JP5471380B2 - High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers - Google Patents

High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers Download PDF

Info

Publication number
JP5471380B2
JP5471380B2 JP2009276925A JP2009276925A JP5471380B2 JP 5471380 B2 JP5471380 B2 JP 5471380B2 JP 2009276925 A JP2009276925 A JP 2009276925A JP 2009276925 A JP2009276925 A JP 2009276925A JP 5471380 B2 JP5471380 B2 JP 5471380B2
Authority
JP
Japan
Prior art keywords
steel pipe
welding
steel
welded
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009276925A
Other languages
Japanese (ja)
Other versions
JP2011115829A (en
Inventor
竜一 本間
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009276925A priority Critical patent/JP5471380B2/en
Publication of JP2011115829A publication Critical patent/JP2011115829A/en
Application granted granted Critical
Publication of JP5471380B2 publication Critical patent/JP5471380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、洋上風力発電塔の建造に用いる大型溶接鋼管の高能率製造方法に関するものである。 The present invention relates to high-efficiency production method of a large welded steel pipes for use in the construction of offshore wind power tower.

近年、地球温暖化の一因であるCO2ガスの削減や、石油等の化石燃料の将来的な枯渇に対処するため、自然エネルギーを利用することが、積極的に試みられている。風力発電も、その一つであり、世界的に普及しつつある。風力発電に最適な地域は、絶え間ない強風を期待できる地域である。それ故、洋上での風力発電が実現しているし(特許文献1〜6、参照)、また、大規模な洋上風力発電が、世界的規模で計画されている。 In recent years, attempts have been actively made to use natural energy in order to cope with the reduction of CO 2 gas that contributes to global warming and the future depletion of fossil fuels such as oil. Wind power generation is one of them, and it is spreading worldwide. The best areas for wind power generation are areas where constant strong winds can be expected. Therefore, offshore wind power generation has been realized (see Patent Documents 1 to 6), and large-scale offshore wind power generation is planned on a global scale.

洋上に風力発電塔を建造する場合、風力発電塔の安定を図るために、海底の地盤に基礎構造体を打ち込む必要がある。また、風力発電機のタービン翼を、海水面から充分に高い位置に、安定的に維持するために、基礎構造体、及び、基礎構造体の上に設置する鋼管柱は、十分な高さを必要とする。結局、風力発電塔の高さは80m以上に達する。   When constructing a wind power tower on the ocean, it is necessary to drive a foundation structure into the seabed ground in order to stabilize the wind power tower. In addition, in order to stably maintain the turbine blades of the wind power generator at a sufficiently high position from the sea level, the foundation structure and the steel pipe columns installed on the foundation structure must have a sufficient height. I need. Eventually, the height of the wind power tower reaches over 80m.

このように、洋上風力発電塔は、基礎構造体を含め巨大な鋼構造物であるが、建造に際しては、建造現場又は建造現場近くの海岸で、大型厚鋼板又は鋼管を、簡易に、しかも、高能率で、溶接することが求められる。   Thus, the offshore wind power generation tower is a huge steel structure including the foundation structure, but when constructing, a large thick steel plate or a steel pipe can be simply and at the construction site or the coast near the construction site, It is required to weld with high efficiency.

一般に、電子ビーム溶接や、レーザービーム溶接などの高エネルギー密度ビーム溶接は、被溶接材を、簡易にかつ効率的に溶接できる点で、洋上風力発電塔のよう巨大鋼構造物の建造に適した溶接方法であるが、高真空チャンバー内で溶接する必要があるので、溶接できる鋼板又は鋼管の大きさに限度がある。   In general, high energy density beam welding, such as electron beam welding and laser beam welding, is suitable for the construction of giant steel structures such as offshore wind power generation towers because welding materials can be welded easily and efficiently. Although it is a welding method, since it is necessary to weld in a high vacuum chamber, there exists a limit in the magnitude | size of the steel plate or steel pipe which can be welded.

このことを踏まえ、近年、板厚100mm程度の極厚鋼板を、効率よく、現地で溶接できる溶接方法(RPEBW:Reduced Pressured Electron Beam Welding:減圧電子ビーム溶接)が提案されている(特許文献7、参照)。   Based on this, in recent years, a welding method (RPEBW: Reduced Pressure Electron Beam Welding) that can efficiently weld an extremely thick steel plate having a thickness of about 100 mm on-site has been proposed (Patent Document 7, reference).

RPEBW法を用いれば、風力発電塔のような大型の鋼構造物を建造する場合において、溶接箇所を局所的に真空に維持して、厚鋼板を効率的に溶接できることが期待される。   If the RPEBW method is used, when a large steel structure such as a wind power tower is constructed, it is expected that a thick steel plate can be efficiently welded by locally maintaining a welding point in a vacuum.

しかし、RPEBW法は、高真空チャンバー内での溶接に比べ、真空度が低い雰囲気で溶接を行うので、溶融後凝固して形成される溶接金属部の靭性が劣るとの課題を抱えている。   However, the RPEBW method has a problem that the toughness of the weld metal part formed by solidification after melting is inferior because welding is performed in an atmosphere having a low degree of vacuum as compared with welding in a high vacuum chamber.

