JP2944919B2 - Aluminum bearing - Google Patents

Aluminum bearing

Info

Publication number
JP2944919B2
JP2944919B2 JP7262487A JP26248795A JP2944919B2 JP 2944919 B2 JP2944919 B2 JP 2944919B2 JP 7262487 A JP7262487 A JP 7262487A JP 26248795 A JP26248795 A JP 26248795A JP 2944919 B2 JP2944919 B2 JP 2944919B2
Authority
JP
Japan
Prior art keywords
aluminum
bearing
bonding layer
pure aluminum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7262487A
Other languages
Japanese (ja)
Other versions
JPH0979264A (en
Inventor
正仁 藤田
広衛 大川
一雄 松尾
武志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU DEE SHII KK
Original Assignee
ENU DEE SHII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU DEE SHII KK filed Critical ENU DEE SHII KK
Priority to JP7262487A priority Critical patent/JP2944919B2/en
Publication of JPH0979264A publication Critical patent/JPH0979264A/en
Application granted granted Critical
Publication of JP2944919B2 publication Critical patent/JP2944919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車、産業機械等に
使用するすべり軸受に係り、特に高負荷、高速回転用に
好適なアルミニウム系軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding bearing used for automobiles, industrial machines and the like, and more particularly to an aluminum bearing suitable for high load and high speed rotation.

【0002】[0002]

【従来の技術及びその課題】従来のアルミニウム系軸受
1として、例えば図5,図6に示すようなものがある。
すなわち、アルミニウム−錫系、アルミニウム−鉛系等
の軸受合金2’と、鋼製の裏金4とを、99.00%以
上の純アルミニウム系接合層30を介して接合されてい
る。この純アルミニウム系接合層30は、軸受合金2’
中に含まれる潤滑成分である錫,鉛等が直接裏金4との
接合界面4aに介在し、軸受合金2’と裏金4との接合
を阻害することを防止するために、媒接層として設けら
れる。また、純アルミニウム系接合層30は、同時に軸
受合金2’と裏金4とを接着する接合層としての役割も
有している。具体的には、アルミニウム系軸受1は、軸
受合金2’と裏金4との間に純アルミニウム系接合層3
0を介装した状態で、ロールによつて圧接させて製作さ
れる。
2. Description of the Related Art Conventional aluminum bearings 1 include, for example, those shown in FIGS.
That is, a bearing alloy 2 ′ such as an aluminum-tin-based or aluminum-lead-based alloy and a steel back metal 4 are joined via a pure aluminum-based joining layer 30 of 99.00% or more. This pure aluminum-based bonding layer 30 is made of a bearing alloy 2 ′.
In order to prevent the lubricating components contained therein, such as tin and lead, from directly intervening at the bonding interface 4a with the back metal 4 and hinder the bonding between the bearing alloy 2 'and the back metal 4, it is provided as a medium contact layer. Can be Further, the pure aluminum-based bonding layer 30 also has a role as a bonding layer for bonding the bearing alloy 2 ′ and the back metal 4 at the same time. Specifically, the aluminum-based bearing 1 includes a pure aluminum-based bonding layer 3 between the bearing alloy 2 ′ and the back metal 4.
It is manufactured by pressure contact with a roll with 0 interposed.

【0003】この裏金4の表面に錫,鉛等の潤滑金属成
分を介在させず、かつ、アルミニウム系の軸受合金2’
と鋼製の裏金4という全く機械的性質が異なる異種物質
をロール圧接によつて所定の接合強度を与えて固着する
ために、圧接時に両者の間で発生する相対的なすべりを
吸収し、軸受合金2’を裏金4に強固に凝着するような
適切な接合層が必要不可欠である。従つて、接合層の必
要条件として、延性に富み、裏金4に凝着しやすいこと
が求められる。こうした要件を満たす物質として、従来
より純アルミニウム系接合層30が使われてきた。
[0003] A lubricating metal component such as tin, lead or the like is not interposed on the surface of the back metal 4, and an aluminum-based bearing alloy 2 'is used.
In order to fix the different kinds of materials having completely different mechanical properties, ie, the back metal 4 and the steel, by applying a predetermined bonding strength by roll pressing, the relative slip generated between the two during the pressing is absorbed, and the An appropriate bonding layer that firmly adheres the alloy 2 ′ to the back metal 4 is essential. Therefore, as a necessary condition of the bonding layer, it is required that the bonding layer be rich in ductility and easily adhere to the back metal 4. As a material satisfying such requirements, a pure aluminum-based bonding layer 30 has been conventionally used.

【0004】一方、軸受合金2’と裏金4との間の接合
層として、ニッケルメッキ層を使用し、このニッケルメ
ッキ層を介して軸受合金2’と裏金4とを接合したアル
ミニウム系軸受も知られている。これによれば、ニッケ
ルメッキ層により、裏金4と軸受合金2’中の錫、鉛等
との直接接触が防止されるものの、ニッケル層では延性
が乏しいため、十分な接合強度が得られないという技術
的課題がある。
[0004] On the other hand, there is also known an aluminum bearing in which a nickel plating layer is used as a bonding layer between the bearing alloy 2 'and the back metal 4, and the bearing alloy 2' and the back metal 4 are bonded via the nickel plating layer. Have been. According to this, although the nickel plating layer prevents direct contact between the back metal 4 and tin, lead, and the like in the bearing alloy 2 ', the nickel layer has poor ductility, so that sufficient bonding strength cannot be obtained. There are technical issues.

