JPH028833B2 - - Google Patents

Info

Publication number
JPH028833B2
JPH028833B2 JP57024082A JP2408282A JPH028833B2 JP H028833 B2 JPH028833 B2 JP H028833B2 JP 57024082 A JP57024082 A JP 57024082A JP 2408282 A JP2408282 A JP 2408282A JP H028833 B2 JPH028833 B2 JP H028833B2
Authority
JP
Japan
Prior art keywords
cemented carbide
metal
joining
metal plate
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57024082A
Other languages
Japanese (ja)
Other versions
JPS58141880A (en
Inventor
Masaya Myake
Juichi Hirayama
Akio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57024082A priority Critical patent/JPS58141880A/en
Publication of JPS58141880A publication Critical patent/JPS58141880A/en
Publication of JPH028833B2 publication Critical patent/JPH028833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】 本発明は複数個の超硬合金部材を完全に接合し
て大型部品や複雑形状の超硬合金部材を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for completely joining a plurality of cemented carbide members to produce large-sized parts or complex-shaped cemented carbide members.

超硬合金は高硬度、耐摩耗性が高く種々の工業
用途に利用されている。用途が広がるにつれて大
型部品や複雑な形状の部品の要求が高まつている
が、通常の粉末冶金技術のみではこの要求を満足
することができず、この場合は2個以上の超硬合
金を予め製作しておき、これを接合することが行
われている。しかしながらこの超硬合金の接合は
超硬合金の融点が高く硬度が高いために非常に困
難であり、一例として超硬合金同志の当接面を
1300〜1500℃の温度に加熱して圧力をかけて接合
面で相互拡散を行わせて接合する方法がある。し
かしこの場合、高温下で全体を加圧するため超硬
合金自体が変形したり、拡散不充分だつたりして
完全な接合を行うことが困難である。又大型の製
品を製作する場合には加圧装置が大型化する問題
があつた。
Cemented carbide has high hardness and wear resistance, and is used in various industrial applications. As applications expand, the demand for large parts and parts with complex shapes is increasing, but it is not possible to meet these demands with normal powder metallurgy technology alone. This is done in advance by making them and then joining them together. However, joining this cemented carbide is extremely difficult due to the high melting point and high hardness of the cemented carbide.
There is a method of bonding by heating to a temperature of 1,300 to 1,500°C and applying pressure to cause mutual diffusion at the bonding surface. However, in this case, since the entire material is pressurized at high temperatures, the cemented carbide itself may be deformed or diffusion may be insufficient, making it difficult to achieve complete bonding. In addition, when manufacturing large products, there was a problem in that the pressurizing device became large.

本発明者らはこの様な問題を解決し、前述の大
型化、複雑形状の要望に対応すべく鋭意研究を進
めた結果本発明の方法が極めて有効であることを
見出した。
The inventors of the present invention have conducted extensive research to solve these problems and respond to the above-mentioned demands for larger sizes and more complex shapes, and have found that the method of the present invention is extremely effective.

本発明の特徴は第1図に示す如く超硬合金部材
1と2の当接面1′,2′の間に金属薄板3を挿入
密着せしめ、この金属板に電子ビーム又はレーザ
ービームの如き高エネルギービームAを照射して
溶融せしめることによつて溶接接合した後、真空
中あるいは不活性ガス中で1350゜〜1500℃の温度
に加熱して接合面に介在する金属を超硬合金中に
拡散させることである。又、本発明のもう一つの
方法は、上述の如く溶接接合した接合超硬合金部
材を作製したのち、熱間静水圧加圧装置(HIP)
の中で1000〜2000Kg/cm2の圧力下にて1350℃〜
1500℃の温度で拡散接合を行わしめて完全に一体
化した超硬合金部材を得る方法である。
The feature of the present invention is that a thin metal plate 3 is inserted and brought into close contact between the contact surfaces 1' and 2' of the cemented carbide members 1 and 2, as shown in FIG. After welding and joining by irradiating energy beam A and melting it, we heat it to a temperature of 1350° to 1500°C in a vacuum or inert gas to diffuse the metal present at the joint surface into the cemented carbide. It is to let Another method of the present invention is to manufacture bonded cemented carbide members welded and bonded as described above, and then to use a hot isostatic pressing device (HIP).
1350℃ under pressure of 1000~2000Kg/ cm2
This method involves diffusion bonding at a temperature of 1500°C to obtain a completely integrated cemented carbide member.

接合面に挿入する金属板は厚みが0.1〜1mmの
Ni,Co等の薄板を用いる。厚み0.1mm以下では接
合後の拡散が不充分であり、超硬合金が損傷さ
れ、1mm以上では拡散距離が長くなり接合部の硬
度、強度が超硬合金に較べて不充分である。
The metal plate inserted into the joint surface has a thickness of 0.1 to 1 mm.
A thin plate of Ni, Co, etc. is used. If the thickness is less than 0.1 mm, the diffusion after joining will be insufficient and the cemented carbide will be damaged, and if it is more than 1 mm, the diffusion distance will be long and the hardness and strength of the joint will be insufficient compared to cemented carbide.

第2図は溶接接合後の加熱処理で起る拡散の状
況を説明するための接合部の模式断面図であり、
4はWC等の硬質相、5はCoなどの結合相であ
り、3が挿入金属板であり、加熱又は加圧加熱に
よつて超硬合金中のWC,Coが接合相へ、又接合
相のNiなどが超硬合金の結合相に相互に拡散す
る。温度1350℃〜1500℃の温度では超硬合金中に
液相が生成し、WCが結合金属であるCo相に溶解
しNi側に拡散し、同時に接合相のNiは超硬合金
中に拡散して接合相3は消減し、完全な接合体と
することができる。
FIG. 2 is a schematic cross-sectional view of a joint to explain the state of diffusion that occurs during heat treatment after welding.
4 is a hard phase such as WC, 5 is a bonding phase such as Co, and 3 is an inserted metal plate, and by heating or pressure heating, WC and Co in the cemented carbide become the bonding phase, and the bonding phase Ni, etc., interdiffuse into the binder phase of the cemented carbide. At temperatures between 1,350℃ and 1,500℃, a liquid phase is generated in the cemented carbide, and WC dissolves in the Co phase, which is the bonding metal, and diffuses to the Ni side, and at the same time, the Ni in the bonding phase diffuses into the cemented carbide. The bonding phase 3 is then reduced and a complete bonded body can be obtained.

本発明の方法で用いる高エネルギービームは電
子ビームあるいはレーザービームのようにビーム
径の細い方が望ましい。何故ならビームが接合部
に深く浸透して超硬合金本体を損傷することなく
接合することができる。
It is preferable that the high-energy beam used in the method of the present invention has a narrow beam diameter, such as an electron beam or a laser beam. This is because the beam penetrates deeply into the joint and can join without damaging the cemented carbide body.

又、高エネルギービームで溶接する場合、接合
相の全面を溶解する必要はなく当接面の外周部の
みを溶接しても良い。第3図はその一例を示すも
のであり、第3図の接合部断面において7は超硬
合金同志の当接面であり、外周部6が金属薄板を
挿入密着して電子ビーム等を照射溶融せしめて溶
接する溶接面である。このような状態で溶接し、
1400℃以上の温度で加熱することによつて、Co
WC及びNiが相互に拡散することによつて充分目
的をはたすことができる。
Furthermore, when welding with a high-energy beam, it is not necessary to melt the entire surface of the welding phase, and only the outer periphery of the contact surface may be welded. Figure 3 shows an example of this. In the cross section of the joint in Figure 3, 7 is the abutment surface of the cemented carbide, and the outer periphery 6 is where a thin metal plate is inserted and brought into close contact with each other and then irradiated with an electron beam or the like and melted. This is the welding surface that will be welded at least. Welding in this condition,
By heating at a temperature of 1400℃ or higher, Co
The mutual diffusion of WC and Ni is sufficient to achieve the purpose.

溶接後の加熱は1320℃から1500℃の温度範囲が
望ましい。1320℃以下では十分な液相が生成せ
ず、しかも拡散が進みにくい。又1500℃以上では
超硬合金が変形したり、雰囲気中のガスを吸収し
たり浸炭したりして良好な超硬合金の性質を維持
することが困難である。
The temperature range for heating after welding is preferably from 1320℃ to 1500℃. At temperatures below 1320°C, sufficient liquid phase is not generated and diffusion is difficult to proceed. Furthermore, at temperatures above 1500°C, the cemented carbide deforms, absorbs gas in the atmosphere, or carburizes, making it difficult to maintain good properties of the cemented carbide.

次に実施例について説明する。 Next, an example will be described.

実施例 1 WC―20%Coの超硬合金リング(外径600φmm、
内径500mmφ、厚み30mm)の大型品を製作するに
当り、最終形状の4分割した形状(第4図9,
9′,9″,9)の超硬合金を製作した。その当
接面8,8′,8″,8を研摩した後、円環状に
組合せ、各当接面に0.5mmのCo薄板を挿入し、こ
れに150KV、30mAの条件で電子ビームを照射
し、ビート深さ15mmで上下面溶接した。そのあと
真空中(10-3Torr)にて1450℃、1時間加熱を
行つた。得られた超硬合金は完全接合され強度は
溶接なしで製作したものと同じ強度が得られる。
Example 1 WC-20% Co cemented carbide ring (outer diameter 600φmm,
When manufacturing a large product with an inner diameter of 500 mmφ and a thickness of 30 mm, the final shape was divided into four parts (Fig. 4, 9,
9′, 9″, 9) cemented carbide was manufactured. After polishing the contact surfaces 8, 8′, 8″, 8, they were combined into a ring shape, and a 0.5 mm Co thin plate was attached to each contact surface. This was then irradiated with an electron beam at 150KV and 30mA to weld the top and bottom surfaces with a beat depth of 15mm. Thereafter, heating was performed at 1450° C. for 1 hour in a vacuum (10 −3 Torr). The resulting cemented carbide is completely bonded and has the same strength as one made without welding.

実施例 2 第5図に示す如く、円柱状超硬合金部材10と
短形板の超硬合金部材11とを予め製作し、両者
の当接面を研摩した後、その当接面12に0.2mm
厚のNi薄板を挿入密着せしめ、実施例1で示し
た電子ビームで当接面を溶接した。この接合部材
を、熱間静水圧プレスによつて1350℃、1時間
Arガス圧1000Kg/cm2の中で加圧加熱して相互拡
散せしめた。接合面は完全に一体化し、ブローホ
ール、キレツの全くない接合超硬合金部材が得ら
れた。
Example 2 As shown in FIG. 5, a cylindrical cemented carbide member 10 and a rectangular plate cemented carbide member 11 are manufactured in advance, and after polishing their contact surfaces, the contact surface 12 is coated with 0.2 mm
A thick Ni thin plate was inserted and brought into close contact, and the contact surfaces were welded using the electron beam shown in Example 1. This bonded member was heated at 1350°C for 1 hour using a hot isostatic press.
They were heated under pressure in an Ar gas pressure of 1000 Kg/cm 2 to cause interdiffusion. The bonded surfaces were completely integrated, and a bonded cemented carbide member with no blowholes or cracks was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の原理を説明するための
断面図、第2図は接合部の拡大断面図、第3図は
本発明の他の実施例を示す接合部の断面図、第4
図、第5図は本発明の方法による異形状の超硬合
金の実施例を示す上面と断面図である。 1,2,9,10,11;超硬合金部材、3;
金属薄板、4;硬質相、5;結合相、6;溶接
面、1′,2′,7,8′,12;接合面。
FIG. 1 is a cross-sectional view for explaining the principle of the method of the present invention, FIG. 2 is an enlarged cross-sectional view of a joint, FIG. 3 is a cross-sectional view of a joint showing another embodiment of the present invention, and FIG.
FIG. 5 is a top view and a cross-sectional view showing an embodiment of a cemented carbide having an irregular shape produced by the method of the present invention. 1, 2, 9, 10, 11; Cemented carbide member, 3;
Metal thin plate, 4; hard phase, 5; bonding phase, 6; welding surface, 1', 2', 7, 8', 12; joint surface.

Claims (1)

【特許請求の範囲】 1 複数個の超硬合金部材の当接面に金属薄板を
挿入密着せしめ、該金属板に高エネルギービーム
を照射して該金属板を溶融せしめ、超硬合金の液
相生成温度(1320℃)以上に加熱して、該金属板
の金属相と超硬合金との間に相互拡散させ、しか
るのちに凝固せしめる事を特徴とする超硬合金の
接合方法。 2 複数個の超硬合金部材の当接面に金属板を挿
入密着せしめ、該金属板に高エネルギービームを
照射して該挿入金属板を溶解凝固させて予備的に
接合し、この接合超硬合金部材を超硬合金の液相
生成温度(1320℃)以上にて熱間静水圧装置で加
圧下で加熱して接合部金属と超硬合金との間に相
互拡散させることを特徴とする超硬合金の接合方
法。 3 特許請求の範囲第1項,第2項において、高
エネルギービームが電子ビーム又はレーザービー
ムであることを特徴とする超硬合金の接合方法。 4 特許請求の範囲第1項,第2項において、当
接面に挿入する金属板の厚みが0.1〜1mmである
ことを特徴とする超硬合金の接合方法。
[Claims] 1. A thin metal plate is inserted into the contact surfaces of a plurality of cemented carbide members, and the metal plates are irradiated with a high-energy beam to melt the metal plates, and the liquid phase of the cemented carbide is melted. A method for joining cemented carbide, which is characterized by heating above the formation temperature (1320°C) to cause interdiffusion between the metal phase of the metal plate and the cemented carbide, and then solidifying. 2 A metal plate is inserted into the contact surfaces of a plurality of cemented carbide members, and the metal plates are irradiated with a high-energy beam to melt and solidify the inserted metal plates to preliminarily join them. A super hard alloy characterized by heating the alloy member under pressure in a hot isostatic pressure device above the liquid phase formation temperature of the cemented carbide (1320°C) to cause mutual diffusion between the joint metal and the cemented carbide. Hard metal joining method. 3. A method for joining cemented carbide according to claims 1 and 2, characterized in that the high-energy beam is an electron beam or a laser beam. 4. A method for joining cemented carbide according to claims 1 and 2, characterized in that the metal plate inserted into the contact surface has a thickness of 0.1 to 1 mm.
JP57024082A 1982-02-16 1982-02-16 Joining method of sintered hard alloy Granted JPS58141880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024082A JPS58141880A (en) 1982-02-16 1982-02-16 Joining method of sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024082A JPS58141880A (en) 1982-02-16 1982-02-16 Joining method of sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS58141880A JPS58141880A (en) 1983-08-23
JPH028833B2 true JPH028833B2 (en) 1990-02-27

Family

ID=12128481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024082A Granted JPS58141880A (en) 1982-02-16 1982-02-16 Joining method of sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS58141880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117882A1 (en) * 2008-03-27 2009-10-01 Hong Kong Applied Science and Technology Research Institute Co. Ltd Pulse-laser bonding method for through-silicon-via based stacking of electronic components

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE271426T1 (en) * 1986-11-07 1989-01-05 United Technologies Corp., Hartford, Conn. METHOD FOR PRODUCING A MULTIMETALLIC OBJECT.
JP2007268647A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Kobe Tools Corp End mill
JP5096872B2 (en) * 2006-10-31 2012-12-12 日本タングステン株式会社 Application tool tip member and application tool having the same
JP5471380B2 (en) * 2009-12-04 2014-04-16 新日鐵住金株式会社 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers
JP5930505B2 (en) * 2012-02-13 2016-06-08 国立大学法人豊橋技術科学大学 Diffusion bonding method of cemented carbide
JP5804380B2 (en) * 2012-03-06 2015-11-04 三菱マテリアル株式会社 Cutting tool made of ultra high pressure sintered body
CN103273205B (en) * 2013-04-24 2015-08-19 哈尔滨工业大学 A kind of method of electron beam compound transient liquid phase bonding GH4169 high temperature alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117882A1 (en) * 2008-03-27 2009-10-01 Hong Kong Applied Science and Technology Research Institute Co. Ltd Pulse-laser bonding method for through-silicon-via based stacking of electronic components

Also Published As

Publication number Publication date
JPS58141880A (en) 1983-08-23

Similar Documents

Publication Publication Date Title
US5147086A (en) Preparation of capsule for use in isostatic pressing treatment
JPH028833B2 (en)
JPH01283367A (en) Production of target for sputtering
JPS6029593B2 (en) Manufacturing method of Ti-clad steel
FR2602446A1 (en) PROCESS FOR THE PRODUCTION OF TITANIUM PLATED STEEL SHEET BY HOT ROLLING
JPS62264551A (en) Electrochemical cell housing
JPS6130292A (en) Diffusion-joining method by hot isotropic pressure press
JPH0558837B2 (en)
JPS603989A (en) Production of double pipe
JPH10251712A (en) Metallic composite porous member, its production, and weld-joined body
JPS5944148B2 (en) Diffusion welding method
JPS5870985A (en) Joining method for different metals
JPH01154886A (en) Manufacture of al clad steel plate
JPH02180770A (en) Method for joining graphite to molybdenum
JPS6024754B2 (en) Manufacturing method of Ti-clad steel
JPH01133689A (en) Manufacture of clad material
JPS6321589B2 (en)
JPH02142686A (en) Manufacture of aluminum alloy welded can body
JPH01150419A (en) Superplastic forming method for metallic foil
JPS6247113B2 (en)
JPH035073A (en) Method for joining cemented carbide and steel and joined body thereof
JP2823411B2 (en) Diffusion bonding member manufacturing method
JPS603988A (en) Cladding and joining of metallic plate by diffusion joining
JPS6256502A (en) Hard facing method for integrally forming sintered hard layer on ferrous metallic plate
JPS58135782A (en) Diffusion bonding method