洋上風力発電塔は、絶えず強風に曝され、ギガサイクル(109〜1010)域の繰り返し数で振動するので、洋上風力発電塔を構成する大型溶接構造体の溶接部には、絶え間なく繰返し応力が集中する。このため、上記溶接部には、通常の疲労サイクル(106〜107)とはオーダーが異なるギガサイクル域の振動に耐える耐疲労特性が要求される。 The offshore wind power tower is constantly exposed to strong winds and vibrates at a repetition rate in the gigacycle (10 9 to 10 10 ) region. Stress is concentrated. For this reason, the welded portion is required to have fatigue resistance characteristics that can withstand vibrations in a gigacycle region whose order is different from the normal fatigue cycle (10 6 to 10 7 ).

特開2008−111406号公報JP 2008-111406 A 特開2007−092406号公報JP 2007-092406 A 特開2007−322400号公報JP 2007-322400 A 特開2006−037397号公報JP 2006-037397 A 特開2005−194792号公報JP 2005-194792 A 特開2005−180239号公報JP 2005-180239 A 国際公開99/16101号パンフレットInternational Publication No. 99/16101 Pamphlet

洋上風車のモノパイル基礎構造(海中)、又は、発電塔(海上)に用いられる大型鋼管柱は、通常、まず、単位鋼管(例えば、直径5m×長さ3m)を制作し、鋼管柱の長さに応じて、単位鋼管を、円周方向に接合して製造する。例えば、鋼管柱の長さが60m、単位鋼管の長さが3mであれば、単位鋼管20個を円周方向に溶接する(図1、参照)。   Large steel pipe columns used for offshore wind turbine monopile foundations (underwater) or power generation towers (ocean) are usually produced by first producing unit steel pipes (for example, 5 m in diameter x 3 m in length). Accordingly, the unit steel pipe is manufactured by joining in the circumferential direction. For example, if the length of the steel pipe column is 60 m and the length of the unit steel pipe is 3 m, 20 unit steel pipes are welded in the circumferential direction (see FIG. 1).

そして、従来、それぞれの単位鋼管は、鋼材の圧延方向(長手方向)を円周方向として半円筒状に成形した二つの鋼材の幅方向端部を、2箇所、アーク溶接することにより製造されていた(図2、参照)。なお、図1及び図2については、後述する。   And conventionally, each unit steel pipe is manufactured by arc-welding two end portions in the width direction of two steel materials formed into a semi-cylindrical shape with the rolling direction (longitudinal direction) of the steel material as a circumferential direction. (See FIG. 2). 1 and 2 will be described later.

このように、洋上風力発電に用いる大型鋼管柱を一つ製造するためには、多くの溶接回数を必要とし、それぞれの溶接が多層盛り溶接となるため、鋼管柱が大型化するほど、完成するまでの溶接時間が増大する。   Thus, in order to manufacture one large steel pipe column used for offshore wind power generation, many welding times are required, and each welding becomes multi-layer welding, so that the larger the steel pipe column is, the more it is completed. Welding time is increased.

さらに、単位鋼管同士を円周方向で溶接する前には、開先の精度を確保するために、単位鋼管を矯正して、所要の真円度を確保する必要がある。所要の真円度を確保する単位鋼管の矯正には、大型プレス機が必要となる。通常、大型プレス機で、単位鋼管1体毎に、真円度を矯正するので、単位鋼管の矯正は、鋼管柱の製造においてボトルネック工程となる。   Further, before the unit steel pipes are welded in the circumferential direction, it is necessary to correct the unit steel pipes to ensure the required roundness in order to ensure the accuracy of the groove. A large press machine is required to straighten the unit steel pipe to ensure the required roundness. Usually, the roundness is corrected for each unit steel pipe with a large press, so the correction of the unit steel pipe is a bottleneck process in the manufacture of the steel pipe column.

したがって、洋上風力発電用の大型鋼管柱の生産性を向上させるためには、溶接長をできるだけ短くすること、とりわけ、所要の真円度を要し、高精度の溶接を必要とする円周溶接をいかに減らすか、が極めて重要な課題となる。また、前述したように、洋上風力発電塔の溶接部には、安全性を確保するために十分な破壊靱性が要求される。   Therefore, in order to improve the productivity of large steel pipe columns for offshore wind power generation, the welding length should be as short as possible, especially circumferential welding that requires the required roundness and requires high-precision welding. How to reduce this is a very important issue. Further, as described above, the welded portion of the offshore wind power generation tower is required to have sufficient fracture toughness to ensure safety.

そこで、本発明は、極厚(例えば、厚さ50mm超)の鋼板を加工し、溶接して、大型鋼管柱を製造する場合において、(i)溶接長を短くし、(ii)円周溶接を少なくすることにより、大型鋼管柱の生産性を大幅に改善し、かつ、(iii)充分な破壊靱性を有する溶接部を備える大型鋼管柱を提供することを目的とする。   Accordingly, the present invention processes a steel plate having an extremely thick thickness (for example, a thickness of more than 50 mm) and welds to produce a large steel pipe column, and (i) shortens the weld length and (ii) circumferential welding. It is an object of the present invention to significantly improve the productivity of a large-sized steel pipe column and to provide a large-sized steel pipe column provided with a weld having sufficient fracture toughness.