【0005】従つて、強固な接合を得るためには純アル
ミニウム系接合層30の使用が不可欠であるが、近年、
アルミニウム系軸受1に加えられる高負荷化のために、
軟質で強度の低いこの純アルミニウム系接合層30によ
る問題が顕在化するようになつてきた。すなわち、高温
下で繰り返し高負荷を受けた場合、この純アルミニウム
系接合層30が塑性変形を起こし、アルミニウム系の軸
受合金2’と裏金4との間ですべりを起こし、軸受合金
2’にクラックが入り、軸受合金2’層の破壊に至ると
いつた不具合が発生している。しかしながら、これは中
間の接合層30を強度のない純アルミニウムに求める以
上、不可避の問題であり、純アルミニウム自体によつて
十分な延性と十分な強度とを両立させることは物理的に
不可能であると考えられていた。そこで、こうした問題
に対処するために接合層を純アルミニウムでなくアルミ
ニウム合金に求めた特許(特開平5−99229号)も
見られるが、アルミニウム合金ではやはり延性が乏し
く、接合力はどうしても相対的に低下せざるを得ない。
Therefore, in order to obtain a strong bond, it is essential to use a pure aluminum-based bonding layer 30.
In order to increase the load applied to the aluminum bearing 1,
The problem caused by the soft and low-strength pure aluminum-based bonding layer 30 has become apparent. That is, when repeatedly subjected to a high load at a high temperature, the pure aluminum-based bonding layer 30 undergoes plastic deformation, causing slippage between the aluminum-based bearing alloy 2 ′ and the back metal 4, and cracking in the bearing alloy 2 ′. And the failure occurs when the bearing alloy 2 ′ layer is broken. However, this is an unavoidable problem since the intermediate bonding layer 30 is required to be made of pure aluminum having no strength. It is physically impossible to achieve both sufficient ductility and sufficient strength by pure aluminum itself. Was thought to be. In order to cope with such a problem, a patent (Japanese Patent Application Laid-Open No. 5-99229) in which the bonding layer is made of aluminum alloy instead of pure aluminum can be seen. However, aluminum alloy still has poor ductility, and the bonding force is relatively high. It has to fall.

【0006】図6に従来の純アルミニウム系接合層30
を有するアルミニウム系軸受1の材料の構造を示す。同
図において、純アルミニウム系接合層30の最大厚さを
T、裏金4の表面(純アルミニウム系接合層30と裏金
4との接合界面4a)の最大高さをRmax、裏金4の
表面(純アルミニウム系接合層30と裏金4との接合界
面4a)の転がり円最大うねりをWEM、剪断応力の発生
層の厚さをSとする。最大高さRmaxはJISBO6
01に定められ、断面曲線(接合界面4a)から基準長
さだけ抜き取つた部分の平均線に平行な2直線で抜取り
部分を挟んだとき、この2直線の間隔を断面曲線の縦倍
率の方向に測定して、この値をμmで表したものであ
る。また、転がり円最大うねりWEMはJISBO601
に定められ、半径Rの触針を断面曲線(接合界面4a)
に転動させて、触針の中心が描く曲線を転がり円うねり
曲線として求め、この転がり円うねり曲線の最大うねり
高さである。なお、最大高さRmaxと転がり円最大う
ねりWEMとの関係は、測定面である裏金4の表面の凹凸
変化が滑らかで触針の半径Rが十分に小さい場合には、
Rmax=WEMとなり、裏金4の表面の凹凸変化が比較
的急激で触針の半径Rが比較的大きい場合には、Rma
x>WEMとなる。
FIG. 6 shows a conventional pure aluminum-based bonding layer 30.
1 shows a structure of a material of an aluminum-based bearing 1 having the following. In the figure, the maximum thickness of the pure aluminum-based bonding layer 30 is T, the maximum height of the surface of the back metal 4 (the bonding interface 4a between the pure aluminum-based bonding layer 30 and the back metal 4) is Rmax, and the surface of the back metal 4 (pure). The maximum rolling undulation of the bonding interface 4a) between the aluminum bonding layer 30 and the back metal 4 is W EM , and the thickness of the shear stress generating layer is S. Maximum height Rmax is JISBO6
01, and when the extracted portion is sandwiched between two straight lines parallel to the average line of the portion extracted by the reference length from the cross-sectional curve (joining interface 4a), the interval between the two straight lines is defined as the direction of the longitudinal magnification of the cross-sectional curve. This value is expressed in μm. In addition, the rolling wave maximum undulation W EM is JISBO601.
The stylus of radius R is defined by the cross-sectional curve (joining interface 4a).
And the curve drawn by the center of the stylus is determined as a rolling circular undulation curve, and is the maximum undulation height of the rolling circular undulating curve. Note that the relationship between the maximum height Rmax and the rolling circle maximum undulation W EM is such that when the irregularity of the surface of the back metal 4 as the measurement surface is smooth and the radius R of the stylus is sufficiently small,
If Rmax = W EM and the irregularity of the surface of the back metal 4 changes relatively sharply and the radius R of the stylus is relatively large, Rmax
x> W EM .

