JPH097592A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH097592A
JPH097592A JP7172952A JP17295295A JPH097592A JP H097592 A JPH097592 A JP H097592A JP 7172952 A JP7172952 A JP 7172952A JP 17295295 A JP17295295 A JP 17295295A JP H097592 A JPH097592 A JP H097592A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
powder
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7172952A
Other languages
Japanese (ja)
Inventor
Keiichi Saito
景一 斉藤
Takahisa Masashiro
尊久 正代
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7172952A priority Critical patent/JPH097592A/en
Publication of JPH097592A publication Critical patent/JPH097592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery which obtains improving a charge/discharge life, by using a lithium metal containing powder of a boron system compound in a negative electrode, so as to prevent decreasing safety generated by repeating a charge/discharge. CONSTITUTION: By including a boron system compound in a negative electrode, depositing lithium is generated preferentially from a contact surface between powder of the boron system compound and a lithium metal, to grow a crystal with powder of the boron system compound serving as a nuleus even when deposited. From this fact, a uniform deposition form can be realized as a negative electrode main unit, to prevent easily generating branch-shaped lithium even when repeated a long period charge/discharge. As the negative electrode, foil of 150μm thickness, containing uniformly 30vol.% TiB2 powder of 20μm grain size in a lithium metal, is used. Even in the case of separating by forming branch-shaped lithium, by making contact with powder of the boron system compound, since reusing in a charge/discharge can be made, improving a charge/ discharge life can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを負極活物質
とし、リチウムイオンを挿入、脱離可能な正極とし、非
水電解液を用いるリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which uses lithium as a negative electrode active material, a positive electrode into which lithium ions can be inserted and desorbed, and which uses a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】電子機器の小型軽量化、携帯化が進み、
その電源として高エネルギー密度電池の開発が要求され
ている。このような要求に応える電池として、負極にリ
チウムを活物質とした充放電可能な高性能二次電池の開
発が期待されている。リチウムを活物質とした負極とし
ては、例えば、リチウム金属、リチウム金属合金、ある
いは、リチウムイオンを挿入、放出可能な化学物質(例
えば、種々の炭素材料、Nb2 5 、WO3 等)を用い
ることが試みられているが、原理的に最も高エネルギー
密度を可能にする負極は、リチウム金属を負極に用いた
電池である。本明細書では、以後負極にリチウム金属を
用い、リチウムイオンを挿入及び脱離可能な正極及び非
水溶媒にイオン解離性のリチウム塩を溶解した電解液を
有し、充放電可能な電池をリチウム二次電池と称する。
リチウム二次電池は、基本的に市販されている各種の二
次電池、例えばニッケルカドミウム電池、鉛蓄電池など
に比べて高性能であるが、充放電回数が増えると放電特
性の劣化、安全性の劣化などが確認されている。このこ
とはリチウム二次電池では充放電を繰り返すと、負極か
らはく離し充放電に使用されないリチウムが負極上に堆
積すると考えられている。このはく離は、特に急速充電
を行った場合に顕著になる。この負極の劣化を防ぐため
の対策として、特開昭59−132567号、同61−
245475号、同62−1403558号各公報など
に記載されているように、リチウム金属を合金化した
り、導電性高分子を複合化したりする試みがなされてい
るが、まだ不十分である。しかも、リチウムアルミニウ
ム合金の場合、充放電を繰り返すことで合金の膨張収縮
により電極が破壊されるという問題があり、更に充放電
時にはリチウムの合金中での拡散速度が遅いため電池の
取得電流は低いという問題点がある。また導電性高分子
の複合化の場合は、負極の体積効率が劣化するなどの問
題点を有している。また特願平6−103239号明細
書に記載のように、リチウムイオンを挿入、脱離可能な
導電性粉末を含有するリチウム金属を負極にした場合、
該粉末上に非常に細かなリチウムが析出し、電池の安全
性が保たれないなどの問題点を有している。更に、特開
平6−84512号公報にみられるような、金属元素、
あるいはそれらのクラスターを少なくとも基板表面部分
に存在させた構造をもつリチウム負極を使用する場合、
金属元素を混合させるため重量が増加し、リチウム電池
の長所である、軽量性が損なわれ、まり薄膜作成が困難
であり、更に密閉された電池が圧壊、釘さしなどによっ
て外気にさらされた場合、金属自身が酸化発熱を生じ電
池の熱安全性の低下が免れないなどの問題を有してい
る。
2. Description of the Related Art As electronic devices are becoming smaller and lighter and portable,
Development of a high energy density battery is required as the power source. As a battery that meets such demands, it is expected to develop a high-performance secondary battery that uses lithium as an active material for the negative electrode and can be charged and discharged. As the negative electrode using lithium as an active material, for example, lithium metal, a lithium metal alloy, or a chemical substance capable of inserting and releasing lithium ions (for example, various carbon materials, Nb 2 O 5 , WO 3 etc.) is used. However, the negative electrode that enables the highest energy density in principle is a battery using lithium metal as the negative electrode. In the present specification, hereinafter, a lithium metal is used for a negative electrode, a positive electrode capable of inserting and releasing lithium ions and an electrolytic solution in which an ion dissociable lithium salt is dissolved in a non-aqueous solvent are used, and a chargeable / dischargeable battery is a lithium battery. It is called a secondary battery.
Lithium secondary batteries are basically higher in performance than various commercially available secondary batteries, such as nickel-cadmium batteries and lead-acid batteries, but when the number of charging and discharging increases, the discharge characteristics deteriorate and Degradation has been confirmed. It is believed that this is because in a lithium secondary battery, when charging and discharging are repeated, lithium that is separated from the negative electrode and is not used for charging and discharging is deposited on the negative electrode. This peeling becomes remarkable especially when rapid charging is performed. As a measure for preventing the deterioration of the negative electrode, Japanese Patent Laid-Open Nos. 59-132567, 61-61, and 61-
As described in JP-A-245475 and JP-A-62-1403558, attempts have been made to alloy a lithium metal or compound a conductive polymer, but this is still insufficient. Moreover, in the case of a lithium aluminum alloy, there is a problem that the electrode is destroyed by expansion and contraction of the alloy by repeating charging and discharging, and furthermore, the diffusion current of lithium in the alloy during charging and discharging is slow, so the current obtained by the battery is low. There is a problem. Further, in the case of compounding a conductive polymer, there is a problem that the volumetric efficiency of the negative electrode deteriorates. Further, as described in Japanese Patent Application No. 6-103239, when a negative electrode is made of lithium metal containing a conductive powder capable of inserting and releasing lithium ions,
There is a problem that very fine lithium is deposited on the powder and the safety of the battery cannot be maintained. Further, as disclosed in JP-A-6-84512, a metal element,
Alternatively, when using a lithium negative electrode having a structure in which those clusters are present at least on the substrate surface part,
Weight is increased due to mixing of metal elements, which is an advantage of lithium batteries, lightness is impaired, it is difficult to form a thin film, and the sealed battery is exposed to the outside air by crushing, nailing, etc. In this case, there is a problem in that the metal itself generates heat by oxidation and the thermal safety of the battery is unavoidably deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
現状にかんがみてなされたものであり、その目的は、充
放電時に負極からはく離し充放電に使用されないリチウ
ムの生成を防止し、充放電寿命の向上、及び充放電を繰
り返すことによって生じる安全性の低下の防止を達成す
ることができるリチウム二次電池を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object thereof is to prevent the generation of lithium which is separated from the negative electrode during charging / discharging and is not used for charging / discharging. It is an object of the present invention to provide a lithium secondary battery capable of achieving improvement in discharge life and prevention of reduction in safety caused by repeated charging / discharging.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は、リチウムを活物質とする負極と、リチウムイオ
ンを挿入及び脱離可能な正極及び非水溶媒にイオン解離
性のリチウム塩を溶解した電解液を有するリチウム二次
電池において、当該負極がホウ素系化合物の粉末を含有
するリチウム金属であることを特徴とするリチウム二次
電池に関する。
Means for Solving the Problems The present invention will be described in brief. The present invention relates to a negative electrode using lithium as an active material, a positive electrode capable of inserting and releasing lithium ions, and a lithium salt ionically dissociable in a non-aqueous solvent. In a lithium secondary battery having an electrolytic solution in which is dissolved, the negative electrode is a lithium metal containing a powder of a boron-based compound.

【0005】以下、本発明を更に詳しく説明する。本発
明によるリチウム二次電池は、負極に当該負極がホウ素
系化合物の粉末を含有することを特徴とし、この構造を
採用することにより、充放電寿命が長く、安全なリチウ
ム二次電池を実現できる。すなわち、本発明のリチウム
二次電池はホウ素系化合物の粉末をリチウム金属中に含
有させることにより、ホウ素系化合物の粉末とリチウム
金属との接面から優先的にリチウムの析出が生じ、堆積
時にもホウ素系化合物の粉末が核となり結晶成長する。
このことから負極全体として均一な析出形態を実現で
き、長期にわたる充放電を繰り返しても枝状のリチウム
が生じにくく、また枝状リチウムが形成されはく離した
場合でも、ホウ素系化合物の粉末と接触することで、再
び充放電に使用できる。これらの効果から充放電寿命の
向上が実現できるものである。
The present invention will be described in more detail below. The lithium secondary battery according to the present invention is characterized in that the negative electrode contains a powder of a boron-based compound in the negative electrode, and by adopting this structure, a lithium secondary battery having a long charge / discharge life and safety can be realized. . That is, in the lithium secondary battery of the present invention, by containing the powder of the boron-based compound in the lithium metal, precipitation of lithium preferentially occurs from the contact surface between the powder of the boron-based compound and the lithium metal, and even during the deposition. The boron-based compound powder serves as nuclei for crystal growth.
From this, a uniform deposition morphology can be realized as the whole negative electrode, and branched lithium is unlikely to be generated even after repeated charge / discharge over a long period of time, and even when the branched lithium is formed and peeled off, it contacts the powder of the boron-based compound. By doing so, it can be used again for charging and discharging. From these effects, it is possible to improve the charge / discharge life.

【0006】ホウ素系化合物の粉末としては、Gd
2 、YB2 、TbB2 、DyB2 、HoB2 、ErB
2 、LuB2 、ScB2 、PuB2 、ZrB2 、Mn
B、MnB2 、HfB2 、UB2 、TaB2 、NbB、
NbB2 、TiB2 、MoB2 、Mo3 B、Mo
3 5 、WB、WB2 、W3 5 、AlB2 、VB2
CrB2 、SiB2 、SiB4 、SiB6 、Ni2 B、
Ni3 B、NiB、FeB、Fe2B、などが使用でき
る。好ましくは、粒径1〜100μmであることが望ま
しい。粒径が100μmを超える場合、リチウム堆積時
の結晶成長核としては面積が大きく、粒径が1μm未満
の場合、結晶成長核としての効果は期待されるものの、
はく離した枝状リチウムを電気的に接触させる接触面積
が小さくなり、はく離したリチウムとの接触効果が乏し
くなる。当該負極は、上記ホウ素系化合物粉末をリチウ
ム金属で挟みロールあるいはプレス機などにて圧延を1
0回以上繰り返す、あるいは溶融したリチウム金属中に
上記ホウ素系化合物粉末を添加後、押し出し成型するこ
とで薄膜化し、上記ホウ素系化合物粉末が該負極中に分
散して存在していることが好ましい。
As the powder of the boron compound, Gd
B 2 , YB 2 , TbB 2 , DyB 2 , HoB 2 , ErB
2 , LuB 2 , ScB 2 , PuB 2 , ZrB 2 , Mn
B, MnB 2 , HfB 2 , UB 2 , TaB 2 , NbB,
NbB 2, TiB 2, MoB 2 , Mo 3 B, Mo
3 B 5 , WB, WB 2 , W 3 B 5 , AlB 2 , VB 2 ,
CrB 2 , SiB 2 , SiB 4 , SiB 6 , Ni 2 B,
Ni 3 B, NiB, FeB, Fe 2 B, etc. can be used. Preferably, the particle size is 1 to 100 μm. When the particle size exceeds 100 μm, the area is large as a crystal growth nucleus during lithium deposition, and when the particle size is less than 1 μm, the effect as a crystal growth nucleus is expected,
The contact area for electrically contacting the separated branched lithium becomes small, and the contact effect with the separated lithium becomes poor. For the negative electrode, the above boron compound powder is sandwiched between lithium metals and rolled by a roll or a pressing machine.
It is preferable that the boron-based compound powder is added to molten lithium metal which is repeated 0 times or more, and then extrusion molding is performed to form a thin film, and the boron-based compound powder is dispersed and present in the negative electrode.

【0007】次に、本発明によるホウ素系化合物粉末の
添加量が、充放電効率に与える効果を図5に示す。すな
わち、図5は、ホウ素系化合物粉末として粒径20mm
のTiB2 粉末を用いた場合における該粉末混合量(体
積%、横軸)と、充放電効率(%、縦軸)との関係を示
すグラフである。図5から明らかなように、該粉末混合
量の最適範囲は10〜45体積%である。
FIG. 5 shows the effect of the amount of the boron compound powder added according to the present invention on the charge / discharge efficiency. That is, FIG. 5 shows that the particle diameter of the boron-based compound powder is 20 mm.
3 is a graph showing the relationship between the powder mixture amount (volume%, horizontal axis) and the charge / discharge efficiency (%, vertical axis) when the TiB 2 powder of No. 2 was used. As is clear from FIG. 5, the optimum range of the powder mixing amount is 10 to 45% by volume.

【0008】本発明のリチウム二次電池の正極として
は、例えばLix CoO2 (0≦x≦1)、Lix Ni
2 (0≦x≦1)、Lix Mn2 4 (0≦x≦
1)、結晶あるいは非結晶のV2 5 、Lix 3 8
(0<x≦1)、TiS2 、NbSe3 等を用いること
ができる。また、電解液に用いるリチウム塩としては、
例えばLiAsF6 、LiPF6 、LiSbF6 、Li
CF3 SO3 、LiN(CF3 SO2 2 、LiC(C
3 SO2 3 、LiClO4 、LiBF4 、LiAl
Cl4 等を用いることができる。電解液に用いる非水溶
媒としては、プロピレンカーボネート、エチレンカーボ
ネート、γ−ブチルラクトン等の環状エステル、ジメチ
ルカーボネート、ジエチルカーボネート等の非環状エス
テル、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、1,3−ジオキソラン、4−メチル−1,3−ジ
オキソラン等の環状エーテル、ジアルコキシエタン、グ
ライム類等の非環状エーテル、スルホラン等の硫黄化合
物等を単独若しくは2種以上混合して用いることができ
る。
Examples of the positive electrode of the lithium secondary battery of the present invention include Li x CoO 2 (0 ≦ x ≦ 1) and Li x Ni.
O 2 (0 ≦ x ≦ 1), Li x Mn 2 O 4 (0 ≦ x ≦
1), crystalline or amorphous V 2 O 5 , Li x V 3 O 8
(0 <x ≦ 1), TiS 2 , NbSe 3 or the like can be used. Further, as the lithium salt used in the electrolytic solution,
For example, LiAsF 6 , LiPF 6 , LiSbF 6 , Li
CF 3 SO 3, LiN (CF 3 SO 2) 2, LiC (C
F 3 SO 2 ) 3 , LiClO 4 , LiBF 4 , LiAl
Cl 4 or the like can be used. Examples of the non-aqueous solvent used for the electrolytic solution include cyclic esters such as propylene carbonate, ethylene carbonate and γ-butyl lactone, non-cyclic esters such as dimethyl carbonate and diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, and 4 Cyclic ethers such as -methyl-1,3-dioxolane, dialkoxyethanes, acyclic ethers such as glymes, and sulfur compounds such as sulfolane can be used alone or in admixture of two or more.

【0009】[0009]

【実施例】以下、本発明を実施例及び参考例により更に
具体的に説明するが、本発明はこれら実施例に限定され
ない。
EXAMPLES The present invention will be described in more detail below with reference to examples and reference examples, but the present invention is not limited to these examples.

【0010】参考例1 負極として、厚さ150μmのリチウム金属薄膜、電解
液として1モル/リットルのLiAsF6 をエチレンカ
ーボネートとプロピレンカーボネートの混合溶媒(体積
混合比、1:1)に溶解したものを用いて、コイン電池
(直径23mm、厚さ2mm)を作製した。コイン電池
の構造を図1に示す。その際の電池の放電容量(mA
h、縦軸)とサイクル数(横軸)の関係を図2、図3、
図4に示す。すなわち、図1はコイン電池の構造を示し
た図である。図1において、符号1は負極ケース、2は
負極、3は電解液、4はセパレータ、5は電池ケース、
6は正極、7はガスケットを意味する。負極2は各例で
異なるが、正極6はリチウム金属薄膜である。
Reference Example 1 A negative electrode was prepared by dissolving a lithium metal thin film having a thickness of 150 μm and 1 mol / liter of LiAsF 6 as an electrolytic solution in a mixed solvent of ethylene carbonate and propylene carbonate (volume mixing ratio: 1: 1). A coin battery (diameter: 23 mm, thickness: 2 mm) was produced using the coin battery. The structure of the coin battery is shown in FIG. Battery discharge capacity at that time (mA
h, vertical axis) and the number of cycles (horizontal axis) are shown in FIGS.
As shown in FIG. That is, FIG. 1 is a diagram showing the structure of the coin battery. In FIG. 1, reference numeral 1 is a negative electrode case, 2 is a negative electrode, 3 is an electrolytic solution, 4 is a separator, 5 is a battery case,
6 is a positive electrode and 7 is a gasket. The negative electrode 2 is different in each example, but the positive electrode 6 is a lithium metal thin film.

【0011】実施例1 負極として、リチウム金属中に粒径20μmのTiB2
粉末を30体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図2に示す。参考例1に比べ、実施例1は、
飛躍的に電池のサイクル寿命が向上していることが明ら
かである。
Example 1 As a negative electrode, TiB 2 having a particle size of 20 μm in lithium metal was used.
A battery was prepared in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 30% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. Compared to Reference Example 1, Example 1
It is clear that the cycle life of the battery has been dramatically improved.

【0012】実施例2 負極として、リチウム金属中に粒径20μmのMnB2
粉末を30体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図2に示す。参考例1に比べ、実施例2は、
飛躍的に電池のサイクル寿命が向上していることが明ら
かである。
Example 2 As a negative electrode, MnB 2 having a particle size of 20 μm was added to lithium metal.
A battery was prepared in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 30% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. Compared to Reference Example 1, Example 2
It is clear that the cycle life of the battery has been dramatically improved.

【0013】実施例3 負極として、リチウム金属中に粒径20μmのTiB2
粉末を10体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図2に示す。参考例1に比べ、実施例3は、
飛躍的に電池のサイクル寿命が向上していることが明ら
かである。
Example 3 As a negative electrode, TiB 2 having a particle size of 20 μm in lithium metal was used.
A battery was produced in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 10% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. Compared with Reference Example 1, Example 3 has
It is clear that the cycle life of the battery has been dramatically improved.

【0014】実施例4 負極として、リチウム金属中に粒径20μmのMnB2
粉末を10体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図2に示す。参考例1に比べ、実施例4は、
飛躍的に電池のサイクル寿命が向上していることが明ら
かである。
Example 4 As a negative electrode, MnB 2 having a grain size of 20 μm in lithium metal was used.
A battery was produced in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 10% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. In comparison with Reference Example 1, Example 4 has
It is clear that the cycle life of the battery has been dramatically improved.

【0015】実施例5 負極として、リチウム金属中に粒径20μmのFeB粉
末を30体積%均一に含有した厚さ150μmの箔を用
いた以外は、参考例1と同様に電池作製した。コイン電
池の構造を図1に示す。その際の放電容量とサイクル数
の関係を図3に示す。参考例1に比べ、実施例5は、飛
躍的に電池のサイクル寿命が向上していることが明らか
である。
Example 5 A battery was prepared in the same manner as in Reference Example 1 except that a 150 μm-thick foil containing 30% by volume of FeB powder having a particle size of 20 μm uniformly contained in lithium metal was used as the negative electrode. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. It is apparent that in Example 5, the cycle life of the battery is dramatically improved as compared with Reference Example 1.

【0016】実施例6 負極として、リチウム金属中に粒径5μmのFeB粉末
を30体積%均一に含有した厚さ150μmの箔を用い
た以外は、参考例1と同様に電池作製した。コイン電池
の構造を図1に示す。その際の放電容量とサイクル数の
関係を図3に示す。参考例1に比べ、実施例6は、飛躍
的に電池のサイクル寿命が向上していることが明らかで
ある。
Example 6 A battery was prepared in the same manner as in Reference Example 1 except that a 150 μm-thick foil in which 30% by volume of FeB powder having a particle size of 5 μm was uniformly contained in lithium metal was used as the negative electrode. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. It is apparent that in Example 6, the cycle life of the battery is dramatically improved as compared with Reference Example 1.

【0017】実施例7 負極として、リチウム金属中に粒径20μmのNi3
粉末を10体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図3に示す。参考例1に比べ、実施例7は、
飛躍的に電池のサイクル寿命が向上していることが明ら
かである。
Example 7 As a negative electrode, Ni 3 B having a particle size of 20 μm was added to lithium metal.
A battery was produced in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 10% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. Compared to Reference Example 1, Example 7
It is clear that the cycle life of the battery has been dramatically improved.

【0018】実施例8 負極として、リチウム金属中に粒径5μmのNi3 B粉
末を10体積%均一に含有した厚さ150μmの箔を用
いた以外は、参考例1と同様に電池作製した。コイン電
池の構造を図1に示す。その際の放電容量とサイクル数
の関係を図3に示す。参考例1に比べ、実施例8は、飛
躍的に電池のサイクル寿命が向上していることが明らか
である。
Example 8 A battery was prepared in the same manner as in Reference Example 1 except that a 150 μm-thick foil in which 10% by volume of Ni 3 B powder having a particle size of 5 μm was uniformly contained in lithium metal was used as the negative electrode. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. It is clear that in Example 8, the cycle life of the battery is dramatically improved as compared with Reference Example 1.

【0019】実施例9 負極として、リチウム金属中に粒径20μmのWB粉末
を10体積%均一に含有した厚さ150μmの箔を用い
た以外は、参考例1と同様に電池作製した。コイン電池
の構造を図1に示す。その際の放電容量とサイクル数の
関係を図4に示す。参考例1に比べ、実施例9は、飛躍
的に電池のサイクル寿命が向上していることが明らかで
ある。
Example 9 A battery was prepared in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm containing 10% by volume of WB powder having a particle size of 20 μm uniformly contained in lithium metal was used as the negative electrode. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. It is apparent that in Example 9, the cycle life of the battery is dramatically improved as compared with Reference Example 1.

【0020】実施例10 負極として、リチウム金属中に粒径10μmのSiB2
粉末を10体積%均一に含有した厚さ150μmの箔を
用いた以外は、参考例1と同様に電池作製した。コイン
電池の構造を図1に示す。その際の放電容量とサイクル
数の関係を図4に示す。参考例1に比べ、実施例10
は、電池のサイクル寿命が向上していることが明らかで
ある。
Example 10 As a negative electrode, SiB 2 having a particle diameter of 10 μm was added to lithium metal.
A battery was produced in the same manner as in Reference Example 1 except that a foil having a thickness of 150 μm and containing 10% by volume of the powder uniformly was used. The structure of the coin battery is shown in FIG. The relationship between the discharge capacity and the number of cycles in that case is shown in FIG. Example 10 compared to Reference Example 1
It is clear that the cycle life of the battery is improved.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、負極にホウ素系化合物の粉末材料を含有する
リチウム金属を用いることにより、充放電寿命が長く、
安全性が高いリチウム二次電池を実現できる。
As is apparent from the above description, according to the present invention, by using lithium metal containing a powder material of a boron-based compound for the negative electrode, the charge and discharge life is long,
A lithium secondary battery with high safety can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】コイン電池の構造を示した図である。FIG. 1 is a diagram showing a structure of a coin battery.

【図2】リチウム二次電池のサイクル時の放電容量とサ
イクル数との関係を示した図である。
FIG. 2 is a diagram showing the relationship between the discharge capacity of a lithium secondary battery during a cycle and the number of cycles.

【図3】リチウム二次電池のサイクル時の放電容量とサ
イクル数との関係を示した図である。
FIG. 3 is a diagram showing the relationship between the discharge capacity of a lithium secondary battery during a cycle and the number of cycles.

【図4】リチウム二次電池のサイクル時の放電容量とサ
イクル数との関係を示した図である。
FIG. 4 is a diagram showing the relationship between the discharge capacity and the number of cycles during a cycle of a lithium secondary battery.

【図5】本発明によるホウ素系化合物粉末混合量と充放
電効率との関係を示した図である。
FIG. 5 is a diagram showing the relationship between the amount of boron compound powder mixed and the charge / discharge efficiency according to the present invention.

【符号の説明】[Explanation of symbols]

1:負極ケース、2:負極、3:電解液、4:セパレー
タ、5:電池ケース、6:正極、7:ガスケット
1: negative electrode case, 2: negative electrode, 3: electrolytic solution, 4: separator, 5: battery case, 6: positive electrode, 7: gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを活物質とする負極と、リチウ
ムイオンを挿入及び脱離可能な正極及び非水溶媒にイオ
ン解離性のリチウム塩を溶解した電解液を有するリチウ
ム二次電池において、当該負極がホウ素系化合物の粉末
を含有するリチウム金属であることを特徴とするリチウ
ム二次電池。
1. A lithium secondary battery comprising a negative electrode using lithium as an active material, a positive electrode into which lithium ions can be inserted and desorbed, and an electrolytic solution in which an ion dissociable lithium salt is dissolved in a non-aqueous solvent. Is a lithium metal containing a powder of a boron compound, and a lithium secondary battery.
JP7172952A 1995-06-16 1995-06-16 Lithium secondary battery Pending JPH097592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172952A JPH097592A (en) 1995-06-16 1995-06-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172952A JPH097592A (en) 1995-06-16 1995-06-16 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH097592A true JPH097592A (en) 1997-01-10

Family

ID=15951412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172952A Pending JPH097592A (en) 1995-06-16 1995-06-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH097592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395427B1 (en) * 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395427B1 (en) * 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same

Similar Documents

Publication Publication Date Title
US20070202365A1 (en) Lithium secondary battery
US20090087731A1 (en) Lithium secondary battery
US20060134517A1 (en) Lithium secondary battery
US20040029012A1 (en) Non-aqueous electrolyte battery
US20060141359A1 (en) Lithium secondary battery
JP2001283834A (en) Secondary battery
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2001243957A (en) Lithium secondary battery
US20050147883A1 (en) Electrolyte, negative electrode and battery
US6764791B2 (en) Rechargeable lithium battery
JP2001283833A (en) Secondary battery
JPH1186853A (en) Lithium secondary battery
JPH08236155A (en) Lithium secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
CN106063014A (en) Non-aqueous electrolyte secondary cell
US7097938B2 (en) Negative electrode material and battery using the same
JP2002231306A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JP3721734B2 (en) Non-aqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPH097592A (en) Lithium secondary battery
JP2005011725A (en) Lithium secondary battery
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JPH097593A (en) Lithium secondary battery
JPH09204933A (en) Lithium secondary battery