本発明者らは、上記目的を達成する加工方法及び溶接方法について鋭意検討した。その結果、(x)鋼板の圧延方向に長尺で、圧延方向に垂直な幅方向に円弧状をなす円弧状長尺鋼材を用意し、(y)複数の円弧状長尺鋼材を、圧延方向に平行な端面で突き合わせ、該突合せ面を、高エネルギー密度ビーム溶接で溶接すると、(z-1)ギガサイクル域の振動に耐える疲労特性を有し、かつ、充分な破壊靱性を有する溶接部を形成することができ、(z-2)耐疲労特性に優れた大型溶接鋼管を提供できることを見いだした。 The present inventors diligently studied a processing method and a welding method that achieve the above object. As a result, (x) an arc-shaped long steel material that is long in the rolling direction of the steel sheet and has an arc shape in the width direction perpendicular to the rolling direction is prepared, and (y) a plurality of arc-shaped long steel materials are prepared in the rolling direction. When the butted surfaces are welded by high energy density beam welding, (z-1) a welded portion having fatigue characteristics that can withstand vibrations in the gigacycle region and sufficient fracture toughness is obtained. It was found that (z-2) a large welded steel pipe with excellent fatigue resistance can be provided.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

)鋼板の圧延方向に長尺で、圧延方向に垂直な幅方向に円弧状をなす、3つ以上の、厚さが50mm超である円弧状長尺鋼材を、圧延方向に平行な端面で突き合わせ、該突合せ面を、高エネルギー密度ビーム溶接で溶接して単位鋼管とし、得られた前記単位鋼管同士を高エネルギー密度ビーム溶接で円周方向溶接することを特徴とする洋上風力発電塔用大型溶接鋼管の高能率製造方法。 ( 1 ) Three or more arc-shaped long steel materials having a thickness of more than 50 mm, which are long in the rolling direction of the steel sheet and arc-shaped in the width direction perpendicular to the rolling direction , are end faces parallel to the rolling direction. And the butted surfaces are welded by high energy density beam welding to form unit steel pipes, and the obtained unit steel pipes are welded in the circumferential direction by high energy density beam welding . High-efficiency manufacturing method for large welded steel pipes.

)前記円弧状長尺鋼材の幅が、2m以上であることを特徴とする前記(1)に記載の洋上風力発電塔用大型溶接鋼管の高能率製造方法。 ( 2 ) The high-efficiency manufacturing method for large welded steel pipes for offshore wind power generation towers according to ( 1) above, wherein the arc-shaped long steel material has a width of 2 m or more.

)前記円弧状長尺鋼材の引張強度が、355MPa以上であることを特徴とする前記(又は2)に記載の洋上風力発電塔用大型溶接鋼管の高能率製造方法。 ( 3 ) The high-efficiency manufacturing method for large-scale welded steel pipes for offshore wind power towers according to ( 1 ) or ( 2), wherein the arc-shaped long steel material has a tensile strength of 355 MPa or more.

本発明によれば、ギガサイクル域の振動に耐える疲労特性を有し、かつ、充分な破壊靱性を有する溶接部を備える、洋上風力発電塔用の大型溶接鋼管を、生産効率よく製造して提供することができる。   According to the present invention, a large-sized welded steel pipe for offshore wind power towers having fatigue characteristics that can withstand vibrations in the gigacycle region and having sufficient fracture toughness is manufactured and provided with high production efficiency. can do.

洋上風力発電塔を示す図である。It is a figure which shows an offshore wind power generation tower. 従来の大型溶接鋼管の態様を示す図である。It is a figure which shows the aspect of the conventional large sized steel pipe. 本発明の大型溶接鋼管の態様を示す図である。It is a figure which shows the aspect of the large sized welded steel pipe of this invention. 従来の大型溶接鋼管の製造工程と本発明の大型溶接鋼管の製造工程を対比する図である。(a)は、従来のアーク溶接による大型溶接鋼管の製造工程を示し、(b)は、本発明の高エネルギー密度ビーム溶接を適用した大型溶接鋼管の製造工程を示す。It is a figure which contrasts the manufacturing process of the conventional large-sized welded steel pipe, and the manufacturing process of the large-sized welded steel pipe of this invention. (A) shows the manufacturing process of the large sized steel pipe by the conventional arc welding, (b) shows the manufacturing process of the large sized steel pipe which applied the high energy density beam welding of this invention. 鋼材の単重を18ton、鋼管の長さを60mとし、(i)鋼管直径7m、板厚120mm、(ii)鋼管直径5m、板厚100mm、及び、(iii)鋼管直径3.5m、板厚50mm、とした場合における、単位鋼管の円周方向分割数(個)と溶接長(m)の関係を示す図である。The weight of the steel material is 18 tons and the length of the steel pipe is 60 m. (I) Steel pipe diameter 7 m, plate thickness 120 mm, (ii) Steel pipe diameter 5 m, plate thickness 100 mm, and (iii) Steel pipe diameter 3.5 m, plate thickness It is a figure which shows the relationship of the circumferential direction division | segmentation number (piece) of a unit steel pipe, and the welding length (m) in the case of setting it as 50 mm.

本発明は、鋼板の圧延方向に長尺で、圧延方向に垂直な幅方向に円弧状をなす、複数の円弧状長尺鋼材を、圧延方向に平行な端面で突き合わせ、該突合せ面を、高エネルギー密度ビーム溶接で溶接したことを特徴とするものである。以下、本発明について、図面に基づいて説明する。 In the present invention, a plurality of arc-shaped long steel materials that are long in the rolling direction of the steel sheet and arc-shaped in the width direction perpendicular to the rolling direction are butted at the end faces parallel to the rolling direction. It is characterized by welding by energy density beam welding. Hereinafter, the present invention will be described with reference to the drawings.