【0007】そして、従来材の場合には、T>Rmax
及びT>WEMの両者を満たす形態となつている。すなわ
ち、図6に示すように裏金4の表面(接合界面4a)に
は、粗さ、うねりが存在しているが、純アルミニウム系
接合層30の上面と軸受合金2’との界面2’aは軽度
のうねりはあるがほぼ平坦であり、また、純アルミニウ
ム系接合層30が裏金4の凹凸に比べて厚いので裏金4
の凹凸の大部分を吸収し、軸受合金2’の界面2’aに
沿つて所定高さの純アルミニウム層Sが存在する形態を
呈している。本発明者等は、この純アルミニウム系接合
層30内の周方向に連続した純アルミニウム層Sが、強
度の弱い剪断応力の発生する層となり、高温下で繰り返
し高負荷を受けた場合、この連続した純アルミニウム層
Sが塑性変形を起こし、アルミニウム系の軸受合金2’
と裏金4との間ですべりを起こし、軸受合金2’にクラ
ックが入り、軸受合金2’層の破壊に至るという現象を
見出した。
In the case of the conventional material, T> Rmax
And T> WEM . That is, as shown in FIG. 6, the surface (bonding interface 4a) of the back metal 4 has roughness and undulation, but the interface 2′a between the upper surface of the pure aluminum-based bonding layer 30 and the bearing alloy 2 ′. Has a slight undulation but is almost flat, and since the pure aluminum-based bonding layer 30 is thicker than the unevenness of the back metal 4,
Most of the unevenness is absorbed, and a pure aluminum layer S having a predetermined height exists along the interface 2′a of the bearing alloy 2 ′. The present inventors have found that the pure aluminum layer S continuous in the circumferential direction in the pure aluminum-based bonding layer 30 becomes a layer in which a low-strength shear stress is generated. The pure aluminum layer S undergoes plastic deformation, and the aluminum-based bearing alloy 2 ′
And the back metal 4 caused slipping, cracking occurred in the bearing alloy 2 ', and led to the destruction of the bearing alloy 2' layer.

【0008】純アルミニウム系接合層30内の純アルミ
ニウム層Sですべりが発生し、アルミニウム系の軸受合
金2’層が破壊に至る場合の力学的背景について、図7
を参照して説明する。高速・高負荷下での油切れを起こ
した境界潤滑条件下では、軸(図示せず)の回転力が、
円筒状の軸受合金2’の表面(摺動面)において接線方
向に引つ張る力Pとして働き、軸受合金2’内を伝播
し、純アルミニウム系接合層30内で応力方向が反転
し、裏金4内に引つ張り力P’を生じ、結果的に最も弱
い純アルミニウム系接合層30内に剪断応力が発生する
ことになる。従つて、軸受合金2’が破壊に至る場合、
こうした純アルミニウム系接合層30内の連続した純ア
ルミニウム層Sをクラックが伝播し、軸受合金2’との
剥離を起こし、剥離した軸受合金2’が飛散し、場合に
よつては軸の焼付に発展する。
FIG. 7 shows the mechanical background in the case where slip occurs in the pure aluminum layer S in the pure aluminum-based bonding layer 30 and the aluminum-based bearing alloy 2 ′ layer is broken.
This will be described with reference to FIG. Under boundary lubrication conditions that cause oil shortage under high speed and high load, the rotational force of the shaft (not shown)
It acts as a tangential pulling force P on the surface (sliding surface) of the cylindrical bearing alloy 2 ′, propagates in the bearing alloy 2 ′, reverses the stress direction in the pure aluminum-based bonding layer 30, and 4, a tensile force P 'is generated in the pure aluminum-based bonding layer 30, and as a result, a shear stress is generated in the weakest pure aluminum-based bonding layer 30. Therefore, when the bearing alloy 2 'is broken,
Cracks propagate in the continuous pure aluminum layer S in the pure aluminum-based bonding layer 30 to cause separation from the bearing alloy 2 ', and the separated bearing alloy 2' is scattered, and in some cases, the shaft is seized. Develop.

【0009】また、図8に示すようにニッケルメッキ等
からなる接合層30’を有する軸受1’では、軸受合金
2’の表面に引つ張り力Pが発生したとき、ニッケルメ
ッキと軸受合金2’との接合界面2’aにきわめて大き
な剪断応力(P1 +P2 )が働き、許容応力以上の剪断
応力が働けば、界面2’aから容易に剥離してしまう。
As shown in FIG. 8, in a bearing 1 'having a bonding layer 30' made of nickel plating or the like, when a pulling force P is generated on the surface of the bearing alloy 2 ', the nickel plating and the bearing alloy 2 An extremely large shear stress (P 1 + P 2 ) acts on the joint interface 2′a with the ′, and if a shear stress greater than the allowable stress acts, it is easily separated from the interface 2′a.

【0010】本発明の目的は、アルミニウム系軸受1に
おいて、純アルミニウム系接合層30を使用してアルミ
ニウム系の軸受合金2’層と裏金4との接合力の低下を
防止しながら、周方向に連続した純アルミニウム層Sを
形成しないようにし、繰り返し高負荷がかかつた際に軸
受合金2’層と裏金4との間に発生する層間すべりを抑
え、結果的にアルミニウム系軸受1の耐荷重性を増進さ
せることにある。
An object of the present invention is to provide an aluminum-based bearing 1 in a circumferential direction while using a pure aluminum-based bonding layer 30 to prevent a reduction in bonding strength between an aluminum-based bearing alloy 2 ′ layer and a backing metal 4. The continuous pure aluminum layer S is prevented from being formed, and the interlayer slip generated between the bearing alloy 2 ′ layer and the back metal 4 when a high load is repeatedly applied is suppressed. As a result, the load bearing capacity of the aluminum-based bearing 1 is reduced. Is to promote sex.

