバレイ層を設けた構造の比較例品1〜4を得た。
【0016】
【表1】

Figure 0003754315
【0017】
上記の実施例品1〜10および比較例品1〜7について、熱拡散試験、焼付試験、疲労試験を行なった。
熱拡散試験は、130℃に加熱した状態を300時間保持した後、および1000時間保持した後のそれぞれについて、錫基オーバレイ層の上層中の銅の含有量を調べたものである。
【0018】
焼付試験は、100℃に予熱したVG22の潤滑油を用い、相手材をモータによって3600rpmで回転させ、1時間無負荷でならし運転を行なった後、潤滑油を毎分150ccに絞って面圧10MPaの負荷を与え、その後、面圧を5MPaずつ高めながら、各面圧毎に10分間運転し、軸受の背面が200℃を越えるか、または相手材を駆動するモータの駆動電流が所定値を越えたとき、その時点の軸受面圧を焼付面圧とした。この焼付試験は、上記の熱拡散を行なわないものと、130℃で1000時間の熱拡散を行なったものについてそれぞれ2回ずつ実施した。
【0019】
疲労試験は、100℃に予熱したSAE20の潤滑油を用い、相手材を3250rpmで回転させ、30分間無負荷でならし運転を行なった後、面圧50MPaの荷重を加えて20時間運転したときの疲労度合いを評価した。評価は次の5つの疲労評価ランクで示す。この疲労試験は、焼付試験と同様に、熱拡散を行なわないものと、130℃で1000時間の熱拡散を行なったものについてそれぞれ2回ずつ実施した。
5:クラックなし。
4:評価4は目視でクラックが確認できず顕微鏡検査が確認できる。
3:目視でクラックが確認できるが見分けにくい。
2:目視でクラックが確認できる。
1:目視で軸受投影面積の50%以上のクラックが確認できる。
【0020】
上記の熱拡散試験について、実施例品1、3、9、10および比較例品2、3、5の結果が図2にグラフで示されている。また、焼付試験および疲労試験の結果はそれぞれ図3および図4にグラフ示されている。なお、図3および図4において、白抜きは2回の試験結果のばらつきを示す。
【0021】
図2〜図4から明らかなように、錫基オーバレイ層を上下2層にし、下層の銅含有量を5〜20質量%にした実施例品1〜10は、下層を設けない比較例品1〜4に比べ、錫基オーバレイ層の表面部分について、銅の熱拡散による減少量が少ない。このため、実施例品1〜10は130℃、1000時間の熱拡散試験を行なった後においても、優れた非焼付性および耐疲労性を示している。
【0022】
比較例品5〜7は、錫基オーバレイ層が上下2層から構成されている。しかし、比較例品7は、錫基オーバレイ層の下層における熱拡散試験前の銅含有量が23.5質量%と多いため、耐疲労性が低い。錫基オーバレイ層の下層の銅含有量は、少ないと上層に対する銅の拡散防止効果が低下し、多いと耐疲労性に悪影響を及ぼす。錫基オーバレイ層の下層の好ましい銅含有量は、5〜20質量%である。
【0023】
また、比較例品5は、錫基オーバレイ層の下層の厚さが0.5μmと薄い。このため、上層に対する銅拡散防止効果が低く、上層の銅が当初4.1質量%あったところ、熱拡散試験300時間経過後では2.1質量%、1000時間経過後では0.9質量%に大きく減少しており、その結果、熱拡散試験1000時間経過後は非焼付性および耐疲労性が低下している。一方、比較例品6は、錫基オーバレイ層の下層の厚さが5μmと厚いため、熱拡散試験前のものであっても、耐疲労性に劣る。このことから、錫基オーバレイ層の下層の厚さは、薄い場合には、上層に対する銅の拡散防止効果が低下し、厚い場合には、耐疲労性を低下させることが理解される。錫基オーバレイ層の下層の好ましい厚さは、1〜3μmである。
【0024】
このように錫基オーバレイ層を上下2層にし、下層の銅含有量を5〜20質量%で、厚さを1〜3μmにすることにより、上層の銅の減少を抑えることができるので、中間層であるニッケルめっき層の厚さを薄くできる(実施例品1〜10では1.5μm)。このため、オーバレイ層が摩耗して中間層が表面に露出した場合、その中間層は比較的早く摩滅するようになり、硬いニッケルからなる中間層に相手材が接することによる焼付きの機会を少なくすることができる。
【0025】
なお、本発明は上記し且つ図面に示す実施例に限定されるものではなく、以下のような拡張或いは変更が可能である。
中間層は、ニッケルに限らず、ニッケル、鉄、コバルトであっても良い。
錫基オーバレイ層6の上層5の銅含有量は、下層4のそれよりも多くても良い。
錫基オーバレイ層6は2層からなるものに限られず、3層或いはそれ以上の層からなるものであっても良い。この場合、最下層から最上層に向って銅含有量を少なくすることが好ましいが、最下層の銅含有量が5〜20質量%にあれば、それよりも上の層の銅含有量は最下層のそれよりも多くても、少なくても良い。
錫基オーバレイ層の最上層には、耐摩耗性向上のために、無機質粒子を5質量%以下含有させても良い。
【図面の簡単な説明】
【図1】本発明の実施例を示す断面図
【図2】熱拡散試験の結果を示すグラフ
【図3】焼付試験の結果を示すグラフ
【図4】疲労試験の結果を示すグラフ
【符号の説明】
1は鋼裏金層、2は銅系軸受合金層、3は中間層、4は下層、5は上層、6は錫基オーバレイ層である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer sliding material in which a tin-copper-based tin-based overlay layer is provided on a copper-based or aluminum-based bearing alloy layer via an intermediate layer.
[0002]
[Prior art]
In the fields of automobiles, agricultural machinery, and industrial machinery, many plain bearings in which a copper-based or aluminum-based bearing alloy is provided on a steel back metal are used. In a plain bearing using a copper-based or aluminum-based bearing alloy, an overlay layer is provided on the surface of the bearing alloy layer in order to improve the conformability and the foreign matter burying property.
[0003]
As the overlay layer, a lead-based alloy has been conventionally known, but recently, a tin-based alloy is often used for the problem of the global environment and improvement of corrosion resistance. In the plain bearing provided with the tin-based overlay layer, for example, a nickel plating layer is formed as an intermediate layer between the bearing alloy layer and the overlay layer. The nickel plating layer is provided to enhance the adhesion of the tin-based overlay layer when the bearing alloy is aluminum-based. When the bearing alloy is copper-based, the nickel-plated layer is used to prevent the tin in the tin-based overlay layer from diffusing into the bearing alloy. Provided to prevent.
[0004]
However, when the overlay layer is a tin-copper-based tin-based alloy, if the overlay layer is used for a long time at a high temperature, the copper in the overlay layer diffuses into the nickel plating layer due to thermal effects, and the copper in the overlay layer becomes The fatigue resistance and non-seizure properties are reduced. In order to prevent copper in the overlay layer from diffusing into the nickel plating layer, Japanese Patent Application Laid-Open No. 2000-64085 discloses an intermediate layer, a nickel layer having a thickness of 1 to 3 μm and a thickness of 2 to 10 μm deposited thereon. It is disclosed that it comprises a nickel-tin layer.
[0005]
[Problems to be solved by the invention]
In the configuration disclosed in Japanese Patent Laid-Open No. 2000-64085, the lower nickel layer of the intermediate layer is hard, and the upper nickel-tin layer is harder. When the overlay layer is worn by use for a considerable period, a hard nickel-tin layer or nickel layer is exposed on the surface. These nickel-tin layers and nickel layers have a total thickness of 3 to 13 μm, and are hard and difficult to wear. Therefore, the conformability is deteriorated and seizure may occur.
[0006]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a surface layer of a tin-based overlay layer without increasing the thickness of the intermediate layer formed between the tin-based overlay layer and the bearing alloy. It is an object of the present invention to provide a multi-layer sliding material that can prevent as much as possible copper from decreasing due to diffusion.
[0007]
[Means for Solving the Problems]
The present invention provides a multi-layer sliding material in which a tin-copper-based tin-based overlay layer is provided on a bearing alloy layer via an intermediate layer, wherein the tin-based overlay layer is composed of a plurality of layers having different copper contents. Among the plurality of layers, the lowermost layer in contact with the intermediate layer contains 5 to 20% by mass of copper and has a thickness of 1 to 3 μm (Claim 1).
[0008]
The bearing alloy layer may be a copper alloy or an aluminum alloy. Copper-based and aluminum-based bearing alloys exhibit excellent bearing characteristics against high loads and high-speed rotation, and are suitable as sliding bearings for automobiles, agricultural machines, industrial machines, etc., particularly for engines. As the copper alloy, both bronze and lead bronze can be used. As an aluminum-based alloy, one containing at least one kind of zinc, tin, lead or the like for forming a soft phase can be used. Copper, magnesium, etc. as reinforcing elements, chromium, silicon, etc. for improving fatigue strength Can also be included.
[0009]
In order to prevent tin in the tin-based overlay layer from diffusing into the bearing alloy layer between the copper-based or aluminum-based bearing alloy layer and the tin-copper-based tin-based overlay layer, Alternatively, an intermediate layer is provided to improve the adhesion of the tin-based overlay layer to the bearing alloy layer. This intermediate layer can be made of nickel, iron, or cobalt. The thickness is preferably 0.5 to 3 μm.
When the sliding material is used at high temperatures, the copper in the tin-based overlay layer diffuses into the intermediate layer. According to the present invention, since the lowermost layer of the tin-based overlay layer has a relatively high copper content, the diffusion of copper from the tin-based overlay layer to the intermediate layer proceeds from the lowermost layer of the tin-based overlay layer. For this reason, there is little reduction of copper in the uppermost layer of the tin-based overlay layer in contact with the counterpart material. Accordingly, the thickness of the intermediate layer does not need to be so thick, and even when the tin-based overlay layer is worn and exposed to the intermediate layer, the conformability is not lost and excellent non-seizure property is obtained. maintain.
[0010]
The copper content of the uppermost layer of the tin-based overlay layer is preferably 0.5 to 10% by mass (Claim 2).
The uppermost layer of the tin-based overlay layer may contain one or more of zinc, indium, antimony, and silver in a total amount of 5% by mass or less (claim 3).
Here, the reason for having made the above-mentioned component ratio is demonstrated.
(1) Copper in the lowermost layer of the tin-based overlay layer: 5 to 20% by mass
When copper is less than 5% by mass, the effect of preventing diffusion of copper in the uppermost layer is lowered, and when it exceeds 20% by mass, fatigue resistance is lowered.
The thickness of the lowermost layer of this tin-based overlay layer is preferably 1 to 3 μm. If it is less than 1 μm, the effect of preventing diffusion of the uppermost copper layer cannot be obtained, and if it exceeds 3 μm, the fatigue resistance is lowered.
[0011]
(2) Copper of the uppermost layer of the tin-based overlay layer: 0.5 to 10% by mass
The tin matrix is responsible for corrosion resistance, conformability, and foreign material embedment, while copper increases the strength of the tin matrix and improves seizure resistance, fatigue resistance, and wear resistance. If it is less than 0.5% by mass, the effect is low, and if it exceeds 10% by mass, non-seizure properties and fatigue resistance are reduced.
The thickness of the uppermost layer of the tin-based overlay layer is preferably 10 to 40 μm. When the thickness is less than 10 μm, the conformability and the foreign substance burying property are deteriorated, and when it exceeds 40 μm, the fatigue resistance is deteriorated.
[0012]
(3) Zinc, indium, antimony, and silver in the uppermost layer of the tin-based overlay layer: 5% by mass or less in total These elements improve the non-seizure property and wear resistance of the uppermost layer of the tin-based overlay layer. When it exceeds 5% by mass, the uppermost layer becomes too hard, and the conformability and the foreign matter embeddability are deteriorated.
[0013]
(5) Intermediate layer: Any of nickel, iron, and cobalt Nickel, iron, and cobalt prevent tin in the tin-based overlay layer from diffusing into the bearing alloy layer (in the case of a copper-based bearing alloy), or a bearing Increase the adhesion of the tin-based overlay layer to the alloy layer (for aluminum bearing alloys).
The thickness of the intermediate layer is preferably 0.5 to 3 μm. If the thickness of the intermediate layer is less than 0.5 μm, the dam effect and the adhesive strength cannot be obtained, and if it exceeds 3 μm, the non-seizure property after the tin-based overlay is worn is lowered.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will now be described by way of example with reference to the drawings.
On a steel plate, the powder for copper bearing alloys which consists of lead: 23 mass%, tin: 3.5 mass%, and remaining copper was sintered and rolled to produce a bimetal as a bearing material. The bimetal was press-molded into a half bearing having a thickness of 1.5 mm, and the half bearing was machined to a predetermined size. Thereafter, a nickel layer having a thickness of 1.5 μm is formed on the inner surface of the half bearing by electroplating, and a tin-based alloy having the components shown in the lower layer of Table 1 is electroplated on the nickel layer, except for Comparative Examples 1 to 4. Further, a tin-based alloy having the components shown in the upper layer of Table 1 was electroplated on the lower layer. For Comparative Examples 1 to 4, only one layer of the tin-based alloy having the components shown in the upper layer of Table 1 was electroplated on the nickel layer to a thickness of 15 μm.
[0015]
Thus, as shown in FIG. 1, the copper bearing alloy layer 2 is formed on the steel back metal layer 1, the intermediate layer 3 made of a nickel plating layer is formed on the bearing alloy layer 2, and the intermediate layer 3 Examples products 1 to 10 and comparative products 5 to 7 having a structure in which a tin-based overlay layer 6 composed of two layers of a lower layer 4 and an upper layer 5 having different copper contents were provided were obtained. Although not shown, a comparative example of a structure in which a copper-based bearing alloy layer is formed on a steel back metal and a single tin-based overlay layer is provided on the bearing alloy layer through an intermediate layer made of a nickel plating layer. Items 1 to 4 were obtained.
[0016]
[Table 1]
Figure 0003754315
[0017]
About said Example goods 1-10 and comparative example goods 1-7, the thermal-diffusion test, the seizure test, and the fatigue test were done.
In the thermal diffusion test, the content of copper in the upper layer of the tin-based overlay layer was examined after holding the state heated to 130 ° C. for 300 hours and after holding for 1000 hours.
[0018]
In the seizure test, VG22 lubricating oil preheated to 100 ° C. was used, the mating material was rotated at 3600 rpm by a motor, run for 1 hour with no load, and then the lubricating oil was reduced to 150 cc per minute to obtain a surface pressure. Apply a load of 10 MPa, and then increase the surface pressure by 5 MPa and operate for 10 minutes for each surface pressure. Either the back of the bearing exceeds 200 ° C. or the drive current of the motor that drives the mating member reaches a predetermined value. When exceeded, the bearing surface pressure at that time was defined as the seizure surface pressure. This seizure test was performed twice for each of the samples not subjected to the thermal diffusion and those subjected to thermal diffusion at 130 ° C. for 1000 hours.
[0019]
In the fatigue test, SAE20 lubricant preheated to 100 ° C was used, the mating material was rotated at 3250 rpm, run for 30 minutes with no load, and then applied for 20 hours with a surface pressure of 50 MPa. The degree of fatigue was evaluated. Evaluation is shown by the following five fatigue evaluation ranks. Similar to the seizure test, this fatigue test was carried out twice for each of the samples not subjected to thermal diffusion and those subjected to thermal diffusion at 130 ° C. for 1000 hours.
5: No crack.
4: In evaluation 4, cracks cannot be confirmed visually, and microscopic inspection can be confirmed.
3: Although a crack can be confirmed visually, it is difficult to distinguish.
2: A crack can be confirmed visually.
1: 50% or more of the bearing projected area can be visually confirmed.
[0020]
With respect to the above thermal diffusion test, the results of Example products 1, 3, 9, 10 and Comparative product 2, 3, 5 are shown in a graph in FIG. The results of the seizure test and the fatigue test are shown in graphs in FIGS. 3 and 4, respectively. In FIG. 3 and FIG. 4, white lines indicate variations in test results of two times.
[0021]
As is apparent from FIGS. 2 to 4, Example Products 1 to 10 having two upper and lower tin-based overlay layers and a copper content of the lower layer of 5 to 20 mass% are Comparative Example Products 1 in which no lower layer is provided. Compared to ˜4, the surface portion of the tin-based overlay layer is less reduced by copper thermal diffusion. For this reason, Example goods 1-10 have shown the outstanding non-seizure property and fatigue resistance, even after performing the thermal diffusion test of 130 degreeC and 1000 hours.
[0022]
In Comparative Examples 5 to 7, the tin-based overlay layer is composed of two upper and lower layers. However, Comparative Example Product 7 has a low fatigue resistance because the copper content before the thermal diffusion test in the lower layer of the tin-based overlay layer is as large as 23.5% by mass. If the copper content of the lower layer of the tin-based overlay layer is small, the copper diffusion preventing effect on the upper layer is lowered, and if it is large, the fatigue resistance is adversely affected. The preferred copper content of the lower layer of the tin-based overlay layer is 5 to 20% by mass.
[0023]
In Comparative Example 5, the thickness of the lower layer of the tin-based overlay layer is as thin as 0.5 μm. For this reason, the copper diffusion prevention effect with respect to the upper layer is low, and when the upper layer copper was 4.1% by mass initially, 2.1% by mass after 300 hours of thermal diffusion test and 0.9% by mass after 1000 hours have elapsed. As a result, the non-seizure property and the fatigue resistance are lowered after 1000 hours of the thermal diffusion test. On the other hand, since the thickness of the lower layer of the tin-based overlay layer is 5 μm, the comparative example product 6 is inferior in fatigue resistance even before the thermal diffusion test. From this, it is understood that when the thickness of the lower layer of the tin-based overlay layer is thin, the copper diffusion preventing effect on the upper layer is lowered, and when it is thick, the fatigue resistance is lowered. The preferred thickness of the lower layer of the tin-based overlay layer is 1 to 3 μm.
[0024]
Thus, since the tin-based overlay layer is divided into two upper and lower layers, the copper content in the lower layer is 5 to 20% by mass, and the thickness is 1 to 3 μm, the decrease in the upper layer copper can be suppressed. The thickness of the nickel plating layer, which is a layer, can be reduced (1.5 μm in Examples 1 to 10). For this reason, when the overlay layer is worn and the intermediate layer is exposed on the surface, the intermediate layer wears out relatively quickly, and there is less chance of seizure due to the counterpart material coming into contact with the intermediate layer made of hard nickel. can do.
[0025]
The present invention is not limited to the embodiments described above and shown in the drawings, and can be expanded or changed as follows.
The intermediate layer is not limited to nickel, but may be nickel, iron, or cobalt.
The copper content of the upper layer 5 of the tin-based overlay layer 6 may be greater than that of the lower layer 4.
The tin-based overlay layer 6 is not limited to two layers, and may be composed of three or more layers. In this case, it is preferable to reduce the copper content from the lowermost layer to the uppermost layer. It may be more or less than that of the lower layer.
The uppermost layer of the tin-based overlay layer may contain 5% by mass or less of inorganic particles in order to improve wear resistance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the present invention. FIG. 2 is a graph showing the result of a thermal diffusion test. FIG. 3 is a graph showing the result of a seizure test. Explanation】
1 is a steel back metal layer, 2 is a copper bearing alloy layer, 3 is an intermediate layer, 4 is a lower layer, 5 is an upper layer, and 6 is a tin-based overlay layer.

Claims (5)

軸受合金層上に中間層を介して錫−銅系の錫基オーバレイ層を設けてなる複層摺動材料において、
前記錫基オーバレイ層は銅の含有量が異なる複数層からなり、
その複数層のうち、前記中間層に接する最下層は、銅を5〜20質量%含有し、厚さが1〜3μmであることを特徴とする複層摺動材料。
In a multilayer sliding material in which a tin-copper tin-based overlay layer is provided on a bearing alloy layer via an intermediate layer,
The tin-based overlay layer is composed of a plurality of layers having different copper contents,
Among the plurality of layers, the lowermost layer in contact with the intermediate layer contains 5 to 20% by mass of copper and has a thickness of 1 to 3 μm.
前記錫基オーバレイ層の最上層の銅含有量は、0.5〜10質量%であることを特徴とする請求項1記載の複層摺動材料。The multilayer sliding material according to claim 1, wherein the copper content of the uppermost layer of the tin-based overlay layer is 0.5 to 10% by mass. 前記錫基オーバレイ層の最上層には、亜鉛、インジウム、アンチモン、銀のうち、1種または2種以上を総量で5質量%以下含むことを特徴とする請求項1または2記載の複層摺動材料。The multi-layer slide according to claim 1 or 2, wherein the uppermost layer of the tin-based overlay layer contains one or more of zinc, indium, antimony, and silver in a total amount of 5 mass% or less. Moving material. 前記中間層は、ニッケル、鉄、コバルトのいずれかにより構成され、その厚さは、0.5〜3μmであることを特徴とする請求項1ないし3のいずれかに記載の複層摺動材料。The multilayer sliding material according to any one of claims 1 to 3, wherein the intermediate layer is made of any one of nickel, iron, and cobalt, and has a thickness of 0.5 to 3 µm. . 前記軸受合金層は、銅系合金またはアルミニウム系合金からなることを特徴とする請求項1ないし4のいずれかに記載の複層摺動材料。5. The multilayer sliding material according to claim 1, wherein the bearing alloy layer is made of a copper alloy or an aluminum alloy.
JP2001109853A 2001-04-09 2001-04-09 Multi-layer sliding material Expired - Lifetime JP3754315B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001109853A JP3754315B2 (en) 2001-04-09 2001-04-09 Multi-layer sliding material
GB0206056A GB2375801B (en) 2001-04-09 2002-03-14 Multi-layered sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109853A JP3754315B2 (en) 2001-04-09 2001-04-09 Multi-layer sliding material

Publications (2)

Publication Number Publication Date
JP2002310158A JP2002310158A (en) 2002-10-23
JP3754315B2 true JP3754315B2 (en) 2006-03-08

Family

ID=18961736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109853A Expired - Lifetime JP3754315B2 (en) 2001-04-09 2001-04-09 Multi-layer sliding material

Country Status (2)

Country Link
JP (1) JP3754315B2 (en)
GB (1) GB2375801B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063426A1 (en) * 2003-01-16 2004-07-29 Chuetsu Metal Works Co., Ltd. Metal plating coating film having sliding function and article coated therewith
JP3958719B2 (en) 2003-06-30 2007-08-15 大同メタル工業株式会社 Sliding member
JP2005023344A (en) 2003-06-30 2005-01-27 Daido Metal Co Ltd Sliding member
JP4547577B2 (en) * 2004-11-30 2010-09-22 大豊工業株式会社 Sliding material and manufacturing method thereof
DE102006060474A1 (en) * 2006-12-19 2008-06-26 Mahle International Gmbh bearings
JP5292279B2 (en) 2007-03-12 2013-09-18 大豊工業株式会社 Plain bearing
AT509111B1 (en) 2009-12-10 2011-09-15 Miba Gleitlager Gmbh SLIDING LAYER
AT509112B1 (en) 2009-12-10 2011-09-15 Miba Gleitlager Gmbh SLIDING LAYER
JP2012062942A (en) * 2010-09-15 2012-03-29 Daido Metal Co Ltd Sliding member
JP2012062941A (en) * 2010-09-15 2012-03-29 Daido Metal Co Ltd Sliding member
BR102013020846A8 (en) * 2013-08-15 2016-03-22 Mahle Int Gmbh internal combustion engine bearing
AT516877B1 (en) 2015-02-19 2016-12-15 Miba Gleitlager Austria Gmbh plain bearing element
US11396910B2 (en) 2017-07-21 2022-07-26 Taiho Kogyo Co., Ltd. Sliding member and sliding bearing
JP2023056223A (en) 2021-10-07 2023-04-19 大同メタル工業株式会社 Slide bearing and method of producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1463474A (en) * 1975-03-14 1977-02-02 Miba Gleitlager Ag Composite sliding-surface bearing
DE3519452A1 (en) * 1985-05-31 1986-12-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden LAYERING MATERIAL FOR SLIDING BEARING ELEMENT WITH ANTIFRICTION LAYER MADE OF AN ALUMINUM BASED MATERIAL
JPH06105091B2 (en) * 1985-07-18 1994-12-21 エヌデ−シ−株式会社 Plain bearing
JPS63149140A (en) * 1986-12-15 1988-06-21 大同メタル工業株式会社 Composite sliding body
JPH078864Y2 (en) * 1988-10-31 1995-03-06 株式会社東芝 Compressor

Also Published As

Publication number Publication date
GB2375801A (en) 2002-11-27
GB2375801B (en) 2003-05-14
JP2002310158A (en) 2002-10-23
GB0206056D0 (en) 2002-04-24

Similar Documents

Publication Publication Date Title
JP6326426B2 (en) Sliding bearing composite material
JP3507388B2 (en) Copper-based sliding material
JP3754315B2 (en) Multi-layer sliding material
US4696867A (en) Aluminum based bearing alloys
JP2595386B2 (en) Multi-layer sliding material for high speed and manufacturing method thereof
JP2575814B2 (en) Multi-layer sliding material
JPH0694036A (en) Multilayer slide bearing excellent in fretting resistant characteristic
JPH1150296A (en) Sliding member
JPS6117893B2 (en)
JP2004277883A (en) Hot-worked aluminum alloy and base layer and bearing element made from the alloy
US5666644A (en) Multilayered end bearing
US5334460A (en) CU-PB system alloy composite bearing having overlay
JPH11257355A (en) Sliding member
GB2332485A (en) Plain bearing
KR20050002596A (en) Sliding member
JPS6096741A (en) Sliding bearing and manufacture
JP2009542904A (en) Aluminum bearing alloy
US5925471A (en) Composite sliding contact bearing
US6800377B2 (en) Multilayer sliding material
JP2535105B2 (en) Sliding bearing with composite plating film
GB2274313A (en) Bearings
US6740426B2 (en) Sliding member with composite plating film
JP2001207230A (en) Bearing material
CN112901661A (en) Multi-layer plain bearing element
US5766777A (en) Composite copper alloy bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term