JPH0977566A - Capsule for isotropic pressurizing treatment - Google Patents

Capsule for isotropic pressurizing treatment

Info

Publication number
JPH0977566A
JPH0977566A JP7238491A JP23849195A JPH0977566A JP H0977566 A JPH0977566 A JP H0977566A JP 7238491 A JP7238491 A JP 7238491A JP 23849195 A JP23849195 A JP 23849195A JP H0977566 A JPH0977566 A JP H0977566A
Authority
JP
Japan
Prior art keywords
capsule
foil
metal
hip
foils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7238491A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakajima
和彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7238491A priority Critical patent/JPH0977566A/en
Publication of JPH0977566A publication Critical patent/JPH0977566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain such a foil capsule for isotropic pressurizing treatment that fracture of foils due to strain during the initial deformation can be prevented and a body to be treated in the capsule can be preferentially and selectively deformed, by forming the foil capsule comprising a double-sealed capsule. SOLUTION: A body 3 to be treated such as a ceramic material, metal or resin is housed in metal foils 1, 2 having 30-300μm thickness, and the metal foils 1, 2 are laminated and welded 6 to obtain a sealed capsule 7. Further, another metal foil 8 is laminated and welded 9 on the metal foils 1, 2 which constitute the capsule. In this case, each metal foil 1, 2, 8 has preferably 30-300μm thickness, and moreover, the metal foil 8 is preferably laminated on both outer surfaces of the metal foils 1, 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス、金
属もしくは樹脂等の粉末もしくは粉末成形体すなわち、
被処理体を高温下で高圧の流体圧力を作用させて高密度
の焼結体を製造したり、高温下で高圧の流体圧力を作用
させて2種類以上の材料を拡散接合することに利用され
ている熱間静水圧加圧方(HIP法)や温間静水圧加圧
法(WIP法)等に用いられる等方圧加圧処理用カプセ
ルに関するものである。
TECHNICAL FIELD The present invention relates to powders or powder compacts of ceramics, metals or resins, that is,
It is used to apply high pressure fluid pressure at high temperature to produce a high density sintered body, or to apply high pressure fluid pressure at high temperature to perform diffusion bonding of two or more kinds of materials. The present invention relates to a capsule for isotropic pressure treatment used in a hot isostatic pressing method (HIP method), a warm isostatic pressing method (WIP method) and the like.

【0002】[0002]

【従来の技術】HIP法やWIP法は、高温下で数百な
いし数千kgf/cm2 の高圧の流体を圧力媒体として
用いて圧縮成形するプロセスであり、他の方法と比較し
て、加工圧力値が高いこと、等方的に圧縮できるなどの
特徴があり、難加工性の粉末材料の高密度焼結技術とし
て、あるいは固相拡散接合技術として、近年急速に普及
が進んでいる技術である。
2. Description of the Related Art The HIP method and the WIP method are compression molding processes using a high pressure fluid of several hundreds to several thousands kgf / cm 2 as a pressure medium at a high temperature. It has characteristics such as high pressure value and isotropic compression, and is a technology that has rapidly spread in recent years as a high-density sintering technology for powder materials that are difficult to process or solid-phase diffusion bonding technology. is there.

【0003】この等方圧加圧処理用カプセルとして、例
えば特開昭47−16308号公報、特開昭57−11
6702号公報等で開示されている所謂金属カプセルが
ある。この金属カプセルは、カプセルの厚みが十分ある
ために、カプセルのHIP時の破損は、ほとんど生じる
ことなくHIP処理できていたが、カプセルの除去に手
間がかかっていたことやカプセル自体の剛性により、製
品が変形を起こしたり、製品自体の割れの問題があっ
た。
As the capsule for this isotropic pressure application, for example, JP-A-47-16308 and JP-A-57-11.
There is a so-called metal capsule disclosed in Japanese Patent No. 6702. Since this metal capsule had a sufficient thickness of the capsule, it could be HIP-treated with almost no damage at the time of HIP, but it took time to remove the capsule and due to the rigidity of the capsule itself, There were problems such as deformation of the product and cracking of the product itself.

【0004】そこで本件出願人は、特開平4−9920
7号公報によって30μm〜300μmの厚さの金属箔
からなる等方圧加圧処理用箔カプセルを提案して、前記
金属カプセルの問題点の解決に成功した。
Therefore, the applicant of the present application has filed Japanese Patent Application Laid-Open No. 4-99920.
No. 7 proposed a foil capsule for isotropic pressure pressurization treatment composed of a metal foil having a thickness of 30 μm to 300 μm, and succeeded in solving the problems of the metal capsule.

【0005】[0005]

【発明が解決しようとする課題】しかし、この箔カプセ
ル(特開平4−99207号)は、1枚同士の金属箔の
重ね溶接のため初期変形時に生じる溶接部分のひずみ等
により、HIP処理において、その圧力による箔カプセ
ルの初期変形(シワ)による溶接部分のひずみにともな
い、その部分がHIP処理中のさらなる変形時に破損す
る場合があった。このことによって、歩留まり低下によ
る生産性効率の低下を招くおそれがあった。
However, this foil capsule (Japanese Unexamined Patent Publication No. 4-99207) has a problem in that, in the HIP process, due to distortion of the welded portion caused at the initial deformation due to lap welding of one metal foil and the like. Due to the strain of the welded portion due to the initial deformation (wrinkle) of the foil capsule due to the pressure, that portion may be damaged during further deformation during the HIP treatment. As a result, there is a possibility that productivity may decrease due to a decrease in yield.

【0006】そこで本発明は、箔カプセルにおいて2重
カプセルに構成することで、箔の初期変形時のひずみに
ともなう破損を防ぐとともに、カプセル内の被処理体に
おいて優先的に変形を選択することができる等方圧加圧
処理用カプセルを提供することが目的である。
Therefore, according to the present invention, by forming the foil capsule into a double capsule, it is possible to prevent the foil from being damaged due to the strain at the initial deformation, and preferentially select the deformation in the object to be treated in the capsule. It is an object to provide a capsule for isotropic pressure application processing that can be performed.

【0007】[0007]

【課題を解決するための手段】本発明は、セラミック
ス、金属もしくは樹脂等の被処理体3を、30μm〜3
00μmの厚さの金属箔1、2内に収納し、該金属箔
1、2を重ね溶接6することで封入しているカプセルで
あって、前述の目的を達成するために、次の技術的手段
を講じている。
According to the present invention, an object to be treated 3 made of ceramics, metal, resin or the like is provided in an amount of 30 μm to 3 μm.
A capsule which is housed in metal foils 1 and 2 having a thickness of 00 μm and is sealed by lap welding 6 of the metal foils 1 and 2. I am taking steps.

【0008】すなわち、本発明では、前記カプセルを構
成する金属箔1、2上に、該金属箔1、2とは別の金属
箔8を重ね溶接9していることを特徴とするものであ
る。また、本発明では、前記金属箔1、2、8の厚さが
30μm〜300μmとされていることが望ましく、更
に、前記別の金属箔8を、前記カプセルを構成する金属
箔1、2の両外面上に重ね溶接していることが望まし
い。
That is, the present invention is characterized in that a metal foil 8 different from the metal foils 1 and 2 is lap-welded 9 on the metal foils 1 and 2 constituting the capsule. . Further, in the present invention, it is desirable that the thickness of the metal foils 1, 2 and 8 is 30 μm to 300 μm, and further, that the other metal foil 8 is the metal foils 1 and 2 constituting the capsule. It is desirable to carry out lap welding on both outer surfaces.

【0009】また、前記カプセルを構成する金属箔1、
2の重ね溶接6部位と、前記別の金属箔8の重ね溶接9
部位とを被処理体3の外周域で内外異なる部位としてい
ることが、封入性を確実にできる点で有利である。更
に、前記カプセルを構成する金属箔1、2の少なくとも
いずれか一方が被処理体3の収納凹部5を有するときに
は被処理体の位置決めが確実であり、前記収納凹部5が
複数とされていることにより、ひとつの箔カプセルで複
数の被処理体の位置決めと加圧処理が可能となる。
Further, the metal foil 1 constituting the capsule,
2 lap welding 6 parts and lap welding 9 of the other metal foil 8
It is advantageous that the site and the site differ from each other in the outer peripheral area of the object 3 in terms of ensuring the encapsulation. Further, when at least one of the metal foils 1 and 2 forming the capsule has the storage recess 5 for the target 3, the position of the target is surely determined, and the plurality of storage recesses 5 are provided. As a result, one foil capsule can position and pressurize a plurality of objects to be processed.

【0010】本発明によると、箔カプセルの処理を確実
に可能になったため、歩留まり向上し、コストダウンが
できて資源の有効利用となる。また、被成形体の変形部
分を優先的に選択できるために、被成形体の後加工を考
慮したニアネット成形(後加工を最大限減らす)が実施
でき、このように後加工時間の短縮による生産効率が向
上し、コストダウンができる。
According to the present invention, since the processing of the foil capsule can be surely performed, the yield can be improved, the cost can be reduced, and the resources can be effectively used. In addition, since the deformed part of the molded object can be selected preferentially, near net molding (post-processing can be reduced as much as possible) in consideration of post-processing of the molded object can be performed. Production efficiency is improved and cost can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態のいく
つかを図を参照しつつ説明する。 (実施の形態の1)図1に本発明の第1実施の形態に係
る箔カプセル4の製作方法とこの箔カプセル4を使用し
た熱間等方圧加圧(HIP)装置によるHIP処理の一
連を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a series of HIP processing by a hot isostatic pressing (HIP) apparatus using the method for producing a foil capsule 4 according to a first embodiment of the present invention and the foil capsule 4. Is shown.

【0012】図1において、板厚100μmのステンレ
ス箔で示す2枚の金属箔1、2のうち一方、図では金属
箔1について絞り成形によって被処理体3の収納凹部5
を形成している。本実施の形態では絞り成形は、平板状
の金属箔2を金型にセットしてプレス装置を利用して実
施した。
In FIG. 1, one of two metal foils 1 and 2 shown by a stainless steel foil having a plate thickness of 100 μm, in the figure, the metal foil 1 is drawn to form a recess 5 for accommodating an object 3 to be processed.
Is formed. In the present embodiment, the draw forming is performed by setting the flat metal foil 2 in a mold and using a pressing device.

【0013】次いで、前記収納凹部5に、154mm角
で厚さ5mmのアルミナ系セラミックス粉末体で示す被
処理体3を嵌入収納し、この金属箔2上に平板状の金属
箔1を組み込んで、真空チャンバー内のターンテーブル
上に乗せ、真空度10-3Torr程度の真空引きを行っ
た後、前記ターンテーブルを回転させながら抵抗溶接の
一種であるシーム溶接により金属箔1、2を真空中で重
ね溶接6して箔カプセル7を製作し、該箔カプセル7の
外側、実施例では平板状金属箔1の上に、厚さ100μ
mのステンレス箔で示す別の金属箔8を重ねて、前記重
ね溶接6の部分よりも外方位置において金属箔1のフラ
ンジ部1Aと別の金属箔8とを重ね溶接9することによ
り2重カプセル10としている。
Then, the object to be treated 3 represented by an alumina-based ceramics powder body of 154 mm square and 5 mm thick is fitted and housed in the housing recess 5, and the flat metal foil 1 is incorporated on the metal foil 2. After placing it on a turntable in a vacuum chamber and performing vacuuming at a vacuum degree of about 10 -3 Torr, while rotating the turntable, the metal foils 1 and 2 are vacuumed by seam welding which is a kind of resistance welding. The foil capsule 7 is manufactured by lap welding 6 and the thickness of 100 μm is provided on the outside of the foil capsule 7, that is, on the flat metal foil 1 in the embodiment.
By overlapping another metal foil 8 indicated by a stainless steel foil of m, and lap-welding 9 the flange portion 1A of the metal foil 1 and the other metal foil 8 at a position outside the lap-welding 6 portion, double welding is performed. Capsule 10 is used.

【0014】なお、前記の重ね溶接9については、これ
を真空チャンバー内で実施することが望ましいが、真空
チャンバー外で実施することもできる。上記のように構
成された2重カプセル10の10個をHIP装置11内
に段重ねしてセットし、一番上には変形防止のために軟
鋼色円板で示す重り12を置いた状態で、HIP温度:
1020℃、HIP圧力:1500kgf/cm2 の下
で2時間のHIP処理を実施した。
The lap welding 9 is preferably carried out in a vacuum chamber, but it can also be carried out outside the vacuum chamber. Ten double capsules 10 configured as described above are stacked and set in a HIP device 11, and a weight 12 indicated by a mild steel color disc is placed on the top to prevent deformation. , HIP temperature:
HIP treatment was carried out at 1020 ° C. and HIP pressure: 1500 kgf / cm 2 for 2 hours.

【0015】HIP成形後のカプセル(外観状況)は、
軸方向、及び半径方向に一様に変形していた。尚、カプ
セルは、10カプセルとも外観上、破損部分はなかっ
た。HIP処理後、箔カプセル10を金切り鋏12で除
去加工して、被成形体を取り出したところ、10個とも
に所定の形状、密度を確保できた内部欠陥のない製品と
なっていた。
The capsule (appearance condition) after HIP molding is
It was deformed uniformly in the axial direction and the radial direction. All 10 capsules had no damaged parts in appearance. After the HIP treatment, the foil capsules 10 were removed with the gold-cutting scissors 12 and the molded products were taken out. As a result, all 10 products had a predetermined shape and density and were free from internal defects.

【0016】(実施の形態の2)図2において、厚みが
100μmの2枚のステンレス箔で示す金属箔1、2を
素材としてその三方をシーム抵抗溶接13にて幅100
mm、長さ150mmで一端に間口部14を有する封筒
状の袋15を形成した。溶接条件は、電流1000A、
加圧力50kg、溶接速度1m/minで行った。
(Embodiment 2) In FIG. 2, metal foils 1 and 2 shown as two stainless steel foils having a thickness of 100 μm are used as raw materials, and three sides thereof are seam resistance welded to have a width of 100.
An envelope-shaped bag 15 having a length of mm and a length of 150 mm and an opening portion 14 at one end was formed. Welding conditions are current 1000A,
The pressure was 50 kg and the welding speed was 1 m / min.

【0017】前記袋15に、その開口部14から相対密
度65%のTbFeCo成形体である被処理体3を挿入
した後、真空度10-3Torr程度の真空チャンバー内
の作業台に前記袋15をセットし、真空引きを行った
後、シーム溶接機を用いて真空中で開口部14側を重ね
溶接6して箔カプセル7を製作し、該箔カプセル7の両
外面に、前記金属箔1、2より大きめで厚みが100μ
mのステンレス箔で示す別の金属箔8の2枚を重ね、そ
の四周を重ね溶接9することにより2重カプセル10を
製作した。
After inserting the object 3 to be processed, which is a TbFeCo molded body having a relative density of 65%, into the bag 15 from the opening portion 14, the bag 15 is placed on a work table in a vacuum chamber having a vacuum degree of about 10 -3 Torr. Set, and after vacuuming, the opening 14 side is lap-welded 6 in vacuum using a seam welding machine to manufacture a foil capsule 7, and the metal foil 1 is formed on both outer surfaces of the foil capsule 7. Larger than 2 and 100μ thick
A double capsule 10 was manufactured by stacking two sheets of another metal foil 8 represented by a stainless steel foil of m, and laminating and welding 9 of the four circumferences.

【0018】この2重カプセル10を、HIP装置11
の中に装入して10kgf/cm2程度の圧力でHIP
装置11の処理室をガス置換した後、800℃まで真空
昇温し、この温度を1時間保持した熱処理を実施した。
この熱処理では一度圧力をかけているので箔カプセル1
0が被処理体3の表面に十分になじんだ状態となってお
り、その後の真空昇温によって箔カプセル10のシワ部
分が軟らかくなっていた。
The double capsule 10 is attached to the HIP device 11
HIP with a pressure of about 10 kgf / cm 2
After the gas in the processing chamber of the apparatus 11 was replaced with a gas, the temperature was raised to 800 ° C. in vacuum and the temperature was held for 1 hour to perform heat treatment.
In this heat treatment, pressure is applied once, so foil capsule 1
0 was in a state of being sufficiently adapted to the surface of the object to be treated 3, and the wrinkle portion of the foil capsule 10 was softened by the subsequent vacuum temperature rise.

【0019】上記の熱処理に引き続いて、同一のHIP
装置内で温度:860℃、圧力:2000kgf/cm
2 の下で2時間のHIP処理を実施した。HIP成形
後、箔カプセルには小さなシワがでていたが被処理体と
相似形状にうまく収縮していた。HIP処理後、箔カプ
セル10を金切り鋏12で除去加工して被処理体3を取
り出した処、相対密度が99.5%まで上げることがで
きた。
Following the above heat treatment, the same HIP
Temperature: 860 ° C, pressure: 2000 kgf / cm in the device
The HIP treatment for 2 hours was carried out under 2. After the HIP molding, there were small wrinkles on the foil capsule, but the foil capsule shrank to a shape similar to that of the object to be treated. After the HIP treatment, the foil capsule 10 was removed with the gold scissors 12 and the object 3 to be treated was taken out, whereby the relative density could be increased to 99.5%.

【0020】(実施の形態の3)図3において、厚み1
00μmのステンレス箔で示す2枚の金属箔1、2の一
方について実施例の1と同様に絞り成形によって収納凹
部5を形成し、この金属箔1、2を組み合わせ状態で真
空中で熱処理する。この熱処理条件は、1050℃x1
分(真空度:10-3Torr)で、昇温速度400℃/
h(室温〜900℃)、50℃/h(900〜1050
℃)尚、冷却速度は、炉冷とした。
(Embodiment 3) In FIG. 3, thickness 1
A storage recess 5 is formed by draw forming on one of the two metal foils 1 and 2 shown as a 00 μm stainless steel foil in the same manner as in Example 1, and the metal foils 1 and 2 are heat treated in a vacuum in a combined state. This heat treatment condition is 1050 ° C x 1
Minute (vacuum degree: 10 -3 Torr), heating rate 400 ° C /
h (room temperature to 900 ° C), 50 ° C / h (900 to 1050)
The cooling rate was furnace cooling.

【0021】上記工程を経て製作した絞り成形した箔
と、ステンレス箔を一組にしてその間に、酸素ゲッタ材
として、Ta箔を袋状にしたカプセル中にアルミナ系セ
ラミックス粉末成形体(200mmφx5t)で示す被
成形体3を挿入して収納凹部5にセットした。このTa
箔は、ゲッター材であるとともに、カプセルとしての気
密性をもたせるために、真空チャンバ内で、(真空10
-3Torr程度)でターンテーブル上に乗せてカプセル
内の真空引きを行った後、ターンテーブルを回転させな
がら、抵抗溶接の一種であるシーム溶接により箔カプセ
ルを真空中で溶接した。
A draw-formed foil produced through the above steps and a stainless foil are combined into a set, and an oxygen-based gettering material is formed between the foil and a Ta-foil-shaped capsule formed of an alumina ceramic powder compact (200 mmφ × 5 t). The molded body 3 shown was inserted and set in the storage recess 5. This Ta
The foil is a getter material, and in order to have airtightness as a capsule, the foil (vacuum 10
After evacuating the capsule by placing it on a turntable at about -3 Torr), the foil capsule was welded in vacuum by seam welding, which is a type of resistance welding, while rotating the turntable.

【0022】上記の通り、溶接箇所をステンレス箔同士
とTa箔同士の2箇所に増やすことで溶接部分の信頼性
向上(HIP処理での歩留まり向上)をはかることがで
きた。上記のようにして製作した2重カプセルをHIP
装置に搬入してセットし、このカプセルをHIP装置内
で、950℃x2000kgf/cm2 の処理条件で2
時間HIP処理を実施した。
As described above, it was possible to improve the reliability of the welded portion (improve the yield in the HIP process) by increasing the number of welded portions to two portions, that is, between the stainless foils and between the Ta foils. HIP the double capsule manufactured as above
And set loaded in the apparatus, the capsule in a HIP apparatus, 2 in the processing conditions of 950 ℃ x2000kgf / cm 2
HIP treatment was carried out for an hour.

【0023】HIP成形後のカプセルの外観状況は、特
に、軸方向に変形が大きく、半径方向にも変形してい
た。尚、カプセル自体外観上、破損部分はなかった。H
IP処理後、箔カプセルを金切り鋏で除去加工した。ア
ルミナ系セラミックス成形体は、所定の形状、密度を確
保できた内部欠陥のない製品となった。
Regarding the appearance of the capsule after HIP molding, the capsule was especially deformed in the axial direction and was also deformed in the radial direction. In addition, there was no damaged part in the appearance of the capsule itself. H
After the IP treatment, the foil capsule was subjected to removal processing with gold scissors. The alumina-based ceramic molded body was a product having a predetermined shape and density and having no internal defects.

【0024】(実施の形態の4)図4において厚み10
0μmのステンレス箔1、2の一方をプレス成形機によ
って絞り成形して収容凹部5を形成し、両箔1、2を組
み合わせた状態にて真空中で熱処理した。この熱処理条
件は、1100℃x1分(真空度;10-3Torr)
で、昇温速度400℃/h(室温〜900℃)、50℃
/h(1000〜1100℃)尚、冷却速度は、炉冷と
した。
(Embodiment 4) Thickness 10 in FIG.
One of the 0 μm stainless steel foils 1 and 2 was drawn by a press molding machine to form a housing recess 5, and the foils 1 and 2 were combined and heat-treated in a vacuum. This heat treatment condition is 1100 ° C. × 1 minute (vacuum degree: 10 −3 Torr)
At a heating rate of 400 ° C / h (room temperature to 900 ° C), 50 ° C
/ H (1000 to 1100 ° C) The cooling rate was furnace cooling.

【0025】上記工程を経て製作した絞り成形した箔
と、ステンレス箔を一組にして金属系焼結体を(154
mmφx5t)を箔カプセル内にセットした。上記カプ
セルを真空チャンバー内(真空10-3Torr程度)で
ターンテーブル上に乗せてカプセル内の真空引きを行っ
た後、ターンテーブルを回転させながら抵抗溶接の一種
であるシーム溶接により箔カプセルを真空中で溶接6し
た。
A metal-based sintered body (154) is formed by combining a draw-formed foil manufactured through the above steps and a stainless steel foil as a set.
mmφ × 5t) was set in a foil capsule. After placing the capsule on a turntable in a vacuum chamber (vacuum of about 10 −3 Torr) to evacuate the capsule, the foil capsule is vacuumed by seam welding which is a kind of resistance welding while rotating the turntable. Welded 6 inside.

【0026】さらに、フラットなステンレス箔8の2枚
を追加して重ね溶接9した。その結果、カプセルの厚み
が、凹凸面は、100μm。フラット面は、300μm
となり、この厚みの変化により、成形体の凹凸面に接し
た部分から優先的に変形が進行して成形体にのフラット
面に接した部分は、そのままフラットな面を確保でき
た。
Furthermore, two flat stainless foils 8 were added and lap welded 9. As a result, the thickness of the capsule was 100 μm on the uneven surface. Flat surface is 300 μm
Due to this change in thickness, the deformation was preferentially advanced from the portion in contact with the uneven surface of the molded body, and the flat surface could be secured as it was in the portion in contact with the flat surface of the molded body.

【0027】上記の要領で製作した2重箔カプセル10
の5個を特製の軟鋼製ケース16にセットしてこのケー
スを3段積み重ねてHIP装置11内にセットした。こ
のカプセルをHIP装置内で、以下の処理条件でHIP
処理を実施した。 (HIP処理条件:860℃x1500kgf/cm2
x2h) HIP成形後のカプセル(外観状況)は、軸方向、及び
半径方向に一様に変形していた。尚、カプセルは15個
のいずれのカプセルとも外観上、破損部分はなかった。
Double-foil capsule 10 manufactured as described above.
5 pieces were set in a special case 16 made of mild steel, and the cases were stacked in three stages and set in the HIP device 11. This capsule is HIPed in the HIP device under the following processing conditions.
The treatment was carried out. (HIP treatment condition: 860 ° C x 1500 kgf / cm 2
x2h) The capsule (appearance condition) after HIP molding was uniformly deformed in the axial direction and the radial direction. All 15 capsules had no damaged parts in appearance.

【0028】また、箔カプセルを5個ずつ各ケースに納
めているので、カプセルの変形にともなうカプセルの落
下などは、全くなくそれにともなう製品への割れ、クラ
ック等の影響もなかった。HIP処理後、箔カプセルを
金切り鋏で除去加工した。金属系焼結体は、15個とも
に、所定の形状、密度を確保できた内部欠陥のない製品
となった。
Further, since five foil capsules are housed in each case, there is no drop of the capsule due to deformation of the capsule, and there is no influence such as cracks or cracks on the product. After the HIP treatment, the foil capsules were removed and processed with gold scissors. All of the 15 metal-based sintered bodies were products without internal defects that could secure a predetermined shape and density.

【0029】(実施の形態の5)図5に示すように厚み
がそれぞれ50μmの2枚のステンレス箔1、2を素材
にして、その三方をシーム抵抗溶接13にて幅100m
m長さ100mmの封筒状の袋部15に形成し、この袋
部15の開口14から相対密度90%の圧電用セラミッ
クス成形体で示す被処理体3を挿入した。
(Embodiment 5) As shown in FIG. 5, two stainless foils 1 and 2 each having a thickness of 50 μm are used as materials, and three sides thereof are 100 m wide by seam resistance welding 13.
An envelope-shaped bag portion 15 having a length of 100 mm was formed, and an object to be processed 3 represented by a piezoelectric ceramics molded body having a relative density of 90% was inserted from an opening 14 of the bag portion 15.

【0030】上記袋部15を真空チャンバー内(真空1
-3Torr程度)で作業台にセットして袋部15内の
真空引きを行った後、開口14側をシーム溶接機で真空
中で溶接6した。さらに2枚の厚みがそれぞれ100μ
mのステンレス箔を素材にして、シーム抵抗溶接にて幅
150mm長さ150mmの封筒状に形成して2重カプ
セル10とした。溶接条件は、実施の形態の2と同様で
ある。
The bag portion 15 is placed in a vacuum chamber (vacuum 1
After setting the work table at about 0 -3 Torr) to evacuate the inside of the bag portion 15, the opening 14 side was welded 6 in a vacuum by a seam welding machine. Furthermore, the thickness of the two sheets is 100μ each
A double-capsule 10 was prepared by seam resistance welding using a stainless steel foil of m as a material to form an envelope having a width of 150 mm and a length of 150 mm. The welding conditions are the same as in the second embodiment.

【0031】上記カプセル10をセット用治具に並べて
から、その治具ごとHIP装置の中にいれて最高圧力1
0kgf/cm2 に制限した中で、ガス置換した後、1
050℃まで真空昇温させた。10kgf/cm2 程度
の圧力で、カプセルが成形体表面に十分になじんだ状態
にした。このとき、箔にシワが生じて部分的に硬化して
いるが、その後、真空中で1050℃までの昇温によ
り、箔自体を溶体化処理した。
After arranging the capsules 10 on a jig for setting, put the jig together with the jig into a HIP device and set the maximum pressure to 1
After the gas was replaced while limiting to 0 kgf / cm 2 , 1
The vacuum temperature was raised to 050 ° C. With a pressure of about 10 kgf / cm 2 , the capsule was brought into a state in which it was sufficiently conformed to the surface of the molded body. At this time, the foil was wrinkled and partially hardened, but thereafter, the foil itself was solution-treated by raising the temperature to 1050 ° C. in a vacuum.

【0032】このカプセルを上記の熱処理に引き続き、
圧力を所定の1000kgf/cm 2 、温度を1150
℃まで昇温した。そのときの処理条件を以下に示す。 1150℃x1000kgf/cm2 x1h HIP成形後、カプセルは、小さなシワがでていたが、
処理品と相似形状にうまく収縮していた。
Following the above heat treatment, the capsules were
Pressure of 1000kgf / cm 2, Temperature 1150
The temperature was raised to ° C. The processing conditions at that time are shown below. 1150 ° C x 1000kgf / cm2After xlh HIP molding, the capsule had small wrinkles,
It shrank to a similar shape to the processed product.

【0033】HIP処理後、箔カプセルを金切り鋏で除
去加工したところ圧電用セラミックス成形体は、相対密
度が、99.9%まで上げることができた。 (実施の形態の6)図6において、厚み125μmのチ
タン箔で示す2枚の金属箔1、2の両者を金型にセット
して、プレス装置を利用して絞り成形によって両者に凹
部5を形成した。
After the HIP treatment, the foil capsule was removed with gold scissors, and the relative density of the piezoelectric ceramic compact could be increased to 99.9%. (Embodiment 6) In FIG. 6, both of two metal foils 1 and 2 shown by a titanium foil having a thickness of 125 μm are set in a mold, and a recess 5 is formed in both by foil forming using a pressing device. Formed.

【0034】この絞り成形したチタン箔を真空中で熱処
理した。この熱処理条件は、700℃x1分(真空度;
10-3Torr)で、昇温速度400℃/h(室温〜7
00℃)尚、冷却速度は、炉冷とした。上記工程を経て
製作した絞り成形したチタン箔2枚を一組にしてチタン
合金化合物らなる粉末成形体(200mmφx5t)を
198φx3mmの円板(上下2枚)からなるBN成形
体のスペーサ17との組み合わせで、箔カプセル内にセ
ットした。
The draw-formed titanium foil was heat-treated in vacuum. This heat treatment condition is 700 ° C. × 1 minute (vacuum degree;
10 -3 Torr, heating rate 400 ° C./h (room temperature to 7)
The cooling rate was furnace cooling. A combination of two powder-formed titanium foils (200mmφx5t) made of a titanium alloy compound and a spacer 17 of a BN molded body made of 198φx3mm discs (two upper and lower) by combining two drawn titanium foils produced through the above steps. Then, set it in a foil capsule.

【0035】このカプセルを真空チャンバー内(真空1
-3Torr程度)でターンテーブル上に乗せてカプセ
ル内の真空引きを行った後、ターンテーブルを回転させ
ながら抵抗溶接の一種であるシーム溶接により箔カプセ
ルを真空中で溶接6した。上記工程を経て製作した絞り
成形したチタン箔もう1セット2枚を準備して上記3工
程で製作したチタン箔カプセルに、チタン円板(上下2
枚)を加えた構成で箔カプセル内にセットした。この
後、上記同様に溶接して二重カプセル10とした。
This capsule is placed in a vacuum chamber (vacuum 1
The capsule was evacuated by placing it on a turntable at 0 -3 Torr), and then the foil capsule was welded 6 in vacuum by seam welding, which is a kind of resistance welding, while rotating the turntable. Prepare another set of two draw-formed titanium foils manufactured through the above process, and put the titanium disk (upper and lower 2
It was set in a foil capsule in a configuration in which the number of sheets) was added. Thereafter, the double capsule 10 was welded in the same manner as above.

【0036】上記の2重カプセルを10それぞれセット
用棚において、その棚ごとをHIP装置に搬入した。こ
のカプセルをHIP装置内で、930℃x2000kg
f/cm2 x1hの処理条件でHIP処理を実施した。
HIP成形後のカプセル(外観状況)は、特に、軸方向
に変形が大きく、半径方向にも変形していた。尚、カプ
セル自体外観上、破損部分はなかった。
Each of the above-mentioned double capsules was set in 10 shelves, and each of the shelves was carried into the HIP device. This capsule is 930 ℃ × 2000kg in the HIP device.
HIP processing was implemented on the processing conditions of f / cm < 2 > x1h.
The capsule (appearance condition) after HIP molding was particularly deformed in the axial direction and was also deformed in the radial direction. In addition, there was no damaged part in the appearance of the capsule itself.

【0037】HIP処理後、箔カプセルを金切り鋏で除
去加工した。チタン合金成形体は、所定の形状、密度を
確保できた内部欠陥のない製品となった。 (実施の形態の7)図7において、厚み100μmのス
テンレス箔で示す金属箔1、2の一方に、12個の凹部
5を形成し、凹部5に相対密度90%の圧電用セラミッ
クス成形体で示す被処理体3を収め、真空チャンバー内
(真空10-3Torr程度)で作業台にセットして真空
引きを行った後、その真空チャンバー内のシーム溶接機
で全周溶接6した。さらに、100μmのステンレス箔
を上記フラットの箔1の外側から溶接9して2重カプセ
ル10とした。この2重カプセルの採用で、カプセルの
破損率を低減するとともに、凹凸面からの変形を優先し
た。
After the HIP treatment, the foil capsules were removed and processed with gold scissors. The titanium alloy molded body was a product having a predetermined shape and density and having no internal defects. (Embodiment 7) In FIG. 7, 12 recesses 5 are formed in one of the metal foils 1 and 2 shown as a stainless steel foil having a thickness of 100 μm, and the recesses 5 are formed of piezoelectric ceramic molded bodies having a relative density of 90%. The object to be treated 3 shown in the figure was housed, set on a workbench in a vacuum chamber (vacuum of about 10 −3 Torr) and evacuated, and then all-around welding 6 was performed by a seam welding machine in the vacuum chamber. Further, a 100 μm stainless steel foil was welded 9 from the outside of the flat foil 1 to form a double capsule 10. By adopting this double capsule, the breakage rate of the capsule was reduced and the deformation from the uneven surface was prioritized.

【0038】上記2重カプセルを棚付きのセット治具
に、10カプセルセット後、HIP装置の中にセット治
具ごと搬入して、最高圧力5kgf/cm2 に制限した
中で、ガス置換した後、1050℃まで真空昇温させる
とともに5kgf/cm2 程度の圧力で、カプセルが成
形体表面に十分になじんだ状態にした。このとき、箔に
シワが生じて部分的に硬化していたが、その後、真空中
での1050℃昇温により、箔自体を溶体化処理した。
After setting 10 capsules of the above-mentioned double capsules on a set jig with a shelf, the set jig was carried into the HIP device together with the maximum pressure of 5 kgf / cm 2 , and after gas replacement. The capsules were sufficiently acclimated to the surface of the molded body by raising the temperature to 1050 ° C. in vacuum and applying a pressure of about 5 kgf / cm 2 . At this time, the foil had wrinkles and was partially cured, but thereafter, the foil itself was subjected to solution treatment by heating at 1050 ° C. in a vacuum.

【0039】このカプセルを上記熱処理に引き続き、圧
力を所定の1000kgf/cm2温度を1100℃ま
で昇温し、1100℃x1000kgf/cm2 x2h
の処理条件でHIP処理した。HIP成形後、カプセル
は、各製品ごとに小さなシワがでていたが、処理品と相
似形状にうまく収縮していた。HIP処理後、箔カプセ
ルを金切り鋏で除去加工して取り出した圧電用セラミッ
クス成形体は、相対密度が、99.9%まで上げること
ができた。
Subsequent to the heat treatment of the capsule, the pressure was raised to a predetermined temperature of 1000 kgf / cm 2 up to 1100 ° C., and the temperature was 1100 ° C. × 1000 kgf / cm 2 × 2 h.
HIP processing was carried out under the processing conditions of. After the HIP molding, the capsule had small wrinkles on each product, but it shrank well to a similar shape to the treated product. After the HIP process, the relative density of the piezoelectric ceramic molded body that was taken out by removing the foil capsule with gold-cutting scissors and was taken out could be increased to 99.9%.

【0040】(実施の形態の8)図8において、厚み1
00μmとされた2枚のステンレス箔のうち一方を絞り
成形したものを準備する。このステンレス箔の成形は、
金型にセットして、プレス成形機で多数個絞り成形を実
施した。この絞り成形したステンレス箔を真空中で熱処
理した。この熱処理条件は、800℃x5分(大気中)
昇温速度400℃/h(室温〜700℃)、50℃/h
(700〜800℃)尚、冷却速度は、炉冷とした。
(Embodiment 8) In FIG. 8, thickness 1
One of two stainless steel foils having a thickness of 00 μm is drawn and prepared. The molding of this stainless steel foil is
After being set in a mold, a large number of draw-formed products were formed using a press molding machine. This draw-formed stainless steel foil was heat-treated in vacuum. This heat treatment condition is 800 ° C x 5 minutes (in air)
Temperature rising rate 400 ° C / h (room temperature to 700 ° C), 50 ° C / h
(700 to 800 ° C.) The cooling rate was furnace cooling.

【0041】上記工程を経て製作した絞り成形した箔
と、ステンレス箔を一組にして金属粉末で示す被処理体
3を上記箔カプセルの中に充填した。上記カプセルをタ
ーンテーブル上に乗せて、ターンテーブルの回転ととも
にシーム溶接により、一部を残して溶接6した。上記カ
プセルを真空チャンバー内(真空10-3Torr程度)
でターンテーブル上に乗せてカプセル内の真空引きを行
った。この時の真空脱気は粉末の吹き出しを防ぐために
真空チャンバーへのルートを最初絞りつつ真空引きを開
始した。また、粉末に含まれている水分等を積極的に除
くために、ターンテーブルに取り付けているヒータ温度
を200℃まで加熱しながらカプセル内の脱気処理をし
た。
The foil 3 produced by the above steps and the stainless foil were combined into a set, and the object 3 to be treated represented by metal powder was filled in the foil capsule. The capsule was placed on a turntable, and was welded 6 by seam welding with the rotation of the turntable while leaving a part. The capsule is placed in a vacuum chamber (vacuum is about 10 -3 Torr)
Then, it was put on the turntable and the inside of the capsule was evacuated. The vacuum deaeration at this time started vacuuming while first narrowing the route to the vacuum chamber in order to prevent the powder from blowing out. Further, in order to positively remove water and the like contained in the powder, the capsule was deaerated while heating the heater attached to the turntable to 200 ° C.

【0042】その結果、粉末をカプセル外に噴出するこ
となく加熱脱気ができた。その後、残りの部分を溶接を
実施した。さらに、絞り成形/フラット箔を1セット準
備して、通常の溶接9を実施して2重カプセル10とし
た。これにより、その後のHIP処理等によるカプセル
の破損率を従来の1重カプセル採用時の2%を0.5%
まで低減した。
As a result, it was possible to perform degassing by heating without ejecting the powder outside the capsule. After that, the remaining portion was welded. Further, one set of draw forming / flat foil was prepared, and ordinary welding 9 was carried out to obtain a double capsule 10. As a result, the damage rate of the capsule due to the subsequent HIP treatment is 0.5% compared to 2% when the conventional single capsule is adopted.
Reduced to

【0043】上記2重箔カプセル10の5個を特製の軟
鋼製ケースにセットしてこのケースを3段積み重ねてH
IP装置内にセットした。このカプセルをHIP装置内
で、860℃x1500kgf/cm2 の処理条件で2
時間HIP処理を実施した。HIP成形後のカプセル
(外観状況)は、軸方向、及び半径方向に一様に変形し
ていた。尚、15個のカプセルはいずれも外観上、破損
部分はなかった。また、箔カプセルを5個ずつ各ケース
に納めているので、カプセルの変形にともなうカプセル
の落下などは、全くなくそれにともなう製品への割れ、
クラック等の影響もなかった。
Five of the double-foil capsules 10 are set in a special case made of mild steel, and the cases are stacked in three stages to form H.
It was set in the IP device. The capsules in the HIP apparatus, 2 in the processing conditions of 860 ℃ x1500kgf / cm 2
HIP treatment was carried out for an hour. The capsule (appearance condition) after HIP molding was uniformly deformed in the axial direction and the radial direction. All 15 capsules had no damaged parts in appearance. In addition, since 5 foil capsules are stored in each case, there is no drop of the capsule due to deformation of the capsule, and there is no crack in the product due to it.
There was no effect such as cracks.

【0044】HIP処理後、箔カプセルを金切り鋏で除
去加工して取り出した処、金属系焼結体は、15個とも
に、所定の形状、密度を確保できた内部欠陥のない製品
となった。 (失敗例の1)2枚の厚みがそれぞれ100μmのステ
ンレス箔を素材にして、シーム抵抗溶接にて幅150m
m長さ150mmの封筒状に形成した。溶接条件は、実
施例の2と同様とした。
After the HIP treatment, the foil capsules were removed with gold-cutting scissors and taken out. As a result, all 15 of the metal-based sintered bodies were products without internal defects, which had a predetermined shape and density. . (Failure example 1) 150m wide by seam resistance welding, using two stainless steel foils each with a thickness of 100 μm
It was formed in an envelope shape having a length of 150 mm. The welding conditions were the same as in Example 2.

【0045】箔カプセルにセットしたのは、相対密度9
0%の圧電用セラミックス成形体とした。上記カプセル
を真空チャンバー内(真空10-3Torr程度)で作業
台にセットしてカプセル内の真空引きを行った後、シー
ム溶接機で真空中で溶接して一重のカプセルを製作し
た。
The foil capsules were set to have a relative density of 9
A 0% piezoelectric ceramic compact was prepared. The capsule was set on a workbench in a vacuum chamber (vacuum of about 10 −3 Torr) to evacuate the capsule, and then welded in a vacuum with a seam welder to produce a single capsule.

【0046】上記カプセルをHIP装置の中にいれて最
高圧力10kgf/cm2 に制限した中で、ガス置換し
た後、同時に昇温昇圧した。そのときの処理条件を以下
に示す。 1150℃x1000kgf/cm2 x1h HIP成形後、カプセルは、小さなシワが多数でてお
り、そのうち、溶接近傍部分にカプセルの破損分があっ
た。
The above capsules were placed in a HIP device, and while the maximum pressure was limited to 10 kgf / cm 2 , the gas was replaced, and then the temperature was raised simultaneously. The processing conditions at that time are shown below. After the HIP molding at 1150 ° C. × 1000 kgf / cm 2 × 1h, the capsule had many small wrinkles, of which there was a broken portion in the vicinity of the weld.

【0047】HIP処理後、箔カプセルを金切り鋏で除
去加工して取り出したところ圧電用セラミックス成形体
は、相対密度は92%程度で、十分な密度向上がみられ
ず、箔カプセルが最後まで気密を保つことができなかっ
た。 (失敗例の2)円筒形状の直径150φ、高さ200m
m(厚み1mm)程度のカプセルを準備して、金属焼結
体148φx5mmをアルミナスペーサと積層状態でセ
ットした。
After the HIP treatment, the foil capsule was removed with gold-cutting scissors and taken out. The relative density of the piezoelectric ceramic molded body was about 92%, and the density was not sufficiently improved. I couldn't keep it airtight. (2 of failure example) Cylindrical diameter 150φ, height 200m
A capsule of about m (thickness 1 mm) was prepared, and a metal sintered body 148φ × 5 mm was set in a laminated state with an alumina spacer.

【0048】上記カプセルを電子ビーム溶接した気密な
カプセルを確保した。ここで、電子ビーム溶接は真空チ
ャンバー内で実施のため溶接時には、カプセル内を真空
に保って行った。カプセルをHIP装置に搬入して、8
50℃x1000kgf/cm2 のHIP処理条件で2
時間HIP処理した。
An airtight capsule obtained by electron beam welding the above capsule was secured. Here, since the electron beam welding is carried out in a vacuum chamber, the inside of the capsule was kept vacuum during welding. Load the capsule into the HIP device and
2 under HIP treatment conditions of 50 ° C x 1000 kgf / cm 2
HIPed for hours.

【0049】HIP処理後、カプセル除去して、製品を
取り出してみると、カプセル内で、製品の位置がカプセ
ル外面からの収縮あとからだけでは、はっきりしなかっ
たため、カプセルの除去に時間がかかるとともに、製品
をカプセル除去加工時一部損傷した。また、カプセルの
剛性から影響を受けて、製品の変形量も大きく製品自体
の後加工が必要になった。
After the HIP treatment, the capsule was removed and the product was taken out. The position of the product in the capsule was not clear only after contraction from the outer surface of the capsule. Therefore, it took time to remove the capsule. , The product was partially damaged during the capsule removal process. In addition, the amount of deformation of the product was large due to the influence of the rigidity of the capsule, which required post-processing of the product itself.

【0050】本発明において、対象となる処理材料とし
ては、金属(焼結体)、セラミックス(焼結体)など多
種類の材料、複合材料全般に適用できるが、その対象形
状が、薄型成形品(円板、角板など)を主にすることか
ら、スパッタリングターゲット等の付加価値の高い製品
が主な対象となる。この金属焼結体、セラミックス焼結
体の製造方法においては、 1)各金属粉末(材質)に応じた成形温度、成形圧力、
保持時間からなるHIP処理条件を最適にすること 2)最適なカプセル材質(金属材質)の選定 3)スペーサとして使用する雛型材の材質選定 4)カプセル厚みの選定 5)熱処理温度の設定 等が重要となる。
In the present invention, the target processing material can be applied to various kinds of materials such as metal (sintered body) and ceramics (sintered body), and composite materials in general. The target shape is a thin molded product. Since it mainly uses (disks, square plates, etc.), products with high added value such as sputtering targets will be the main targets. In this method for producing a metal sintered body and a ceramics sintered body, 1) a molding temperature, a molding pressure corresponding to each metal powder (material),
Optimizing the HIP processing condition consisting of holding time 2) Selecting the optimum capsule material (metal material) 3) Selecting the material of the template material used as a spacer 4) Selecting the capsule thickness 5) Setting the heat treatment temperature etc. is important Becomes

【0051】また、カプセル材質の選定は、各処理材料
の金属粉末のHIP処理温度及び、処理材料との相性に
合わせて、その温度で十分な伸びを確保できるものを基
準に決定する。更に、スペーサとして用いる雛型材の材
質選定は、下記の項目を基準に選択する。
Further, the capsule material is selected based on the HIP treatment temperature of the metal powder of each treatment material and the one capable of ensuring sufficient elongation at that temperature in accordance with the compatibility with the treatment material. Further, the material for the template material used as the spacer is selected based on the following items.

【0052】金属粉末、セラミックス粉末成形体等と
の反応がないもの 製品と箔カプセルを雛型にするもの (十分な雛
型) HIP処理時にガス等の圧媒を十分に伝えるもの カプセルの厚みの範囲としては、30μm〜300μm
とすることが必要である。これは、30μmに満たない
ものでは、箔自体の気密性、ハンドリング時の破損等の
問題がある。
Products that do not react with metal powder, ceramic powder compacts, etc. Products and foil capsules as templates (sufficient templates) Those that sufficiently convey pressure medium such as gas during HIP processing The range is 30 μm to 300 μm
It is necessary to If the thickness is less than 30 μm, there are problems such as airtightness of the foil itself and damage during handling.

【0053】300μmを越えるものでは、箔本来の剛
性の小さいことによる(カプセル除去の容易性、製品に
対する剛性による影響が小さいこと)メリットが小さく
なること。さらに、表面の硬化による破損等の問題は小
さくなり熱処理による効果もほとんど必要なくなるから
である。
If the thickness exceeds 300 μm, the merit due to the original rigidity of the foil being small (the ease of removing the capsule and the small effect of the rigidity on the product) is reduced. Furthermore, problems such as damage due to surface hardening are reduced, and the effect of heat treatment is almost unnecessary.

【0054】尚、40μm〜200μmの間が箔カプセ
ルの変形の容易性、熱処理による効果での歪処理が期待
できるので好ましい。さらに、50μm〜150μmが
より好ましく、特に70μm〜100μmが最も上記効
果による生産効率がよい。カプセルを部分的に複数枚に
する時のカプセル選択方法は、成形体形状、変形工程等
を考慮して決定することになる。
The thickness of 40 μm to 200 μm is preferable because the foil capsule can be easily deformed and the strain treatment due to the heat treatment can be expected. Furthermore, 50 μm to 150 μm is more preferable, and particularly 70 μm to 100 μm is most effective in production efficiency due to the above effect. The capsule selection method when partially forming a plurality of capsules is determined in consideration of the shape of the molded body, the deformation process, and the like.

【0055】[0055]

【発明の効果】以上詳述した本発明によれば、確実な処
理が可能であってコストダウンが期待できて歩留まりが
向上できるし、資源の有効利用となる。また、被処理体
の変形部分を優先的に選択できることから、後加工を考
慮したニアネット成形ができて後加工時間の短縮によっ
て生産効率が向上する。
According to the present invention described in detail above, reliable processing is possible, cost reduction can be expected, yield can be improved, and resources can be effectively used. In addition, since the deformed portion of the object to be processed can be preferentially selected, near net molding can be performed in consideration of the post-processing, and the post-processing time is shortened, so that the production efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施の形態の工程図である。FIG. 1 is a process drawing of a first embodiment of the present invention.

【図2】本発明第2実施の形態の工程図である。FIG. 2 is a process drawing of the second embodiment of the present invention.

【図3】本発明第3実施の形態の工程図である。FIG. 3 is a process drawing of the third embodiment of the present invention.

【図4】本発明第4実施の形態の工程図である。FIG. 4 is a process drawing of the fourth embodiment of the present invention.

【図5】本発明第5実施の形態の工程図である。FIG. 5 is a process drawing of the fifth embodiment of the present invention.

【図6】本発明第6実施の形態の工程図である。FIG. 6 is a process drawing of the sixth embodiment of the present invention.

【図7】本発明第7実施の形態の工程図である。FIG. 7 is a process drawing of the seventh embodiment of the present invention.

【図8】本発明第8実施の形態の工程図である。FIG. 8 is a process drawing of the eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金属箔 2 金属箔 3 被処理体 6 重ね溶接 8 別の金属箔 9 別の重ね溶接 1 Metal Foil 2 Metal Foil 3 Object 6 Lap Welding 8 Another Metal Foil 9 Another Lap Welding

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス、金属もしくは樹脂等の被
処理体(3)を、30μm〜300μmの厚さの金属箔
(1)(2)内に収納し、該金属箔(1)(2)を重ね
溶接(6)することで封入しているカプセルであって、 前記カプセルを構成する金属箔(1)(2)上に、該金
属箔(1)(2)とは別の金属箔(8)を重ね溶接
(9)していることを特徴とする等方圧加圧処理用カプ
セル。
1. An object to be treated (3) such as ceramics, metal or resin is housed in metal foils (1) and (2) having a thickness of 30 μm to 300 μm, and the metal foils (1) and (2) are attached. A capsule encapsulated by lap welding (6), the metal foil (1) (2) being different from the metal foil (1) and (2) constituting the capsule. ) Is lap-welded (9), and a capsule for isotropic pressure application processing is characterized.
【請求項2】 前記金属箔(1)(2)(8)の厚さが
30μm〜300μmとされていることを特徴とする請
求項1記載の等方圧加圧処理用カプセル。
2. The capsule for isotropic pressure treatment according to claim 1, wherein the metal foils (1), (2) and (8) have a thickness of 30 μm to 300 μm.
【請求項3】 前記別の金属箔(8)を、前記カプセル
を構成する金属箔(1)(2)の両外面上に重ね溶接し
ていることを特徴とする請求項1又は2に記載の等方圧
加圧処理用カプセル。
3. The metal foil (8) according to claim 1, wherein the other metal foil (8) is lap-welded on both outer surfaces of the metal foils (1) and (2) constituting the capsule. Capsule for isotropic pressure application.
【請求項4】 前記カプセルを構成する金属箔(1)
(2)の重ね溶接(6)部位と、前記別の金属箔(8)
の重ね溶接(9)部位とを被処理体(3)の外周域で内
外異なる部位としていることを特徴とする請求項1〜3
のいずれかに記載の等方圧加圧処理用カプセル。
4. A metal foil (1) constituting the capsule.
The lap welding (6) part of (2) and the other metal foil (8)
The lap welding (9) part of the above is different from the inside and outside in the outer peripheral area of the object (3) to be processed.
The capsule for isotropic pressure application according to any one of 1.
【請求項5】 前記カプセルを構成する金属箔(1)
(2)の少なくともいずれか一方が被処理体(3)の収
納凹部(5)を有するものであることを特徴とする請求
項1〜4のいずれかに記載の等方圧加圧処理用カプセ
ル。
5. A metal foil (1) constituting the capsule.
At least one of (2) has a storage recess (5) for the object (3) to be treated, The capsule for isotropic pressure treatment according to any one of claims 1 to 4, .
【請求項6】 前記収納凹部(5)が複数とされている
ことを特徴とする請求項5記載の等方圧加圧処理用カプ
セル。
6. The capsule for isotropic pressure treatment according to claim 5, wherein a plurality of the storage recesses (5) are provided.
JP7238491A 1995-09-18 1995-09-18 Capsule for isotropic pressurizing treatment Pending JPH0977566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7238491A JPH0977566A (en) 1995-09-18 1995-09-18 Capsule for isotropic pressurizing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7238491A JPH0977566A (en) 1995-09-18 1995-09-18 Capsule for isotropic pressurizing treatment

Publications (1)

Publication Number Publication Date
JPH0977566A true JPH0977566A (en) 1997-03-25

Family

ID=17031044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7238491A Pending JPH0977566A (en) 1995-09-18 1995-09-18 Capsule for isotropic pressurizing treatment

Country Status (1)

Country Link
JP (1) JPH0977566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024751A1 (en) * 2020-07-31 2022-02-03 株式会社神戸製鋼所 Machine learning method, machine learning device, machine learning program, communication method, and control device
WO2023068020A1 (en) * 2021-10-22 2023-04-27 株式会社神戸製鋼所 Machine-learning method, machine-learning device, machine-learning program, communication method, and control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024751A1 (en) * 2020-07-31 2022-02-03 株式会社神戸製鋼所 Machine learning method, machine learning device, machine learning program, communication method, and control device
JP2022026701A (en) * 2020-07-31 2022-02-10 株式会社神戸製鋼所 Machine learning method, machine learning device, machine learning program, communication method and control device
WO2023068020A1 (en) * 2021-10-22 2023-04-27 株式会社神戸製鋼所 Machine-learning method, machine-learning device, machine-learning program, communication method, and control device

Similar Documents

Publication Publication Date Title
EP1727643B1 (en) Method of making sputtering target
JP3099829B2 (en) Manufacturing method of capsule for isotropic pressure treatment
EP0399772B1 (en) Diffusion bonding and superplastic forming
US5224645A (en) Diffusion bonding of aluminum and aluminum alloys
US3984043A (en) Method for bonding composite materials
JPH0977566A (en) Capsule for isotropic pressurizing treatment
JP2003226964A (en) Method of producing tungsten target for sputtering
JPH0354189B2 (en)
US7255260B2 (en) Assembly for the manufacture of a hollow mechanical part by diffusion bonding and superplastic forming, use of such an assembly and process for manufacturing such a mechanical part
JPH08143370A (en) Hot isostatic press forming method and compact formed by the same
JPH07164592A (en) Hybrid composite material land its manufacture
JPH028833B2 (en)
JP3252446B2 (en) Capsule for hot isostatic pressing and method of hot isostatic pressing
JP3993066B2 (en) Method for producing sputtering target
EP0849020B1 (en) Tooling apparatus for composite fabrication
JP4142132B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
JPH04325470A (en) Metallic foil clad ceramics product and its manufacture
JP3241524B2 (en) Metal integral molding method
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP2823411B2 (en) Diffusion bonding member manufacturing method
JPS607590B2 (en) Product manufacturing method using diffusion bonding
JPH0736928B2 (en) Superplastic forming method for metal foil
US5108698A (en) Method of making plate-shaped material
JP3837069B2 (en) Method for producing sputtering tungsten target