【0011】[0011]

【課題を解決するための手段】本発明は、このような従
来の技術的課題に鑑みてなされたものであり、その構成
は次の通りである。請求項1の発明の構成は、鋼製の
金4に純アルミニウム系接合層3を介在させて軸受合金
をロール圧接によつて接合さるアルミニウム系軸受
おいて、純アルミニウム系接合層3の最大厚さをT、
該接合層3と裏金4との接合界面4aのJIS表面粗さ
(BO601)、表面うねり(BO610)に定める最
大高さをRmax、転がり円最大うねりをWEMとし、
T<Rmax及びT<WEMの内の少なくとも一方を満
たすことを特徴とするアルミニウム系軸受である。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional technical problems, and has the following configuration. Configuration of the first aspect of the invention, aluminum-based bearing behind <br/> gold 4 made of steel with intervening pure aluminum-based bonding layer 3 Ru is Yotsute joining a bearing alloy 2 Roll Bonding
Fraud and mitigating risk pure aluminum-based maximum thickness of the bonding layer 3 T in,
JIS surface roughness of the bonding interface 4a between the bonding layer 3 and the backing 4 (BO601), the maximum height as stipulated in the surface waviness (BO610) Rmax, the rolling circle maximum waviness and W EM,
An aluminum-based bearing that satisfies at least one of T <Rmax and T <W EM .

【0012】[0012]

【作用】請求項1の発明によれば、純アルミニウム系接
合層3内ですべりが発生し、アルミニウム系の軸受合金
2層が破壊に至ることが良好に抑制される。すなわち、
高速・高負荷下では、軸の回転力が軸受合金2の表面を
接線方向に引つ張る大きな力として働き、軸受合金2層
内を伝播し、純アルミニウム系接合層3内で応力方向が
反転し、最も弱い純アルミニウム系接合層3内に剪断応
力が発生して層間すべりを生ずる傾向を呈する。しかし
ながら、軸受合金2及び裏金4の凹凸が純アルミニウム
系接合層3を介して噛み合つているので、純アルミニウ
ム系接合層3に作用する剪断応力が緩和され、純アルミ
ニウム系接合層3が破壊されることが良好に抑制され、
かつ、純アルミニウムによつて裏金4と軸受合金2との
接合も確保される。その結果、アルミニウム系軸受1の
耐荷重性が増進され、純アルミニウム系接合層3内をク
ラックが伝播し、軸受合金2に剥離を起こし、剥離した
軸受合金2が飛散し、軸の焼付に発展するという不具合
が防止される。
According to the first aspect of the present invention, the occurrence of slip in the pure aluminum-based joining layer 3 and the destruction of the two aluminum-based bearing alloys can be suppressed well. That is,
Under high speed and high load, the rotational force of the shaft acts as a large force that pulls the surface of the bearing alloy 2 in the tangential direction, propagates in the bearing alloy 2 layer, and the stress direction is reversed in the pure aluminum-based joining layer 3 However, a shear stress is generated in the weakest pure aluminum-based bonding layer 3 to cause interlayer slip. However, since the irregularities of the bearing alloy 2 and the back metal 4 mesh with each other via the pure aluminum-based bonding layer 3, the shear stress acting on the pure aluminum-based bonding layer 3 is reduced, and the pure aluminum-based bonding layer 3 is broken. Is suppressed well,
Further, the bonding between the back metal 4 and the bearing alloy 2 is also ensured by pure aluminum. As a result, the load bearing capacity of the aluminum-based bearing 1 is improved, cracks propagate in the pure aluminum-based bonding layer 3, and the bearing alloy 2 is separated, and the separated bearing alloy 2 is scattered and develops into seizure of the shaft. Is prevented.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1〜図4は、本発明の1
実施の形態に係るアルミニウム系軸受を示す。図1中に
おいて符号1は半円筒形状をなすアルミニウム系軸受で
あり、アルミニウム系軸受1は、摺動摩擦面となる軸受
合金2と、純アルミニウム系接合層3と、鋼製の裏金4
とを有している。軸受合金2は、アルミニウム−錫系、
アルミニウム−鉛系、アルミニウム−シリコン系又はア
ルミニウム−マグネシウム系の合金であり、純アルミニ
ウム系接合層3は、99.00%以上の純アルミニウム
(JISに定める1000番台のアルミニウム)によつ
て形成され、この軸受合金2と裏金4とが、純アルミニ
ウム系接合層3を介在してロール圧接によつて接合され
ている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show one embodiment of the present invention.
1 shows an aluminum bearing according to an embodiment. In FIG. 1, reference numeral 1 denotes an aluminum bearing having a semi-cylindrical shape. The aluminum bearing 1 includes a bearing alloy 2 serving as a sliding friction surface, a pure aluminum bonding layer 3, and a steel back metal 4.
And The bearing alloy 2 is made of aluminum-tin,
An aluminum-lead-based, aluminum-silicon-based, or aluminum-magnesium-based alloy, and the pure aluminum-based bonding layer 3 is formed of 99.00% or more of pure aluminum (aluminum in the 1000s according to JIS). The bearing alloy 2 and the back metal 4 are joined by a roll pressure welding with a pure aluminum-based joining layer 3 interposed therebetween.

【0014】このアルミニウム系軸受1の純アルミニウ
ム系接合層3は、図2に示す構造を有している。すなわ
ち、純アルミニウム系接合層3の最大厚さをT、裏金4
表面(純アルミニウム系接合層3と裏金4との接合界面
4a)の最大高さをRmax(JISBO601に定め
る)、転がり円最大うねりをWEM(JISBO610に
定める)として、T<Rmax及びT<WEMの内の少な
くとも一方の条件を満たしている。
The pure aluminum bonding layer 3 of the aluminum bearing 1 has a structure shown in FIG. That is, the maximum thickness of the pure aluminum-based bonding layer 3 is T,
As a surface maximum (pure aluminum-based bonding interface 4a between the bonding layer 3 and the backing 4) (specified in JISBO601) height Rmax, the rolling circle maximum waviness (defined in JISBO610) W EM, T <Rmax and T <W At least one of the conditions of EM is satisfied.

【0015】裏金4の純アルミニウム系接合層3との界
面4aのみならず純アルミニウム系接合層3の軸受合金
2との界面2aにも、それぞれ所定の粗さ及びうねりが
存在する。両界面4a,2a間の凸部が対向する凹部に
入り込んだ状態は、純アルミニウム系接合層3の厚さが
裏金4の凹凸よりも薄くなるように設定し、純アルミニ
ウム系接合層3のみでは硬い裏金4の凹凸を吸収してし
まわないようにすることで達成される。このような両界
面4a,2aの凹凸は、裏金4については所定砥粒を付
着させた研削ベルトにより、接合直前に裏金4の表面を
研削して所定の凹凸を積極的に形成して界面4aとな
し、その後、ロール圧接することにより、形成すること
が可能である。従つて、純アルミニウム系接合層3は、
半円筒形状をなすアルミニウム系軸受1の周方向に所定
厚さの平面的な層をなして延在する部分を有していな
い。これにより、連続した強度の弱い純アルミニウム層
(S)は存在せず、純アルミニウム系接合層3に周方向
の剪断応力の発生する連続層が存在しないことになる。
Not only the interface 4a of the back metal 4 with the pure aluminum-based bonding layer 3 but also the interface 2a of the pure aluminum-based bonding layer 3 with the bearing alloy 2 has a predetermined roughness and undulation, respectively. The state in which the convex portion between the two interfaces 4a and 2a enters the opposing concave portion is set so that the thickness of the pure aluminum-based bonding layer 3 is smaller than the unevenness of the back metal 4. This is achieved by preventing the unevenness of the hard back metal 4 from being absorbed. The unevenness of both interfaces 4a, 2a is obtained by grinding the surface of the back metal 4 immediately before joining by a grinding belt to which predetermined abrasive grains are adhered to the back metal 4 to positively form the predetermined unevenness. After that, it can be formed by roll pressing. Therefore, the pure aluminum-based bonding layer 3
There is no portion extending in the circumferential direction of the semi-cylindrical aluminum bearing 1 as a planar layer having a predetermined thickness. As a result, there is no continuous weak aluminum layer (S) having a low strength, and there is no continuous layer in the pure aluminum-based bonding layer 3 in which shear stress in the circumferential direction is generated.

【0016】このように、T<Rmax及びT<WEM
内の少なくとも一方の条件を満たすアルミニウム系軸受
1によれば、純アルミニウムからなる単一層内を剪断応
力が横切ることはなく、軸受合金2層と裏金4の凹凸が
噛み合つてきわめてすべりにくい構造となる。なお、実
際には、アルミニウム系軸受1の周方向のみならず、中
心軸線方向においても、軸受合金2層と裏金4の凹凸が
純アルミニウム系接合層3を介して噛み合つて、すべり
にくい構造となつている。但し、最大高さRmaxと転
がり円最大うねりWEMとの関係は、通常、Rmax≧W
EMであるから、T<Rmaxを満たせば、軸受合金2層
と裏金4とに凹凸噛み合つた形態を与えることができる
が、この凹凸噛み合い状態を十分に与えるためには、T
<WEMを満たすことが望まれる。
[0016] Thus, according to satisfy aluminum-based bearing 1 in at least one of T <Rmax and T <W EM, not that the shear stress across a single layer made of pure aluminum, bearing alloy The two layers and the irregularities of the back metal 4 mesh with each other to make the structure extremely difficult to slip. In practice, not only in the circumferential direction of the aluminum-based bearing 1 but also in the center axis direction, the unevenness of the bearing alloy 2 layer and the back metal 4 is engaged via the pure aluminum-based bonding layer 3 so that the structure is less slippery. I'm sorry. However, the maximum relationship between the height Rmax and rolling circle maximum swell W EM is, usually, Rmax ≧ W
Since it is EM , if T <Rmax is satisfied, a form in which the two layers of the bearing alloy and the back metal 4 are unevenly engaged can be provided. However, in order to sufficiently provide the unevenly engaged state, T
It is desired to satisfy <W EM .

【0017】しかして、このアルミニウム系軸受1によ
れば、純アルミニウム系接合層3内ですべりが発生し、
アルミニウム系の軸受合金2層が破壊に至ることが良好
に抑制される。すなわち、高速・高負荷下での油切れを
起こした境界潤滑条件下では、軸の回転力が軸受合金2
の表面を接線方向に引つ張る大きな力として働き、軸受
合金2層内を伝播し、純アルミニウム系接合層3内で応
力方向が反転し、最も弱い純アルミニウム系接合層3内
に剪断応力が発生する傾向を呈する。しかしながら、ア
ルミニウム系軸受1の少なくとも周方向において、軸受
合金2及び裏金4の凹凸が純アルミニウム系接合層3を
介して噛み合つているので、純アルミニウム系接合層3
に作用する剪断応力が緩和されて、純アルミニウム系接
合層3が破壊されることが良好に抑制され、かつ、純ア
ルミニウムによつて裏金4と軸受合金2との接合も確保
される。その結果、純アルミニウム系接合層3内をクラ
ックが伝播し、軸受合金2に剥離を起こし、剥離した軸
受合金2が飛散し、軸の焼付に発展するという不具合が
防止される。
According to the aluminum bearing 1, slipping occurs in the pure aluminum bonding layer 3,
Destruction of the two layers of the aluminum-based bearing alloy is successfully suppressed. That is, under the boundary lubrication condition where the oil has run out under high speed and high load, the rotational force of the shaft is
Acts as a large force that pulls the surface of the bearing alloy in the tangential direction, propagates in the two layers of the bearing alloy, and the stress direction is reversed in the pure aluminum-based bonding layer 3. It tends to occur. However, at least in the circumferential direction of the aluminum-based bearing 1, the irregularities of the bearing alloy 2 and the back metal 4 are engaged with each other via the pure aluminum-based bonding layer 3.
The shear stress acting on the backing metal 4 and the bearing alloy 2 is secured by the pure aluminum, and the destruction of the pure aluminum-based bonding layer 3 is reduced. As a result, a crack is prevented from propagating in the pure aluminum-based bonding layer 3 to cause separation of the bearing alloy 2, and the separated bearing alloy 2 is scattered to cause burning of the shaft.

【0018】[0018]

【実施例1】先ず、表1,表2に示す構成のアルミニウ
ム系軸受1をそれぞれ作成した。その作成方法は、所定
のアルミニウム−錫系の軸受合金2(Al−13重量%
Sn−2重量%Pb−3重量%Si−1重量%Cu)を
連続鋳造し、上下面を面削し、続いて冷間圧延により圧
延し、最終的に表1,表2の純アルミニウム系接合層3
の厚さを実現させるために、1.2mm、0.9mm、
0.6mm、0.3mmの厚さの純アルミニウム(JI
SA1050合金)と一旦接合し、最後に厚さ1.5m
mの裏金4とロール圧接し、テスト試料を作成した。ま
た、このとき、裏金4の接合界面4aは、完成材で最大
高さRmax及び転がり円最大うねりWEMが共に25μ
mとなるように調整した。すなわち、上記の厚さの純ア
ルミニウムを圧接することで、表1,表2の純アルミニ
ウム系接合層3の厚さが45μm、30μmの従来品
(試料No.1,2,6,7)を形成し、また、本発明
品として、純アルミニウム系接合層3の最大厚さTが2
0μm、15μmのものを試料No.4,5,9,10
として得た。一方、純アルミニウム系接合層3に代えて
ニッケルメッキ層を形成したものも、試料No.3,8
として従来品に加えた。なお、表1は、本発明品がT<
Rmaxを充足する場合の試験結果を示し、表2は、本
発明品がT<WEMを充足する場合の試験結果を示す。
Example 1 First, aluminum bearings 1 having the structures shown in Tables 1 and 2 were prepared. The method of making the alloy is a predetermined aluminum-tin bearing alloy 2 (Al-13% by weight).
Sn-2% by weight Pb-3% by weight Si-1% by weight Cu) was continuously cast, the upper and lower surfaces were chamfered, and then cold-rolled, and finally, pure aluminum series shown in Tables 1 and 2 was obtained. Bonding layer 3
1.2mm, 0.9mm,
Pure aluminum with a thickness of 0.6 mm and 0.3 mm (JI
SA1050 alloy) and finally 1.5m thick
m was pressed against the back metal 4 by a roll to prepare a test sample. At this time, the bonding interface 4a of the backing metal 4, the maximum height Rmax and the rolling circle maximum waviness W EM are both in the finished material 25μ
m. That is, by pressing the pure aluminum having the above thickness into pressure, a conventional product (sample Nos. 1, 2, 6, and 7) in which the thickness of the pure aluminum-based bonding layer 3 in Tables 1 and 2 is 45 μm and 30 μm is obtained. The pure aluminum-based bonding layer 3 has a maximum thickness T of 2
Sample Nos. 0 μm and 15 μm were used. 4,5,9,10
As obtained. On the other hand, a sample in which a nickel plating layer was formed instead of the pure aluminum-based bonding layer 3 was also used as the sample No. 3,8
As a conventional product. Table 1 shows that the product of the present invention has T <
Test results when Rmax is satisfied are shown, and Table 2 shows test results when the product of the present invention satisfies T < WEM .

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】作成されたこれらの試料を次の2つの方法
で評価した。その一つは、剪断接合力をみる剪断テス
ト、もう一つは軸受性能を総合的に評価する疲労テスト
である。
These prepared samples were evaluated by the following two methods. One is a shear test to check the shear bonding force, and the other is a fatigue test to comprehensively evaluate bearing performance.

【0022】先ず、剪断接合力をみるテストの方法は、
各試料(No.1〜10)を幅1mm、長さ15mmの
大きさに切り出し、図3,図4に示すように剪断テスト
用治具にセットした。すなわち、軸受合金2を突出させ
た状態として裏金4を第1治具6に固定ねじ7によつて
固定し、軸受合金2に第2治具8を係合させ、軸受合金
2と裏金4との接合界面4aの純アルミニウム系接合層
3が剪断されるようにした。そして、第2治具8に圧下
力Nを作用させ、純アルミニウム系接合層3(又はニッ
ケルメッキ層)が剪断される際の応力の最大値を剪断応
力とした。その結果を表1及び表2に示す。なお、剪断
応力の単位は、kgf/mm2 で示した。
First, a test method for checking the shear bonding force is as follows.
Each sample (No. 1 to 10) was cut into a size of 1 mm in width and 15 mm in length, and was set in a shear test jig as shown in FIGS. That is, the backing metal 4 is fixed to the first jig 6 with the fixing screw 7 in a state where the bearing alloy 2 is projected, the second jig 8 is engaged with the bearing alloy 2, and the bearing alloy 2 and the backing metal 4 are joined together. The pure aluminum-based bonding layer 3 at the bonding interface 4a was sheared. Then, a rolling force N was applied to the second jig 8, and the maximum value of the stress when the pure aluminum-based bonding layer 3 (or the nickel plating layer) was sheared was defined as the shearing stress. The results are shown in Tables 1 and 2. The unit of the shear stress was kgf / mm 2 .

【0023】一方、疲労試験には、いわゆるアンダーウ
ッド試験機と呼ばれるものを使用した。これは実際のエ
ンジンの条件とほぼ同じようにすべり軸受をコンロッド
に固定し、軸に偏心荷重をかける試験機であり、軸受合
金2が剥離せず、正常な状態を維持できた耐久時間(疲
労時間)で評価するものである。以下にテスト条件を記
す。
On the other hand, a so-called underwood tester was used for the fatigue test. This is a test machine that fixes a sliding bearing to a connecting rod and applies an eccentric load to the shaft in almost the same way as the actual engine conditions. Time). The test conditions are described below.

【0024】 面圧 800kgf/cm2 回転数 3500rpm 相手材 FCD70 粗さ0.8〜1.5S 使用オイル SAE30 油温 150℃±5℃ なお、上記各テストは各試料数n=5として行い、これ
らの平均値をデータとして表1,表2に示した。
Surface pressure 800 kgf / cm 2 Number of rotations 3500 rpm Mating material FCD70 Roughness 0.8 to 1.5 S Oil used SAE30 Oil temperature 150 ° C. ± 5 ° C. Each of the above tests was carried out with n = 5 for each sample. Are shown in Tables 1 and 2 as data.

【0025】この表1,表2に示す結果をみれば、本発
明の純アルミニウム系接合層3の最大厚さT<接合層3
と裏金4との接合界面4aの最大高さをRmax、及び
純アルミニウム系接合層3の最大厚さT<転がり円最大
うねりWEMのいずれの条件をも満たさない従来品No.
1、2、6、7及びニッケルメッキボンド品(試料N
o.3、8)は、剪断応力から分かる接合力も弱く、従
つてアンダーウッド試験でも75〜95時間と短い時間
しかもたないのに比べて、本発明品は剪断応力も大き
く、疲労時間も130〜150時間と格段に改善されて
いる。すなわち、こうした接合界面2a,4aの合理的
な改良が、アルミニウム系軸受1の耐荷重性を飛躍的に
向上させることが裏付けられた。
The results shown in Tables 1 and 2 show that the maximum thickness T of the pure aluminum-based bonding layer 3 of the present invention <the bonding layer 3
The maximum height of the bonding interface 4a between the metal and the back metal 4 is Rmax, and the maximum thickness T of the pure aluminum-based bonding layer 3 <the maximum rolling undulation WEM of the conventional product No.
1, 2, 6, 7 and nickel-plated bond products (Sample N
o. 3 and 8) show that the bonding strength found from the shear stress is weak, and therefore the product of the present invention has a large shear stress and a fatigue time of 130 to 150 in comparison with a short time of only 75 to 95 hours in the underwood test. Time has been significantly improved. In other words, it is supported that such a rational improvement of the joining interfaces 2a and 4a dramatically improves the load bearing capacity of the aluminum-based bearing 1.

【0026】[0026]

【発明の効果】以上の説明によつて理解されるように、
本発明に係るアルミニウム系軸受によれば、接合界面の
剪断応力によつて代表される接合強度が、所定の条件を
満たさない従来品に比べて著しく改善され、耐荷重80
0kgf/cm2 という高負荷条件においても有効な疲
労強度を有するすべり軸受が製造可能になつた。すなわ
ち、アルミニウム系軸受の支承能力が飛躍的に向上し、
特に高負荷、高速回転用に好適なアルミニウム系軸受の
提供が可能となる。
As will be understood from the above description,
ADVANTAGE OF THE INVENTION According to the aluminum-type bearing which concerns on this invention, the joining strength represented by the shear stress of a joining interface is improved remarkably compared with the conventional product which does not satisfy | fill predetermined conditions, and withstands a load of 80.
A sliding bearing having an effective fatigue strength even under a high load condition of 0 kgf / cm 2 can be manufactured. In other words, the bearing capacity of aluminum bearings has dramatically improved,
In particular, it is possible to provide an aluminum bearing suitable for high load and high speed rotation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施の形態に係るアルミニウム系
軸受を示す断面図。
FIG. 1 is a sectional view showing an aluminum-based bearing according to one embodiment of the present invention.

【図2】 同じく要部を拡大して示す断面図。FIG. 2 is an enlarged cross-sectional view showing a main part of the same.

【図3】 同じく剪断テスト用治具を示す概略図。FIG. 3 is a schematic diagram showing a shear test jig.

【図4】 同じく要部を拡大して示す断面図。FIG. 4 is an enlarged sectional view showing a main part of the same.

【図5】 従来のアルミニウム系軸受を示す断面図。FIG. 5 is a sectional view showing a conventional aluminum bearing.

【図6】 同じく要部を拡大して示す断面図。FIG. 6 is an enlarged cross-sectional view showing a main part of the same.

【図7】 同じく純アルミニウム系接合層を有するアル
ミニウム系軸受の応力分布図。
FIG. 7 is a stress distribution diagram of an aluminum bearing having a pure aluminum bonding layer.

【図8】 同じくニッケルメッキ層を有するアルミニウ
ム系軸受の応力分布図。
FIG. 8 is a stress distribution diagram of an aluminum bearing having a nickel plating layer.

【符号の説明】 1:アルミニウム系軸受、2:軸受合金、3:純アルミ
ニウム系接合層、4:裏金、T:最大厚さ、Rmax:
最大高さ、WEM:転がり円最大うねり。
[Description of References] 1: Aluminum bearing, 2: Bearing alloy, 3: Pure aluminum bonding layer, 4: Back metal, T: Maximum thickness, Rmax:
Maximum height, W EM : Rolling circle maximum undulation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂井 武志 千葉県習志野市実籾町1丁目687番地 エヌデーシー株式会社内 (56)参考文献 特開 昭56−133371(JP,A) 特開 平7−133825(JP,A) 特開 平2−38714(JP,A) 特開 平7−259856(JP,A) (58)調査した分野(Int.Cl.6,DB名) F16C 33/00 - 33/28 C22C 21/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takeshi Sakai 1-687, Minemachi, Narashino-shi, Chiba NDC Corporation (56) References JP-A-56-133371 (JP, A) JP-A-7-133825 (JP, A) JP-A-2-38714 (JP, A) JP-A-7-259856 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F16C 33/00-33 / 28 C22C 21/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼製の裏金(4)に純アルミニウム系接
合層(3)を介在させて軸受合金(2)をロール圧接に
よつて接合さるアルミニウム系軸受おいて、純アル
ミニウム系接合層(3)の最大厚さをT、該接合層
(3)と裏金(4)との接合界面(4a)のJIS表面
粗さ(BO601)、表面うねり(BO610)に定め
る最大高さをRmax、転がり円最大うねりをWEM
し、T<Rmax及びT<WEMの内の少なくとも一方
を満たすことを特徴とするアルミニウム系軸受。
A bearing alloy (2) is roll-welded to a steel back metal (4) with a pure aluminum-based bonding layer (3) interposed therebetween.
Oite the aluminum-based bearing Ru is Yotsute bonding, JIS surface roughness of the bonding interface of the maximum thickness of the pure aluminum-based bonding layer (3) T, the bonding layer (3) and backing (4) (4a) is (BO601), the maximum height as stipulated in the surface waviness (BO610) Rmax, the rolling circle maximum waviness and W EM, aluminum-based bearing and satisfies at least one of T <Rmax and T <W EM .
JP7262487A 1995-09-14 1995-09-14 Aluminum bearing Expired - Fee Related JP2944919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262487A JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262487A JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Publications (2)

Publication Number Publication Date
JPH0979264A JPH0979264A (en) 1997-03-25
JP2944919B2 true JP2944919B2 (en) 1999-09-06

Family

ID=17376481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262487A Expired - Fee Related JP2944919B2 (en) 1995-09-14 1995-09-14 Aluminum bearing

Country Status (1)

Country Link
JP (1) JP2944919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512442B1 (en) * 2012-01-25 2013-10-15 Miba Gleitlager Gmbh METHOD FOR PRODUCING A SLIDING BEARING
WO2014157650A1 (en) * 2013-03-29 2014-10-02 大豊工業株式会社 Aluminum alloy, slide bearing, and slide bearing manufacturing method

Also Published As

Publication number Publication date
JPH0979264A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JP2657143B2 (en) Multi-layer plain bearing with excellent fatigue resistance and conformability with Al-Sn based bearing alloy sliding layer
JP3388501B2 (en) Plain bearing
US4696867A (en) Aluminum based bearing alloys
US5112416A (en) Aluminum based alloy bearing having strengthened intermediate bonding layer
US7229699B2 (en) Bearing having embedded hard particle layer and overlay and method of manufacture
JPH0819946B2 (en) Multi-layer aluminum base alloy bearing with excellent compatibility and fatigue resistance
JP2003184855A (en) Crosshead bearing for marine engine
US5601371A (en) Sliding surface bearing
EP1070207B1 (en) Sliding-contact bearings
JP2944919B2 (en) Aluminum bearing
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
EP2095940B1 (en) Sliding member
US20130022493A1 (en) Aluminum alloy bearing
EP1957810A1 (en) Bearing having embedded hard particle layer and overlay and method of manufacture
US6676898B2 (en) Bearing materials
KR100235835B1 (en) Material for slide bearing
JPH11223219A (en) Sliding bearing
JPH09217747A (en) Aluminum group-bearing
JP3776228B2 (en) Heat treatment reinforced aluminum sliding material and method for producing the same
Joyce et al. Fatigue crack initiation and early growth in a multiphase Al alloy included in a multilayer material system
JPH11501105A (en) Plain bearing with overlay
JP2003148474A (en) Sliding member with composite plating coat
Vandersluis et al. Failure Analysis of an Ambulance Cathode Ray Tube Monitor Bracket
JPH07293547A (en) Bearing device of internal combustion engine
Love et al. Functions of materials in bearing operation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees