JPH09217747A - Aluminum group-bearing - Google Patents

Aluminum group-bearing

Info

Publication number
JPH09217747A
JPH09217747A JP4688696A JP4688696A JPH09217747A JP H09217747 A JPH09217747 A JP H09217747A JP 4688696 A JP4688696 A JP 4688696A JP 4688696 A JP4688696 A JP 4688696A JP H09217747 A JPH09217747 A JP H09217747A
Authority
JP
Japan
Prior art keywords
adhesive layer
bearing
aluminum
pure aluminum
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4688696A
Other languages
Japanese (ja)
Inventor
Masahito Fujita
正仁 藤田
Hiroe Okawa
広衛 大川
Kazuo Matsuo
一雄 松尾
Takeshi Sakai
武志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP4688696A priority Critical patent/JPH09217747A/en
Publication of JPH09217747A publication Critical patent/JPH09217747A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the load withstanding property by forming the bearing metal of an aluminum - tin group alloy, forming an adhesive layer between the bearing metal and a back plate by pure aluminum, and specifying the thickness of the layer to secure the joining strength of the adhesive layer. SOLUTION: An aluminum - tin group bearing metal 1 (tin content exceeds 6wt.%) is stuck on the surface of a steel back plate 3 through an adhesive layer 2, the whole is rounded-formed into a semi-cylindrical shape, and the surface of the bearing metal 1 is adapted to serve as a sliding-friction surface 1a. Further, the adhesive layer 2 is formed of pure aluminum, and the thickness of the adhesive layer 2 is set to 20μm or less. Even when the thickness of the layer is thinner, the load withstanding property can be ensured without causing the loss of the adhesive strength, because of the feature in plastic deformation of the pure aluminum. Thus, the ensurance of the joining strength by the pure aluminum can be compatible with the reduction in the amount of deformation of the adhesive layer, the load withstanding property of the bearing is enhanced, and the engine can be rotated at high speeds and at high power levels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、産業車両等に
使用するすべり軸受であるアルミニウム基軸受に係わ
り、特に耐荷重性に優れたアルミニウム−錫系裏金付軸
受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-based bearing which is a sliding bearing used in automobiles, industrial vehicles and the like, and more particularly to an aluminum-tin based backing bearing having excellent load resistance.

【0002】[0002]

【従来の技術及びその課題】従来のアルミニウム−錫系
合金を軸受合金とする裏金付のアルミニウム基軸受にお
いて、軸受合金と裏金とを接着する場合、含有錫割合の
低い軸受合金のときは、直接、軸受合金を裏金に接着
し、含有錫割合の高い(例えば錫含有量が6重量%を超
える)ときには、ニッケルメッキ層を介在させるか若し
くは純アルミニウム層を接着層として接合させてきた。
2. Description of the Related Art In a conventional aluminum-based bearing with a back metal, which uses a conventional aluminum-tin alloy as a bearing alloy, when the bearing alloy and the back metal are adhered to each other, when the bearing alloy has a low tin content, it is directly The bearing alloy is adhered to the back metal, and when the content of tin is high (for example, the tin content exceeds 6% by weight), a nickel plating layer is interposed or a pure aluminum layer is bonded as an adhesive layer.

【0003】更に近年では、特開平5−302626号
や特開平6−136475号公報に見られるように、接
着層を強化改良すべく、純アルミニウムに代えてアルミ
ニウム合金によつて接着層を構成する改善策も提案され
ている。
Further, in recent years, as seen in JP-A-5-302626 and JP-A-6-136475, in order to strengthen and improve the adhesive layer, the adhesive layer is constituted by an aluminum alloy instead of pure aluminum. Improvement measures are also proposed.

【0004】しかし、従来のアルミニウム基軸受におけ
るこれらいずれの接合構造にあつても、十分な接合強度
と軸受としての耐荷重性との両立が得られていないのが
現状である。すなわち、アルミニウム−錫系合金からな
る軸受合金を直接、裏金に接合する場合は、鋼との界面
に接合力の劣る錫が介在し、接合強度を弱めてしまう。
また、ニッケルメッキを介して同様のアルミニウム−錫
系合金を裏金に接合する場合も、ニッケルメッキと軸受
合金との界面に錫が介在し、十分な接合力が得られない
という技術的課題を有している。この錫による接合強度
の低下傾向は、含有錫割合が高まる程、著しくなる。
However, in any of the conventional joining structures of aluminum-based bearings, sufficient joining strength and load bearing capacity of the bearing cannot be achieved at the same time. That is, when a bearing alloy made of an aluminum-tin alloy is directly bonded to the back metal, tin having a poor bonding strength is present at the interface with the steel, and the bonding strength is weakened.
Also, when a similar aluminum-tin alloy is joined to the back metal via nickel plating, tin is present at the interface between the nickel plating and the bearing alloy, and there is a technical problem that sufficient joining force cannot be obtained. doing. This decrease in the bonding strength due to tin becomes more significant as the proportion of contained tin increases.

【0005】一方、接着層をアルミニウム合金として強
化し、硬度を高めた接着層とした場合、裏金との接合に
際し、この接着層と裏金との間の相対すべりが発生した
とき、強化した接着層が純アルミニウム程には伸びない
ため、裏金と凝着を起こしにくく、結果的に接合強度を
十分に確保することができないという技術的課題を有し
ている。そのため、再圧下して、接合強度を増加するこ
とも考えられるが、その場合は、裏金硬さが増加し、そ
の後、半円筒状をなす軸受形状に加工する作業が困難に
なる。
On the other hand, when the adhesive layer is reinforced with an aluminum alloy to have an increased hardness, when a relative slip occurs between the adhesive layer and the back metal during joining with the back metal, the strengthened adhesive layer However, since it does not stretch as much as pure aluminum, it has a technical problem that adhesion to the back metal is less likely to occur and, as a result, sufficient bonding strength cannot be ensured. Therefore, it is considered that the joint strength is increased by re-pressing, but in that case, the hardness of the back metal increases, and then it becomes difficult to process the bearing into a semi-cylindrical bearing shape.

【0006】更に、軸受合金と裏金との間の接着層を純
アルミニウムによつて形成する従来例にあつては、接着
層の厚さが約30μm以上に設定されていた。このた
め、軸受に対する繰り返し荷重の作用により、接着層が
軸受合金と共に裏金の軸受幅方向端面に向けてはみ出す
塑性変形を生じ、軸受が破壊に至る場合を生じていた。
加えて、摺動摩擦面に作用する衝撃荷重によつて軸受合
金にクラックが発生し、このクラックが接着層に進展
し、耐荷重性の低下を招く。
Further, in the conventional example in which the adhesive layer between the bearing alloy and the back metal is made of pure aluminum, the thickness of the adhesive layer is set to about 30 μm or more. Therefore, due to the action of repeated load on the bearing, the adhesive layer together with the bearing alloy undergoes plastic deformation protruding toward the end face in the bearing width direction of the backing metal, which may cause the bearing to be broken.
In addition, a crack is generated in the bearing alloy due to the impact load acting on the sliding friction surface, and the crack propagates to the adhesive layer, resulting in deterioration of load resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、このような従
来の技術的課題に鑑みてなされたものであり、その構成
は次の通りである。請求項1の発明は、鋼製の裏金3に
接着層2を介して軸受合金1を固着するアルミニウム基
軸受において、軸受合金1をアルミニウム−錫系合金と
し、軸受合金1と裏金3との間の接着層2を純アルミニ
ウムによつて形成すると共に、接着層2の厚さを20μ
m以下に設定することを特徴とするアルミニウム基軸受
である。請求項2の発明は、鋼製の裏金3に接着層2を
介して軸受合金1を固着するアルミニウム基軸受におい
て、軸受合金1をアルミニウム−錫系合金とし、軸受合
金1と裏金3との間の接着層2を純アルミニウムによつ
て形成すると共に、接着層2の厚さを5μmを超え15
μm以下の範囲に設定することを特徴とするアルミニウ
ム基軸受である。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional technical problems, and has the following configuration. According to the invention of claim 1, in an aluminum-based bearing in which a bearing alloy 1 is fixed to a steel backing metal 3 via an adhesive layer 2, the bearing alloy 1 is an aluminum-tin alloy, and the bearing alloy 1 is between the backing metal 3 and the backing metal 3. Of the adhesive layer 2 of pure aluminum, and the thickness of the adhesive layer 2 is 20 μm.
The aluminum-based bearing is characterized by being set to m or less. According to a second aspect of the present invention, in an aluminum-based bearing in which the bearing alloy 1 is fixed to the steel backing metal 3 via the adhesive layer 2, the bearing alloy 1 is an aluminum-tin alloy, and the bearing alloy 1 and the backing metal 3 are provided. The adhesive layer 2 is made of pure aluminum, and the thickness of the adhesive layer 2 exceeds 5 μm.
The aluminum-based bearing is characterized by being set in a range of μm or less.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1,図2は、本発明に係
るアルミニウム基軸受の1実施の形態を示す。アルミニ
ウム基軸受は、図1に示すように鋼製の裏金3の一側面
に、接着層2を介してアルミニウム−錫系の軸受合金1
(錫含有量が6重量%を超える)を固着して形成され、
全体を半円筒状にまるめ成形したすべり軸受である。こ
の軸受合金1の表面(図1上で上面)が摺動摩擦面1a
を形成する。このようなアルミニウム−錫系裏金付軸受
において、軸受合金1と裏金3との間の接着層2を純ア
ルミニウムによつて形成すると共に、接着層2の厚さを
20μm以下に設定する。ここで、純アルミニウムと
は、JISで定める1000番台のアルミニウムを99
%以上含むものをいう。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show one embodiment of an aluminum-based bearing according to the present invention. As shown in FIG. 1, the aluminum-based bearing has an aluminum-tin based bearing alloy 1 on one side of a steel backing 3 with an adhesive layer 2 interposed therebetween.
Formed by sticking (tin content exceeding 6% by weight),
This is a plain bearing that is entirely formed into a semi-cylindrical shape. The surface (the upper surface in FIG. 1) of this bearing alloy 1 is a sliding friction surface 1a.
To form In such a bearing with an aluminum-tin based back metal, the adhesive layer 2 between the bearing alloy 1 and the back metal 3 is formed of pure aluminum, and the thickness of the adhesive layer 2 is set to 20 μm or less. Here, pure aluminum refers to aluminum in the 1000 range defined by JIS.
Percentage or more.

【0009】純アルミニウムからなる接着層2の厚さを
20μm以下に設定する理由について説明する。上述し
たように、接着層2をアルミニウム合金として強化し、
硬度を高めた中間層とした場合、裏金3との接合に際
し、強化した接着層2と裏金3との間の相対すべりが発
生したとき、接合強度を十分確保することができなくな
る。この接着層2と裏金3との間の相対すべりに対し
て、再圧下を施し、接合強度を増加する場合には、裏金
3の硬さが増加するので、すべり軸受形状にまるめ加工
するのが困難になる。そこで、接着層2の材質として、
良好な接合強度が得られる純アルミニウムを選定した。
The reason why the thickness of the adhesive layer 2 made of pure aluminum is set to 20 μm or less will be described. As described above, the adhesive layer 2 is reinforced as an aluminum alloy,
When an intermediate layer having an increased hardness is used, when a relative slip between the reinforced adhesive layer 2 and the back metal 3 occurs during bonding with the back metal 3, sufficient bonding strength cannot be ensured. When the relative slip between the adhesive layer 2 and the back metal 3 is subjected to re-reduction to increase the bonding strength, the hardness of the back metal 3 increases, so it is preferable to round the sliding bearing shape. It will be difficult. Therefore, as the material of the adhesive layer 2,
Pure aluminum was selected because of its good bonding strength.

【0010】しかし、従来の純アルミニウムによつて接
着層2を形成したアルミニウム−錫系裏金付軸受にあつ
ては、接着層2の厚さが約30μm以上に設定されてい
た。このため、例えば近時のエンジンの高回転・高出力
化に伴つて高荷重が作用する軸受構造にあつては、純ア
ルミニウム製の接着層2の軟らかさ、変形のし易さの故
に、接合強度は得られるが、図5に示す接着層2の変形
を生じ、これに起因して軸受としての耐荷重性に問題を
生ずることが判明した。
However, in the conventional bearing with an aluminum-tin based backing having the adhesive layer 2 formed of pure aluminum, the thickness of the adhesive layer 2 is set to about 30 μm or more. For this reason, for example, in a bearing structure in which a high load is applied with the recent increase in engine speed and output, the bonding layer 2 made of pure aluminum is soft and easily deformed. Although the strength can be obtained, it has been found that the adhesive layer 2 shown in FIG. 5 is deformed, which causes a problem in the load resistance of the bearing.

【0011】すなわち、摺動摩擦面1aからの繰り返し
荷重Wの作用により、接着層2が軸受合金1と共に裏金
3の軸受幅方向端面よりはみ出すように次第に変形す
る。従来のアルミニウム基軸受における軸受幅方向(中
心軸線方向)への裏金3に対する軸受合金1のはみ出し
量(変形量Δ)を、図5に示す。この変形量Δに起因し
て、軸受が破壊に至る場合もあり、また、摺動摩擦面1
aに作用する衝撃荷重によつてアルミニウム−錫系の軸
受合金1にクラック4が発生し、その後の繰り返し荷重
Wの作用によつてクラック4が厚肉の純アルミニウム製
の接着層2を伝播成長するので、耐荷重性が低下する。
That is, by the action of the repeated load W from the sliding friction surface 1a, the adhesive layer 2 is gradually deformed together with the bearing alloy 1 so as to protrude from the end face in the bearing width direction of the backing metal 3. FIG. 5 shows a protrusion amount (deformation amount Δ) of the bearing alloy 1 with respect to the backing metal 3 in the bearing width direction (center axis direction) in the conventional aluminum-based bearing. Due to this deformation amount Δ, the bearing may be destroyed, and the sliding friction surface 1
Due to the impact load acting on a, a crack 4 is generated in the aluminum-tin bearing alloy 1, and the crack 4 propagates and grows on the thick adhesive layer 2 made of pure aluminum by the action of the repeated load W thereafter. As a result, the load resistance is reduced.

【0012】本発明者等は、このような純アルミニウム
製の接着層2による良好な接合強度に着目し、純アルミ
ニウム製の接着層2を使用する場合の耐荷重性の向上を
目的として純アルミニウムの塑性変形の特徴を探求し
た。そして、各種の厚さの純アルミニウム製の接着層2
を形成した軸受について、純アルミニウムの塑性変形の
特徴を探求することにより、その層の厚さを極めて薄く
することで、接着強度を損なうことなく耐荷重性を確保
できることを知得した。
The inventors of the present invention have paid attention to the good bonding strength of the adhesive layer 2 made of pure aluminum, and for the purpose of improving the load resistance when the adhesive layer 2 made of pure aluminum is used, the pure aluminum is used. The characteristics of plastic deformation of Then, the adhesive layer 2 made of pure aluminum having various thicknesses
It has been found that the bearing having the above-mentioned structure can be made to have a load bearing ability without impairing the adhesive strength by making the thickness of the layer extremely thin by exploring the characteristics of the plastic deformation of pure aluminum.

【0013】具体的には、純アルミニウム製の接着層2
を50μm厚程度に形成したアルミニウム−錫系裏金付
軸受に対して繰り返し高荷重Wを作用させ、接着層2の
軸受幅方向の端面部に生ずる変形量Δと裏金面3aから
の距離(半径方向距離)との関係を求めた。その結果
を、図3に示す。この変形で特徴的であつたのは、裏金
面3a付近となる裏金3直上の接着層2は裏金3に拘束
され、純アルミニウムの強度が小さいにもかかわらず、
塑性変形量が小さいことである。しかし、裏金面3aか
らの距離が20μmを超える部分からは累積的にその変
形量が大きくなつていた。
Specifically, the adhesive layer 2 made of pure aluminum
Is repeatedly applied to an aluminum-tin-based bearing with a back metal having a thickness of about 50 μm, the amount of deformation Δ occurring at the end face portion of the adhesive layer 2 in the bearing width direction and the distance from the back metal surface 3a (radial direction). Distance). The result is shown in FIG. What is characteristic of this modification is that the adhesive layer 2 immediately above the back metal 3, which is in the vicinity of the back metal surface 3a, is constrained by the back metal 3 and the strength of pure aluminum is small.
The amount of plastic deformation is small. However, the amount of deformation cumulatively increased from the portion where the distance from the back metal surface 3a exceeded 20 μm.

【0014】また、この50μm厚程度の純アルミニウ
ムからなる接着層2の硬さを微小硬さ(ヌープ硬さ)計
を使つて測定したところ、図4に示す結果が得られた。
この接着層2のヌープ硬さの結果から、裏金3の直上約
20μm厚までの接着層2は、裏金3の影響を受けて塑
性変形しにくく、現象的に接着層2を強化したと同様の
効果が得られることが判明した。すなわち、純アルミニ
ウムからなる接着層2の厚さを20μm以下、好ましく
は15μm以下に設定すれば、塑性変形量をきわめて小
さくおさえられることが判明した。
When the hardness of the adhesive layer 2 made of pure aluminum having a thickness of about 50 μm was measured by using a micro hardness (Knoop hardness) meter, the results shown in FIG. 4 were obtained.
From the result of the Knoop hardness of the adhesive layer 2, the adhesive layer 2 up to a thickness of about 20 μm directly above the backing metal 3 is less likely to be plastically deformed due to the influence of the backing metal 3, and it is similar to the case where the adhesive layer 2 is reinforced in a phenomenon. It turned out to be effective. That is, it was found that the plastic deformation amount can be suppressed to a very small value by setting the thickness of the adhesive layer 2 made of pure aluminum to 20 μm or less, preferably 15 μm or less.

【0015】図2には、純アルミニウムからなる接着層
2の厚さを15μmとし、繰り返し荷重Wを与えて試験
を行つた後のアルミニウム−錫系裏金付軸受の軸受幅方
向の端面部の状態を示す。繰り返し荷重Wは、実際のエ
ンジンの条件とほぼ同じにするため、軸受をコンロッド
の大端部に固定し、軸(クランクシャフト)に変動荷重
を作用させて発生させたものである。
In FIG. 2, the state of the end face portion in the bearing width direction of the aluminum-tin based backing bearing after the test was carried out under the condition that the thickness of the adhesive layer 2 made of pure aluminum was 15 μm and the load W was repeatedly applied. Indicates. The repetitive load W is generated by fixing the bearing to the large end of the connecting rod and applying a fluctuating load to the shaft (crankshaft) in order to make the load almost the same as the actual engine condition.

【0016】試験条件は以下の通りである。 負荷面圧: 700kg/cm2 負荷回数: 100万回 軸の回転数: 3500rpm 軸材質: FCD70、粗さ:0.8〜1.5S 潤滑油: 10W−30 油温: 150±5℃ なお、試験に使用したアルミニウム−錫系の軸受合金1
の組成は、Al−13%Sn−2%Pb−3%Si−
0.7%Cu−その他(1%未満)である。
The test conditions are as follows. Load surface pressure: 700 kg / cm 2 Number of times of load: 1 million times Number of rotations of shaft: 3500 rpm Shaft material: FCD70, roughness: 0.8 to 1.5S Lubricating oil: 10W-30 Oil temperature: 150 ± 5 ° C Aluminum-tin bearing alloy used in the test 1
The composition of Al-13% Sn-2% Pb-3% Si-
0.7% Cu-others (less than 1%).

【0017】[0017]

【実施例】純アルミニウムからなる接着層2が種々の厚
さになるようにして、上記組成の軸受合金1と裏金3と
を圧接し、各10個づつのアルミニウム基軸受を製作
し、それぞれに上記条件にて繰り返し荷重Wをかけて試
験を行つた。その結果、破損しなかつた軸受の割合を健
全軸受の割合として表1に示した。
EXAMPLE A bearing alloy 1 having the above composition and a backing metal 3 were pressure-welded to each other so that the adhesive layer 2 made of pure aluminum had various thicknesses, and 10 aluminum-based bearings each were manufactured. The test was performed under the above conditions by repeatedly applying a load W. As a result, the proportion of bearings that did not break is shown in Table 1 as the proportion of healthy bearings.

【0018】 [0018]

【0019】表1から分かるように、純アルミニウムか
らなる接着層2の厚さが20μm以下のものは、図2に
示す接着層2の変形量Δも少なく、健全軸受の割合が9
0〜100%と高く、健全な状態を保つているものが殆
どである。なお、接着層2の機能、つまり中間層として
鋼製の裏金3とアルミニウム−錫系合金製の軸受合金1
とを接合する機能を完全に確保する上で、接着層2の厚
さを5μm超えとすることが望ましい。
As can be seen from Table 1, when the thickness of the adhesive layer 2 made of pure aluminum is 20 μm or less, the deformation amount Δ of the adhesive layer 2 shown in FIG. 2 is small and the ratio of sound bearings is 9%.
It is as high as 0 to 100%, and most of them maintain a healthy state. The function of the adhesive layer 2, that is, the backing plate 3 made of steel and the bearing alloy 1 made of an aluminum-tin alloy as an intermediate layer
In order to completely secure the function of joining and, it is desirable that the thickness of the adhesive layer 2 exceeds 5 μm.

【0020】一方、従来例に係る純アルミニウムからな
る接着層2の厚いものは変形量Δが著しく大きく、健全
軸受の割合も30〜40%と低くなつているのが分か
る。すなわち、従来例に係る純アルミニウムからなる接
着層2が30μm以上のものは変形量Δも大きく、図5
に示すクラック4が発生するなどして破損した不健全軸
受の割合が極めて高くなつている。なお、上記従来例
に対する健全軸受の割合の向上率は、本実施例〜に
よれば、225〜250%になつた。
On the other hand, it can be seen that the thick adhesive layer 2 made of pure aluminum according to the conventional example has a remarkably large amount of deformation Δ and the ratio of sound bearings is as low as 30 to 40%. That is, when the adhesive layer 2 made of pure aluminum according to the conventional example has a thickness of 30 μm or more, the deformation amount Δ is large.
The proportion of unhealthy bearings that have been damaged by the occurrence of the crack 4 shown in (3) is extremely high. In addition, the improvement rate of the ratio of the healthy bearing to the above-mentioned conventional example is 225 to 250% according to the present examples.

【0021】[0021]

【発明の効果】以上の説明によつて理解されるように、
本発明によれば、アルミニウム基軸受において、アルミ
ニウム−錫系の軸受合金と鋼製の裏金との間の純アルミ
ニウムからなる接着層の厚さを20μm以下に設定する
ことで、純アルミニウムによる十分な接合強度を確保す
ることと接着層の変形量の減少を図ることとを良好に両
立させることができる。その結果、アルミニウム基軸受
の耐荷重性を著しく高めることができ、特にエンジンの
高回転・高出力化に資することができた。
As will be understood from the above description,
According to the present invention, in the aluminum-based bearing, the thickness of the adhesive layer made of pure aluminum between the aluminum-tin bearing alloy and the steel back metal is set to 20 μm or less, so that the pure aluminum is sufficient. It is possible to satisfactorily achieve both the securing of the bonding strength and the reduction of the deformation amount of the adhesive layer. As a result, the load bearing capacity of the aluminum-based bearing can be remarkably increased, and in particular, it has been possible to contribute to high engine rotation and high output.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の1実施の形態に係るアルミニウム基
軸受の要部を示す断面図。
FIG. 1 is a sectional view showing an essential part of an aluminum-based bearing according to one embodiment of the present invention.

【図2】 同じく作用説明図。FIG. 2 is an explanatory diagram of the same operation.

【図3】 裏金面からの距離−接着層の変形量特性を示
す線図。
FIG. 3 is a diagram showing a characteristic from a distance from a back metal surface to a deformation amount of an adhesive layer.

【図4】 裏金面からの距離−接着層のヌープ硬さ特性
を示す線図。
FIG. 4 is a diagram showing the distance from the back metal surface-Knoop hardness characteristics of the adhesive layer.

【図5】 従来例に係るアルミニウム基軸受の要部を示
す断面図。
FIG. 5 is a sectional view showing a main part of an aluminum-based bearing according to a conventional example.

【符号の説明】[Explanation of symbols]

1:軸受合金、2:接着層、3:裏金、Δ:変形量。 1: bearing alloy, 2: adhesive layer, 3: back metal, Δ: amount of deformation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂井 武志 千葉県習志野市実籾町1丁目687番地 エ ヌデーシー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Sakai 1-687 Mitomicho, Narashino, Chiba Prefecture NDC Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼製の裏金(3)に接着層(2)を介し
て軸受合金(1)を固着するアルミニウム基軸受におい
て、軸受合金(1)をアルミニウム−錫系合金とし、軸
受合金(1)と裏金(3)との間の接着層(2)を純ア
ルミニウムによつて形成すると共に、接着層(2)の厚
さを20μm以下に設定することを特徴とするアルミニ
ウム基軸受。
1. An aluminum-based bearing in which a bearing alloy (1) is fixed to a steel backing (3) via an adhesive layer (2), wherein the bearing alloy (1) is an aluminum-tin alloy, and the bearing alloy ( An aluminum-based bearing characterized in that the adhesive layer (2) between 1) and the back metal (3) is formed of pure aluminum, and the thickness of the adhesive layer (2) is set to 20 μm or less.
【請求項2】 鋼製の裏金(3)に接着層(2)を介し
て軸受合金(1)を固着するアルミニウム基軸受におい
て、軸受合金(1)をアルミニウム−錫系合金とし、軸
受合金(1)と裏金(3)との間の接着層(2)を純ア
ルミニウムによつて形成すると共に、接着層(2)の厚
さを5μmを超え15μm以下の範囲に設定することを
特徴とするアルミニウム基軸受。
2. An aluminum-based bearing in which a bearing alloy (1) is fixed to a steel backing (3) via an adhesive layer (2), wherein the bearing alloy (1) is an aluminum-tin alloy and the bearing alloy ( The adhesive layer (2) between 1) and the backing metal (3) is formed of pure aluminum, and the thickness of the adhesive layer (2) is set in the range of more than 5 μm and 15 μm or less. Aluminum-based bearing.
JP4688696A 1996-02-09 1996-02-09 Aluminum group-bearing Pending JPH09217747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4688696A JPH09217747A (en) 1996-02-09 1996-02-09 Aluminum group-bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4688696A JPH09217747A (en) 1996-02-09 1996-02-09 Aluminum group-bearing

Publications (1)

Publication Number Publication Date
JPH09217747A true JPH09217747A (en) 1997-08-19

Family

ID=12759853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4688696A Pending JPH09217747A (en) 1996-02-09 1996-02-09 Aluminum group-bearing

Country Status (1)

Country Link
JP (1) JPH09217747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775034A1 (en) * 1998-02-17 1999-08-20 Renault Multilayer material especially for manufacture of high performance engine bearings
JP2015508476A (en) * 2011-12-07 2015-03-19 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Method for manufacturing a bearing shell for a sliding bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775034A1 (en) * 1998-02-17 1999-08-20 Renault Multilayer material especially for manufacture of high performance engine bearings
JP2015508476A (en) * 2011-12-07 2015-03-19 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Method for manufacturing a bearing shell for a sliding bearing
US9611889B2 (en) 2011-12-07 2017-04-04 Federal-Mogul Wiesbaden Gmbh Method for producing bearing shells of plain bearings

Similar Documents

Publication Publication Date Title
JP2657143B2 (en) Multi-layer plain bearing with excellent fatigue resistance and conformability with Al-Sn based bearing alloy sliding layer
JP3388501B2 (en) Plain bearing
US4189525A (en) Bearing metal for large engines
US5112416A (en) Aluminum based alloy bearing having strengthened intermediate bonding layer
JP5613759B2 (en) Slide bearing member
JPH0672616B2 (en) Steel shaft composite aluminum alloy rotor
EP0816007B1 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
JPH0819946B2 (en) Multi-layer aluminum base alloy bearing with excellent compatibility and fatigue resistance
JPH07190064A (en) Multilayer sliding bearing material and its manufacture
US5601371A (en) Sliding surface bearing
EP1682783A2 (en) Thrust washer and method of manufacture
JPH01316514A (en) Multilayer sliding material
JPH09217747A (en) Aluminum group-bearing
JPH087136Y2 (en) Fastening parts such as bolts and rivets
EP2095940B1 (en) Sliding member
JP2705781B2 (en) Bearing metal for large engines
US5908709A (en) Material for sliding surface bearings
JP2944919B2 (en) Aluminum bearing
JPH0810012B2 (en) Bearing material
JPH10159853A (en) Sliding member, supporting member, and combination of them with excellent fretting damage resistance
JP2508048B2 (en) Plain bearing and manufacturing method thereof
JP4301416B2 (en) Slide bearing and bearing device for internal combustion engine
JPH081216B2 (en) Plain bearings that can be used under high load operation
JPH07293547A (en) Bearing device of internal combustion engine
JPH1150823A (en) Valve seat joining structure to cylinder head