図1に、洋上風力発電塔を示す。洋上風力発電塔は、モノパイル基礎構造体1と発電塔2、その上にタービン翼4を備えるナセル3が載置されている。モノパイル基礎構造体1と発電塔2は、ともに、大型の鋼管柱であり、管径3.5〜7m、厚さ50〜120mm、長さ30〜80mにも達する大型の鋼管柱である。通常は、海面下に設置されるモノパイル基礎構造体1の方が、海上に設置される発電塔2よりも、管径、厚さ、及び、長さは大きくなる。   FIG. 1 shows an offshore wind power generation tower. In the offshore wind power generation tower, a monopile foundation structure 1 and a power generation tower 2 and a nacelle 3 including turbine blades 4 are mounted thereon. The monopile foundation structure 1 and the power generation tower 2 are both large steel pipe columns, which are large steel pipe columns that reach a pipe diameter of 3.5 to 7 m, a thickness of 50 to 120 mm, and a length of 30 to 80 m. Usually, the monopile foundation structure 1 installed under the sea surface has a larger pipe diameter, thickness, and length than the power generation tower 2 installed on the sea.

図2に、鋼管柱の構成ユニットとなる、長さl(m)、直径k(m)の大型溶接鋼管(従来鋼管)の態様を示す。なお、通常は、長さl:2〜4m、直径k:3.5〜7mである。   FIG. 2 shows an aspect of a large welded steel pipe (conventional steel pipe) having a length l (m) and a diameter k (m), which is a constituent unit of a steel pipe column. In general, the length 1 is 2 to 4 m and the diameter k is 3.5 to 7 m.

図2に示すように、大型溶接鋼管5は、鋼板の圧延方向(図中、矢印、参照)に湾曲した半円筒鋼材5a、5bが、端面アーク溶接部5xで接合されて単位鋼管5cが構成され、端面アーク溶接部5xが同一線上に乗らないように配置された3個の単位鋼管5cが、円周アーク溶接部5yで接合されている。   As shown in FIG. 2, the large welded steel pipe 5 includes a unit steel pipe 5c formed by joining semi-cylindrical steel materials 5a and 5b curved in the rolling direction of the steel sheet (see arrows in the figure) at the end face arc welded portion 5x. The three unit steel pipes 5c arranged so that the end face arc welded portions 5x are not on the same line are joined by the circumferential arc welded portion 5y.

図4に、従来の大型溶接鋼管の製造工程と本発明の大型溶接鋼管の製造工程を対比して示す。図4(a)は、従来のアーク溶接による大型溶接鋼管の製造工程を示し、図4(b)は、本発明の高エネルギー密度ビーム溶接を適用した大型溶接鋼管の製造工程を示す。   In FIG. 4, the manufacturing process of the conventional large welded steel pipe and the manufacturing process of the large welded steel pipe of this invention are shown in contrast. FIG. 4A shows a manufacturing process of a large welded steel pipe by conventional arc welding, and FIG. 4B shows a manufacturing process of a large welded steel pipe to which the high energy density beam welding of the present invention is applied.

図4(a)に示すように、従来は、鋼板の圧延方向が、鋼管の円周方向になるように鋼板を切断し(図2、参照)、半円筒状の鋼材に成形する。次いで、二つの半円筒状鋼材の管軸方向端面を突き合わせて仮付け溶接し、内面側をアーク溶接する。その後、機械加工などで開先を加工してから、外面側の多層盛りアーク溶接を行い、単位鋼管を製造する。   As shown in FIG. 4 (a), conventionally, the steel sheet is cut so that the rolling direction of the steel sheet is the circumferential direction of the steel pipe (see FIG. 2), and formed into a semi-cylindrical steel material. Next, the end surfaces in the tube axis direction of the two semicylindrical steel materials are brought into contact with each other and tack welded, and the inner surface side is arc welded. Then, after machining the groove by machining or the like, multi-layer arc welding on the outer surface side is performed to manufacture a unit steel pipe.

このアーク溶接には、通常、サブマージアーク溶接法による多層盛り溶接を用いる。パス数は、板厚に比例して増加するが、例えば、板厚50mmのときのパス数は20パス前後である。内面側の溶接と仮付け溶接には、MAG溶接を用いることがある。   For this arc welding, multilayer prime welding by a submerged arc welding method is usually used. The number of passes increases in proportion to the plate thickness. For example, the number of passes when the plate thickness is 50 mm is around 20 passes. MAG welding may be used for welding on the inner surface side and tack welding.

通常、単位鋼管の形状は歪んでいて、単位鋼管同士を連結するための円周溶接を行う前工程で、単位鋼管矯正して真円度を高め、突き合せた時の開先精度を高めなくてはならない。真円度の矯正には、大型プレス機が必要となり、通常は、単位鋼管1体毎に真円度を矯正するので、この矯正工程は、大型鋼管柱の製造工程においてボトルネックとなる。   Normally, the shape of the unit steel pipe is distorted, and in the pre-process of circumferential welding to connect the unit steel pipes, the unit steel pipe is straightened to increase the roundness, and the groove accuracy when matching is not increased must not. In order to correct the roundness, a large press is required, and usually the roundness is corrected for each unit steel pipe, so this straightening process becomes a bottleneck in the manufacturing process of the large steel pipe column.

単位鋼管を矯正した後、単位鋼管同士を、円周部で突き合わせて、内外面のアーク溶接を行う。なお、単位鋼管の溶接(シーム溶接)に比べて、円周溶接は、準備に多くの時間を要して、遙かに高い溶接精度を必要するので、生産性を改善するためには、できるだけ、円周溶接の回数又は時間は少なくした方がよい。   After straightening the unit steel pipe, the unit steel pipes are butted together at the circumference and arc welding of the inner and outer surfaces is performed. Compared to welding of unit steel pipes (seam welding), circumferential welding requires much time for preparation and requires much higher welding accuracy, so in order to improve productivity, as much as possible It is better to reduce the number or time of circumferential welding.

溶接後は、通常、低温割れ確認のために、48時間放置し、アーク溶接部の品質を検査(例えば、超音波検査)し、欠陥がないことを確認して、出荷する。   After welding, it is usually left for 48 hours to check for cold cracking, and the quality of the arc welded part is inspected (for example, ultrasonic inspection) to confirm that there are no defects before shipment.

このように、従来の大型溶接鋼管の製造方法は、製品の出荷まで、多くの工程を必要とし、生産性が低いのが難点である。   As described above, the conventional method for producing a large welded steel pipe requires many steps until the product is shipped, and the productivity is low.

溶接工程においては、溶接回数が多く、溶接線の全長は極めて長いものとなる。例えば、鋼管柱の長さ60m、板厚75mm、鋼管径k=4.5m、単位鋼管の長さl=4.1mの場合、溶接線は312mに達する。   In the welding process, the number of weldings is large, and the entire length of the weld line is extremely long. For example, when the length of the steel pipe column is 60 m, the plate thickness is 75 mm, the steel pipe diameter is k = 4.5 m, and the length of the unit steel pipe is l = 4.1 m, the weld line reaches 312 m.

洋上風車は、今後、ますます大型化することが予想され、鋼管柱の長さ、鋼管径、及び、板厚は増大する。鋼材の単重を一定として計算した場合、(a)板厚100mm、鋼管径k=5mであると、溶接線は444mになり、(b)板厚120mm、鋼管径k=7mであると、溶接線は896mにもなる。   Offshore wind turbines are expected to increase in size in the future, and the length, diameter and thickness of steel pipe columns will increase. When the unit weight of the steel material is constant, (a) if the plate thickness is 100 mm and the steel pipe diameter k = 5 m, the weld line is 444 m, and (b) if the plate thickness is 120 mm and the steel pipe diameter k = 7 m, The weld line can be as long as 896m.

通常のアーク溶接では、溶接1パス当たりの溶着量が決まっていて、板厚が増加すると、その分、パス数が増えるので、実際の溶接工程に要する時間は、板厚に比例して、さらに増加する。   In normal arc welding, the amount of welding per one pass of welding is determined, and as the plate thickness increases, the number of passes increases accordingly, so the time required for the actual welding process is proportional to the plate thickness, To increase.

加えて、市場から鋼材を調達する際には、単重と幅に制約があるため、鋼管径や板厚が増加すると、板幅、即ち、単位鋼管の長が短くなる。その結果、単位鋼管同士の円周溶接を行う前に必要な真円度矯正の回数が増加することになる。   In addition, when the steel material is procured from the market, there is a restriction on the unit weight and the width. Therefore, when the steel pipe diameter and the plate thickness are increased, the plate width, that is, the length of the unit steel pipe is shortened. As a result, the number of roundness corrections required before performing circumferential welding between unit steel pipes increases.

ここで、図3に、本発明の大型溶接鋼管6の態様を示す。なお、大型溶接鋼管6の大きさは、板厚100mm、鋼管径k=5m、単位鋼管長l=5.5mである。図3に示すように、大型溶接鋼管6は、鋼板の圧延方向(図中、矢印、参照)に長尺で、圧延方向に垂直な幅方向に円弧状をなす、4個の長尺円弧状鋼材6aが、長手方向端面で突き合わされ、突合せ面が、高エネルギー密度ビーム溶接部6zで接合されている。   Here, the aspect of the large sized welded steel pipe 6 of this invention is shown in FIG. The large welded steel pipe 6 has a thickness of 100 mm, a steel pipe diameter k = 5 m, and a unit steel pipe length l = 5.5 m. As shown in FIG. 3, the large welded steel pipe 6 has four long arcs that are long in the rolling direction of the steel sheet (see arrows in the figure) and arc in the width direction perpendicular to the rolling direction. The steel material 6a is abutted at the end face in the longitudinal direction, and the abutting surface is joined by the high energy density beam weld 6z.

図4(b)に、本発明の大型溶接鋼管の製造工程を示す。図4(b)に示すように、鋼板の長手方向が圧延方向に一致するように鋼板を切断し(図3、参照)、長手方向に垂直な方向(幅方向)に沿って湾曲するように成形し、円弧状長尺鋼材を製造する。   FIG. 4B shows a manufacturing process of the large welded steel pipe of the present invention. As shown in FIG. 4B, the steel sheet is cut so that the longitudinal direction of the steel sheet coincides with the rolling direction (see FIG. 3), and is curved along the direction (width direction) perpendicular to the longitudinal direction. Form an arc-shaped long steel material.

次いで、3つ以上の円弧状長尺鋼材を長手方向端面で突き合わせ、突合せ面を、高エネルギー密度ビーム溶接で、板厚貫通の1パスで溶接し、単位鋼管を製造する。なお、高エネルギー密度ビーム溶接としは、電子ビーム溶接や、レーザービーム溶接を用いる。   Next, three or more arc-shaped long steel materials are butted at the end faces in the longitudinal direction, and the butted surfaces are welded in one pass through the plate thickness by high energy density beam welding to produce a unit steel pipe. As the high energy density beam welding, electron beam welding or laser beam welding is used.

本発明においては、例えば、(a)板厚100mm、鋼管径k=5m、長尺鋼材枚数が3枚であると、溶接線は390m(アーク溶接では444m)であり、(b)板厚120mm、鋼管径k=7m、長尺鋼材の枚数が5枚であると、溶接線は597m程度(アーク溶接では896m)であり、アーク溶接に比べて、大幅に溶接線を短縮することができる。   In the present invention, for example, if (a) the plate thickness is 100 mm, the steel pipe diameter is k = 5 m, and the number of long steel materials is 3, the weld line is 390 m (444 m for arc welding), and (b) the plate thickness is 120 mm. When the steel pipe diameter k = 7 m and the number of long steel materials is 5, the weld line is about 597 m (896 m for arc welding), and the weld line can be significantly shortened compared to arc welding.

表1に、大型溶接鋼管をサブマージアーク溶接で製造する場合(従来)と、局所排気減圧電子ビーム溶接で製造する場合(本発明)の溶接条件及び指標を対比して示す。表1から、本発明の製造方法は、溶接能率が格段に優れていることが解る。   Table 1 shows a comparison of welding conditions and indices when a large welded steel pipe is manufactured by submerged arc welding (conventional) and when manufactured by local exhaust vacuum electron beam welding (invention). From Table 1, it can be seen that the manufacturing method of the present invention is remarkably superior in welding efficiency.

Figure 0005471380
Figure 0005471380

本発明の高エネルギー密度ビーム溶接は、板厚に依らず、1パスの貫通溶接が可能であるので、全溶接線長(パス数×溶接線)で比較した場合、板厚が増大するほど、本発明の効果は高まることになる。   Since the high energy density beam welding of the present invention can perform one-pass through welding regardless of the plate thickness, when compared with the total weld line length (number of passes × weld line), as the plate thickness increases, The effect of the present invention will be enhanced.

図5に、鋼材の単重を18ton、鋼管の長さを60mとし、(i)鋼管直径7m、板厚120mm、(ii)鋼管直径5m、板厚100mm、及び、(iii)鋼管直径3.5m、板厚50mm、とした場合における、単位鋼管の円周方向分割数(個)と溶接長(m)の関係を示す。なお、分割数1及び分割数2は、従来の製造方法で製造した場合である。   5, a steel material unit weight is 18 tons and a steel pipe length is 60 m, (i) a steel pipe diameter of 7 m, a plate thickness of 120 mm, (ii) a steel pipe diameter of 5 m, a plate thickness of 100 mm, and (iii) a steel pipe diameter. The relationship between the number of divisions (pieces) in the circumferential direction of the unit steel pipe and the weld length (m) when the thickness is 5 m and the plate thickness is 50 mm is shown. The number of divisions 1 and the number of divisions 2 are when manufactured by a conventional manufacturing method.

図5から、本発明の製造方法によれば、鋼管直径と、板厚が増大するほど、溶接長短縮効果が大きいことが解る。   From FIG. 5, it can be seen that according to the manufacturing method of the present invention, the effect of shortening the weld length increases as the steel pipe diameter and the plate thickness increase.

本発明の大型溶接鋼管を製造するための鋼材は、特定の成分組成の鋼材に限定されない。   The steel material for producing the large welded steel pipe of the present invention is not limited to a steel material having a specific component composition.

本発明の製造方法では、鋼材の単重が一定の場合、長尺鋼材の枚数を増やして、単位鋼管の長さを長くすることができるので、真円度の矯正が必要でかつ難度の高い円周溶接の回数を少なくすることができる。なお、アーク溶接の場合は、長尺鋼材の枚数を増やすと、単位鋼管の真円度が低下し、単位鋼管1体当たりの真円度矯正時間が大幅に増大するので、長尺鋼材の枚数を増やすことは、あまり意味がない。   In the manufacturing method of the present invention, when the unit weight of the steel material is constant, the number of long steel materials can be increased, and the length of the unit steel pipe can be increased. Therefore, roundness correction is necessary and the degree of difficulty is high. The number of circumferential weldings can be reduced. In the case of arc welding, if the number of long steel materials is increased, the roundness of the unit steel pipe is reduced and the roundness correction time per unit steel pipe is greatly increased. Increasing the value does not make much sense.

本発明の製造方法においては、高エネルギー密度ビーム溶接を用いるので、製造後は、溶接部の品質検査前の低温割れを確認するための待ち時間が不要で、そのまま検査を行い、出荷することができる。結局、本発明の製造方法においては、図4に示すように、図4(a)に示す従来の製造方法における“※印の工程”が不要となるので、本発明の製造方法は、従来の製造方法に比べ、生産性が極めてよい製造方法である。   In the manufacturing method of the present invention, since high energy density beam welding is used, a waiting time for confirming low temperature cracking before quality inspection of the welded portion is unnecessary after manufacturing, and inspection and shipping can be performed as they are. it can. After all, in the manufacturing method of the present invention, as shown in FIG. 4, since the “* step” in the conventional manufacturing method shown in FIG. Compared with the manufacturing method, the productivity is extremely good.

そして、本発明の大型溶接鋼管の製造方法は、鋼板の圧延方向に長尺で、圧延方向に垂直な幅方向に円弧状をなす、3つ以上の円弧状長尺鋼材を、圧延方向に平行な端面で突き合わせ、該突合せ面を、高エネルギー密度ビーム溶接で溶接することを特徴とするものであるところ、該特徴に基づいて、良好な破壊靱性値を有する、洋上風力発電塔用の大型溶接鋼管を、生産効率よく製造して提供することができるとの顕著な効果を奏するものである。 And the manufacturing method of the large-sized welded steel pipe of this invention is long in the rolling direction of a steel plate, and makes 3 or more arc-shaped long steel materials which make circular arc shape in the width direction perpendicular | vertical to a rolling direction, and is parallel to a rolling direction . a butt at the end face, a projecting mating surface where, is characterized in that the welding with high energy density beam welding, on the basis of the feature, has a good fracture toughness value, large welding for offshore wind tower The steel pipe can be manufactured and provided with high production efficiency.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表2に、成分組成と機械特性を示す鋼材(B1〜B3)を用い、表3に示す電子ビーム溶接条件(W1〜W4)、又は、表4に示すアーク溶接条件で溶接を行い、大型溶接鋼管を製造した。表5に、製造した大型溶接鋼管の仕様を示す。
(Example)
Table 2 uses steel materials (B1 to B3) showing the component composition and mechanical properties, welding is performed under the electron beam welding conditions (W1 to W4) shown in Table 3 or arc welding conditions shown in Table 4, and large welding A steel pipe was manufactured. Table 5 shows the specifications of the manufactured large welded steel pipe.

Figure 0005471380
Figure 0005471380

Figure 0005471380
Figure 0005471380

Figure 0005471380
Figure 0005471380

Figure 0005471380
Figure 0005471380

大型溶接鋼管の破壊靭性は、溶接継手部からCTOD試験片を採取し、試験温度0℃における3点曲げCTOD試験で評価したが、従来鋼管と同等又はそれ以上(表中、○印、参照)であった。   Fracture toughness of large welded steel pipes was evaluated by a three-point bending CTOD test at a test temperature of 0 ° C by collecting CTOD specimens from welded joints, but equal to or higher than that of conventional steel pipes (see circles in the table). Met.

前述したように、本発明によれば、ギガサイクル域の振動に耐える疲労特性を有し、かつ、充分な破壊靱性を有する溶接部を備える、洋上風力発電塔の建造に用いる大型溶接鋼管を、生産効率よく製造して提供することができる。よって、本発明は、大型構造物建造産業において利用可能性が高いものである。   As described above, according to the present invention, a large welded steel pipe used for construction of an offshore wind power generation tower having a fatigue characteristic that can withstand vibrations in the gigacycle region and having a sufficient fracture toughness, It can be manufactured and provided with high production efficiency. Therefore, the present invention has high applicability in the large structure construction industry.

1 モノパイル基礎構造体
2 発電塔
2a 鋼管
3 ナセル
4 タービン翼
5 大型溶接鋼管(従来鋼管)
5a、5b 半円筒鋼材
5c 単位鋼管
5x 端面アーク溶接部
5y 円周アーク溶接部
6 大型溶接鋼管(発明鋼管)
6a 円弧状長尺鋼材
6z 高エネルギー密度ビーム溶接部
DESCRIPTION OF SYMBOLS 1 Monopile foundation structure 2 Power generation tower 2a Steel pipe 3 Nacelle 4 Turbine blade 5 Large welded steel pipe (conventional steel pipe)
5a, 5b Semi-cylindrical steel 5c Unit steel pipe 5x End face arc welded part 5y Circumferential arc welded part 6 Large welded steel pipe (invented steel pipe)
6a Arc-shaped long steel 6z High energy density beam weld

Claims (3)

鋼板の圧延方向に長尺で、圧延方向に垂直な幅方向に円弧状をなす、3つ以上の、厚さが50mm超である円弧状長尺鋼材を、圧延方向に平行な端面で突き合わせ、該突合せ面を、高エネルギー密度ビーム溶接で溶接して単位鋼管とし、得られた前記単位鋼管同士を高エネルギー密度ビーム溶接で円周方向溶接することを特徴とする洋上風力発電塔用大型溶接鋼管の高能率製造方法。 Three or more arc-shaped long steel materials having a thickness of more than 50 mm, which are long in the rolling direction of the steel sheet and arc-shaped in the width direction perpendicular to the rolling direction , are butted at end faces parallel to the rolling direction, A large-sized welded steel pipe for an offshore wind power tower characterized in that the abutting surfaces are welded by high energy density beam welding to form unit steel pipes, and the obtained unit steel pipes are welded in the circumferential direction by high energy density beam welding. High-efficiency manufacturing method. 前記円弧状長尺鋼材の幅が、2m以上であることを特徴とする請求項に記載の洋上風力発電塔用大型溶接鋼管の高能率製造方法。 The width of the arc-shaped long steel material is 2 m or more, and the high-efficiency manufacturing method for large-sized welded steel pipes for offshore wind power towers according to claim 1 . 前記円弧状長尺鋼材の引張強度が、355MPa以上であることを特徴とする請求項1又は2に記載の洋上風力発電塔用大型溶接鋼管の高能率製造方法。 The high-efficiency manufacturing method for large-scale welded steel pipes for offshore wind power generation towers according to claim 1 or 2 , wherein the arc-shaped long steel material has a tensile strength of 355 MPa or more.
JP2009276925A 2009-12-04 2009-12-04 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers Expired - Fee Related JP5471380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276925A JP5471380B2 (en) 2009-12-04 2009-12-04 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276925A JP5471380B2 (en) 2009-12-04 2009-12-04 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers

Publications (2)

Publication Number Publication Date
JP2011115829A JP2011115829A (en) 2011-06-16
JP5471380B2 true JP5471380B2 (en) 2014-04-16

Family

ID=44281792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276925A Expired - Fee Related JP5471380B2 (en) 2009-12-04 2009-12-04 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers

Country Status (1)

Country Link
JP (1) JP5471380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457490A (en) * 2014-04-25 2017-02-22 维斯塔斯风力系统有限公司 Tower section production process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146580B2 (en) * 2010-09-09 2013-02-20 Jfeスチール株式会社 Steel pipe column structure and manufacturing method thereof
US9982496B2 (en) 2011-07-26 2018-05-29 Innovex Downhole Solutions, Inc. Rolled tubular centralizer
JP6160043B2 (en) * 2011-09-07 2017-07-12 Jfeスチール株式会社 Steel pipe column structure and manufacturing method thereof
EP3027333B1 (en) * 2013-08-01 2018-06-27 Antelope Oil Tool & Mfg. Co., LLC Rolled tubular centralizer
DE102019101330A1 (en) * 2019-01-18 2020-07-23 Innogy Se Support structure for a wind turbine
CN110421320A (en) * 2019-08-06 2019-11-08 招商局重工(深圳)有限公司 A kind of positioning piling bar welding procedure of cutter suction dredger
JP7447695B2 (en) 2020-06-22 2024-03-12 東京電力ホールディングス株式会社 Column-shaped floating body and method for manufacturing column-shaped floating body

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645287A (en) * 1979-09-19 1981-04-24 Mitsubishi Heavy Ind Ltd Electronic beam welding method
JPS58141880A (en) * 1982-02-16 1983-08-23 Sumitomo Electric Ind Ltd Joining method of sintered hard alloy
JPH08277440A (en) * 1995-04-06 1996-10-22 Nippon Steel Corp Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof
GB9720350D0 (en) * 1997-09-24 1997-11-26 Welding Inst Improvements relating to charged particle beams
JP3750546B2 (en) * 2001-03-08 2006-03-01 Kddi株式会社 Line backup system using wireless LAN
JP2002371338A (en) * 2001-04-09 2002-12-26 Nippon Steel Corp Steel superior in toughness at laser weld
JP2004306084A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Composite welding method of laser welding and arc welding
JP2005125393A (en) * 2003-10-27 2005-05-19 Kawasaki Heavy Ind Ltd High energy beam welding method
JP2005180239A (en) * 2003-12-17 2005-07-07 Ishikawajima Harima Heavy Ind Co Ltd Foundation of water surface wind power generation device
JP2005194792A (en) * 2004-01-08 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Foundation for ocean wind power generating device, and installation method of ocean wind power generating device
JP4575061B2 (en) * 2004-07-23 2010-11-04 第一建設機工株式会社 Construction method for offshore wind power generation facilities
JP2007092406A (en) * 2005-09-29 2007-04-12 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Foundation structure for on-water structure
US7735290B2 (en) * 2005-10-13 2010-06-15 General Electric Company Wind turbine assembly tower
JP2007322400A (en) * 2006-06-05 2007-12-13 Nsk Ltd Method for measuring amount of breakage of capsule
JP5171007B2 (en) * 2006-10-02 2013-03-27 新日鐵住金株式会社 Electron beam welded joint with excellent brittle fracture resistance
JP2008111406A (en) * 2006-10-31 2008-05-15 Shimizu Corp Offshore wind power generation facility and its construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457490A (en) * 2014-04-25 2017-02-22 维斯塔斯风力系统有限公司 Tower section production process
CN106457490B (en) * 2014-04-25 2019-02-12 维斯塔斯风力系统有限公司 Tower section production process

Also Published As

Publication number Publication date
JP2011115829A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5471380B2 (en) High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers
JP4828667B2 (en) Butt welded joint of welded structure and method of manufacturing the same
JP4995348B2 (en) Butt weld joint and manufacturing method thereof
JP5260268B2 (en) Manufacturing method of core shroud for nuclear power plant and nuclear power plant structure
CN106695252A (en) Method for manufacturing main body structure of wind turbine tower
JP2007075895A (en) Material composite provided with intermediate piece formed by explosive welding
CN102639277B (en) Employ the butt welded joint of high-energy-density bundle
CN1120478A (en) Method of welding a carbon steel and an austenitic stainless steel together and resultant structure
EP2676758B1 (en) Steel pipe having flange disk welded thereto
JPWO2012118186A1 (en) Monopile foundation for structures that generate vibration.
Kubushiro et al. Development of boiler technology for 700 C A-USC plant
JP2007021532A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
JP5375567B2 (en) High energy density beam welded joint with excellent fatigue resistance
JP5170354B1 (en) Beam welding joint and beam welding method
US20230211415A1 (en) Method to produce an additively manufactured, graded composite transition joint
JP5973870B2 (en) Steam turbine rotor welding method
McCoy et al. Development and application of INCONEL® alloy 740H in uSCO2 power systems
JP2009012030A (en) Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof
KR20150106222A (en) Monopile manufacturing method of wind power generator
JP2008087034A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
JP5510124B2 (en) Method of manufacturing tower tank support structure and tower tank support structure
JP2008087030A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
Shingledecker et al. Recent Developments in Manufacturing and Fabrication of Alloy 740H Components for sCO2 Applications
JP2012106290A (en) Electronic beam weld joint with excellent resistance to generation of brittle fracture
Kayamori et al. Applicability of fatigue solutions to floating wind turbine structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees