JP2001283833A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2001283833A
JP2001283833A JP2000100406A JP2000100406A JP2001283833A JP 2001283833 A JP2001283833 A JP 2001283833A JP 2000100406 A JP2000100406 A JP 2000100406A JP 2000100406 A JP2000100406 A JP 2000100406A JP 2001283833 A JP2001283833 A JP 2001283833A
Authority
JP
Japan
Prior art keywords
active material
material layer
secondary battery
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000100406A
Other languages
Japanese (ja)
Other versions
JP3913438B2 (en
Inventor
Masahisa Fujimoto
正久 藤本
Hiroaki Ikeda
博昭 池田
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000100406A priority Critical patent/JP3913438B2/en
Publication of JP2001283833A publication Critical patent/JP2001283833A/en
Application granted granted Critical
Publication of JP3913438B2 publication Critical patent/JP3913438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery with an excellent cycle characteristics preventing an active material from peeling off a collector due to expansion and contraction at time of charging and discharging. SOLUTION: This battery utilizes an electrode in which a first active material layer made of carbon is provided on a collector made of a material not alloying with Li, and on top of the first active material later, a second active material layer made of a metal alloying with Li or a semiconductor is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
等の二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery such as a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム金属を負極として用いたリチウ
ム二次電池は、そのエネルギー密度が大きいことから、
次世代の二次電池として注目されている。しかしなが
ら、リチウム金属を負極に用いるため、充放電に伴って
リチウム金属の溶解析出が生じ、デンドライトの生成や
電極の変形が生じる。このため、サイクル性能が劣悪で
あり、実用化に耐え得るものはできていない。このよう
な問題を解決し得るものとして、Liと合金化する金属
を用いたLi合金負極や、黒鉛などの炭素材料を用いた
炭素負極が提案されており、炭素負極を用いたものは一
部実用化されている。
2. Description of the Related Art A lithium secondary battery using lithium metal as a negative electrode has a high energy density.
It is attracting attention as a next-generation secondary battery. However, since lithium metal is used for the negative electrode, the dissolution and deposition of lithium metal occurs with charging and discharging, which causes dendrite generation and electrode deformation. For this reason, the cycle performance is inferior, and there is no product that can withstand practical use. As a solution to such a problem, a Li alloy negative electrode using a metal alloying with Li and a carbon negative electrode using a carbon material such as graphite have been proposed. Has been put to practical use.

【0003】しかしながら、炭素負極はその理論容量が
372mAh/gと低いため、金属リチウムを負極に用
いた場合に比べて、大幅にエネルギー密度が低下すると
いう欠点がある。また、Li合金負極を用いた場合に
は、充放電に伴い体積の膨張と収縮が繰り返されるた
め、充放電サイクルが進むにつれて活物質粒子が微粉化
し、サイクル性能が悪くなるという欠点があった。
However, since the theoretical capacity of the carbon anode is low at 372 mAh / g, there is a disadvantage that the energy density is greatly reduced as compared with the case where lithium metal is used for the anode. In addition, when a Li alloy negative electrode is used, the volume expansion and contraction are repeated with charge / discharge, so that the active material particles become finer as the charge / discharge cycle progresses, and the cycle performance deteriorates.

【0004】一方、リチウム二次電池を用いる応用機器
においては、より一層のエネルギー密度の向上が要求さ
れており、黒鉛負極を用いたリチウム二次電池と同等以
上のサイクル性能と、より一層の高エネルギー密度を有
するリチウム二次電池が要望されている。
On the other hand, in the application equipment using a lithium secondary battery, further improvement in energy density is required, and the cycle performance is equal to or higher than that of a lithium secondary battery using a graphite negative electrode, and further higher performance is required. There is a demand for a lithium secondary battery having an energy density.

【0005】そこで、黒鉛に比べて非常に大きな容量を
有するケイ素粉末を、黒鉛粉末と混合した負極が提案さ
れている。これは、ケイ素粉末の有する大きな容量と、
黒鉛の優れたサイクル性能を兼ね備えることを目的とす
るものである。
Accordingly, a negative electrode has been proposed in which silicon powder having a much larger capacity than graphite is mixed with graphite powder. This is due to the large capacity of silicon powder and
The purpose is to combine the excellent cycle performance of graphite.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ケイ素
粉末は、上述のようにリチウムとの合金化によりリチウ
ムを吸蔵及び放出する活物質であるので、黒鉛粉末と混
合して用いた場合にも、充放電サイクルに伴い微粉化が
進行し、集電体から活物質が剥離するため、電極全体の
サイクル性能は劣ったものとなり、実用性を有するもの
ではなかった。
However, since silicon powder is an active material that absorbs and releases lithium by alloying with lithium as described above, it is not charged even when used in a mixture with graphite powder. Since the pulverization progressed with the discharge cycle and the active material was separated from the current collector, the cycle performance of the entire electrode was inferior and was not practical.

【0007】本発明の目的は、充放電時の膨張収縮によ
る集電体からの活物質の剥離を防止することができ、優
れたサイクル特性を得ることができる二次電池を提供す
ることにある。
An object of the present invention is to provide a secondary battery which can prevent the active material from peeling off from the current collector due to expansion and contraction at the time of charging and discharging, and can obtain excellent cycle characteristics. .

【0008】[0008]

【課題を解決するための手段】本発明の二次電池は、L
iと合金化しない材料からなる集電体の上に、炭素から
なる第1の活物質層を設け、該第1の活物質層の上にL
iと合金化する金属または半導体からなる第2の活物質
層を設けた電極を用いることを特徴としている。
The secondary battery according to the present invention has an L
A first active material layer made of carbon is provided on a current collector made of a material that does not alloy with i, and L is placed on the first active material layer.
An electrode provided with a second active material layer made of a metal or a semiconductor that is alloyed with i is used.

【0009】本発明の上記電極においては、上記第2活
物質層の上に、さらに第1の活物質層が設けられていて
もよい。すなわち、集電体の上に、第1の活物質層/第
2の活物質層/第1の活物質層の3層構造の活物質層が
設けられていてもよい。さらに、本発明の上記電極にお
いては、上記第2活物質層の上に、第1の活物質層及び
第2の活物質層がこの順序で交互に繰り返し積層されて
いてもよい。すなわち、集電体の上に、第1の活物質層
/第2の活物質層/第1の活物質層/第2の活物質層の
ように第1の活物質層と第2の活物質層からなる繰り返
しの積層構造が形成されていてもよい。
In the above electrode of the present invention, a first active material layer may be further provided on the second active material layer. That is, an active material layer having a three-layer structure of first active material layer / second active material layer / first active material layer may be provided over the current collector. Further, in the electrode of the present invention, a first active material layer and a second active material layer may be alternately and repeatedly stacked in this order on the second active material layer. That is, the first active material layer and the second active material layer such as a first active material layer / a second active material layer / a first active material layer / a second active material layer are formed on the current collector. A repeated laminated structure composed of the material layers may be formed.

【0010】本発明の第2の活物質層に用いる活物質
は、Liと合金化する金属または半導体から形成された
ものであれば特に限定されないが、大きな電極容量を得
るという観点からは、Si、Ge、Sn、Al、及びI
nなどが好ましく用いられる。これらの中でも、Si及
びGeは、特に高い容量を有しており、Li4.4Si及
びLi4.4Geの組成までLiを吸蔵することが可能で
あるので、特に好ましく用いられる。また、Si−Ge
合金も高い容量を有しており、同様に好ましく用いられ
る。
The active material used for the second active material layer of the present invention is not particularly limited as long as it is formed of a metal or a semiconductor that can be alloyed with Li. , Ge, Sn, Al, and I
n and the like are preferably used. Among them, Si and Ge are particularly preferably used because they have particularly high capacities and can store Li up to the composition of Li 4.4 Si and Li 4.4 Ge. In addition, Si-Ge
Alloys also have a high capacity and are likewise preferably used.

【0011】また、第2の活物質層は、気相から堆積さ
せた薄膜であることが好ましい。これらの薄膜は、CV
D法、スパッタリング法、及び蒸着法などの気相からの
薄膜形成法により形成することができる。
The second active material layer is preferably a thin film deposited from a gas phase. These thin films are CV
It can be formed by a method of forming a thin film from a gas phase such as a D method, a sputtering method, and a vapor deposition method.

【0012】Si薄膜は、微結晶Si薄膜または非晶質
Si薄膜であることが好ましい。微結晶Si薄膜は、ラ
マン分光分析において、結晶領域に対応する520cm
-1近傍のピークと、非晶質領域に対応する480cm-1
近傍のピークの両方が実質的に検出されるSi薄膜であ
る。また、非晶質Si薄膜は、ラマン分光分析におい
て、結晶領域に対応する520cm-1近傍のピークは実
質的に検出されず、非晶質領域に対応する480cm-1
のピークが実質的に検出されるSi薄膜である。また、
Ge薄膜及びSi−Ge合金薄膜は、いずれも非晶質薄
膜であることが好ましい。
The Si thin film is preferably a microcrystalline Si thin film or an amorphous Si thin film. The microcrystalline Si thin film has a size of 520 cm corresponding to the crystal region in Raman spectroscopy.
-1 peak and 480 cm -1 corresponding to the amorphous region.
Both of the nearby peaks are Si thin films that are substantially detected. In the amorphous Si thin film, a peak near 520 cm −1 corresponding to the crystalline region was not substantially detected in the Raman spectroscopic analysis, and 480 cm −1 corresponding to the amorphous region was not detected.
Is a Si thin film in which the peak is substantially detected. Also,
Both the Ge thin film and the Si—Ge alloy thin film are preferably amorphous thin films.

【0013】本発明において第1の活物質層に用いる炭
素材料は、リチウム二次電池において負極として用いる
ことができる炭素材料であれば特に限定されるものでは
なく、例えば、天然黒鉛、人造黒鉛、カーボンブラッ
ク、活性炭、カーボンファイバー、コークス、有機前駆
体を不活性雰囲気中で熱処理して合成した炭素、あるい
はダイヤモンドライクカーボン(DLC)などが挙げら
れる。黒鉛としては、層間距離dが3.37Å以下、積
層方向の結晶子寸法Lcが300Å以上の黒鉛が好まし
く用いられる。
In the present invention, the carbon material used for the first active material layer is not particularly limited as long as it can be used as a negative electrode in a lithium secondary battery. For example, natural graphite, artificial graphite, Examples include carbon black, activated carbon, carbon fiber, coke, carbon synthesized by heat-treating an organic precursor in an inert atmosphere, or diamond-like carbon (DLC). As the graphite, graphite having an interlayer distance d of 3.37 ° or less and a crystallite size Lc in the stacking direction of 300 ° or more is preferably used.

【0014】本発明における集電体は、Liと合金化し
ない材料であって、高い導電性を有するものであれば特
に限定されないが、銅箔等の金属箔が好ましく用いられ
る。本発明によれば、炭素からなる第1の活物質層の上
に、Liと合金化する金属または半導体からなる第2の
活物質層が設けられる。第2の活物質層は、Liを吸蔵
・放出することにより膨張収縮するが、その下地層であ
る第1の活物質層も、同様にLiの吸蔵・放出により膨
張収縮するので、第2の活物質層の剥離を防止すること
ができ、サイクル性能を高めることができる。
The current collector in the present invention is not particularly limited as long as it is a material that does not alloy with Li and has high conductivity, but a metal foil such as a copper foil is preferably used. According to the present invention, the second active material layer made of a metal or a semiconductor that alloys with Li is provided on the first active material layer made of carbon. The second active material layer expands and contracts by occluding and releasing Li. However, the first active material layer, which is the underlying layer, similarly expands and contracts by occluding and releasing Li. Separation of the active material layer can be prevented, and cycle performance can be improved.

【0015】本発明において、さらに好ましくは、第2
の活物質層の充放電時における膨張収縮率と、第1の活
物質層の充放電時おける膨張収縮率とがほぼ同じになる
ように調整される。例えば、第1の活物質層及び第2の
活物質層のそれぞれの厚みを調整することにより、この
ような調整が可能である。
In the present invention, more preferably, the second
The expansion and contraction rate of the first active material layer during charge and discharge is adjusted to be substantially the same as the expansion and contraction rate of the first active material layer during charge and discharge. For example, such adjustment is possible by adjusting the thickness of each of the first active material layer and the second active material layer.

【0016】本発明において、上記電極は、負極として
用いてもよいし、正極として用いてもよいが、一般には
負極として用いられる。この場合の正極としては、特に
制限されるものではないが、従来からリチウム二次電池
の正極として用いられているものを用いることができ
る。このような正極活物質としては、LiCoO2 、L
iNiO2 、LiMn24 、LiMnO2 、LiCo
0.5Ni0.52 、LiNi0.7Co0.2Mn0.12 など
のリチウム含有遷移金属酸化物や、MnO2 などのリチ
ウムを含有していない金属酸化物が例示される。また、
この他にも、リチウムを電気化学的に挿入・脱離する物
質であれば、制限なく用いることができる。
In the present invention, the electrode is used as a negative electrode
May be used, or may be used as a positive electrode, but generally,
Used as a negative electrode. As the positive electrode in this case,
Although not limited, conventional lithium secondary batteries
Can be used as the positive electrode of
You. As such a positive electrode active material, LiCoOTwo, L
iNiOTwo, LiMnTwoOFour, LiMnOTwo , LiCo
0.5Ni0.5OTwo, LiNi0.7Co0.2Mn0.1OTwoSuch
Lithium-containing transition metal oxides and MnOTwoSuch as Richi
An example is a metal oxide containing no metal. Also,
Other materials that insert and remove lithium electrochemically
Any quality can be used without restriction.

【0017】本発明の二次電池に用いる電解質の溶媒
は、特に限定されるものではないが、エチレンカーボネ
ート、プロピレンカーボネート、ブチレンカーボネート
などの環状カーボネートと、ジメチルカーボネート、メ
チルエチルカーボネート、ジエチルカーボネートなどの
鎖状カーボネートとの混合溶媒が例示される。また、前
記環状カーボネートと1,2−ジメトキシエタン、1,
2−ジエトキシエタンなどのエーテル系溶媒との混合溶
媒も例示される。また、電解質の溶質としては、LiP
6 、LiBF4 、LiCF3SO3 、LiN(CF3
2)2 、LiN(C25SO2)2 、LiN(CF3
2)(C49SO2)、LiC(CF3SO2)3、LiC
(C25SO2)3 など及びそれらの混合物が例示され
る。さらに電解質として、ポリエチレンオキシド、ポリ
アクリロニトリルなどのポリマー電解質に電解液を含浸
したゲル状ポリマー電解質や、LiI、Li3Nなどの
無機固体電解質が例示される。本発明の二次電池の電解
質は、イオン導電性を発現させる溶媒としてのLi化合
物とこれを溶解・保持する溶媒が電池の充電時や放電時
あるいは保存時の電圧で分解しない限り、制約なく用い
ることができる。
The solvent of the electrolyte used in the secondary battery of the present invention is not particularly limited, but a cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, and a solvent such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. A mixed solvent with a chain carbonate is exemplified. Further, the cyclic carbonate and 1,2-dimethoxyethane,
A mixed solvent with an ether solvent such as 2-diethoxyethane is also exemplified. As a solute of the electrolyte, LiP
F 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 S
O 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 S
O 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC
(C 2 F 5 SO 2 ) 3 and the like and mixtures thereof are exemplified. Examples of the electrolyte further include a gel polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as LiI and Li 3 N. The electrolyte of the secondary battery of the present invention is used without limitation, as long as the Li compound as a solvent that develops ionic conductivity and the solvent that dissolves and retains the Li compound are not decomposed at the time of charging, discharging, or storing the battery. be able to.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately modified within the scope of the invention. It can be implemented by

【0019】(本発明電池Aの作製) 〔負極第1活物質層の作製〕負極の第1の活物質層の活
物質として黒鉛(d<3.37Å、Lc>300Å)を
用い、結着剤としてフッ素樹脂(PVdF)を用いて第
1の活物質層を作製した。フッ素樹脂の濃度が黒鉛+フ
ッ素樹脂の全体の5重量%となるように、フッ素樹脂を
溶解したN−メチルピロリドン溶液に黒鉛を添加し、3
0分間らいかい機でらいかいしてスラリーを作製した。
このスラリーをドクターブレード法により、電解銅箔の
上に塗布、乾燥して第1の活物質層とした。第1の活物
質層の厚みは60μmであった。
(Preparation of Battery A of the Present Invention) [Preparation of Negative Electrode First Active Material Layer] Graphite (d <3.37 °, Lc> 300 °) was used as the active material of the first active material layer of the negative electrode and bound. A first active material layer was formed using a fluororesin (PVdF) as an agent. Graphite is added to an N-methylpyrrolidone solution in which the fluororesin is dissolved so that the concentration of the fluororesin is 5% by weight of the total of the graphite and the fluororesin, and 3
The slurry was prepared using a trimmer for 0 minutes.
This slurry was applied on an electrolytic copper foil by a doctor blade method and dried to form a first active material layer. The thickness of the first active material layer was 60 μm.

【0020】〔負極第2活物質層の作製〕原料ガスとし
てSiH4ガスを用い、キャリアガスとしてH2ガスを用
い、プラズマCVD法により、上記第1の活物質層の上
に、第2の活物質層としてシリコン薄膜を形成し、負極
を作製した。薄膜形成条件は、原料ガス流量:10sc
cm、キャリアガス流量:200sccm、基板温度:
180℃、反応圧力:40Pa、高周波電力555Wと
した。形成されたシリコン薄膜の膜厚は2μmであり、
ラマン分光分析により微結晶シリコン薄膜であることを
確認した。
[Preparation of Negative Electrode Second Active Material Layer] Using a SiH 4 gas as a source gas and an H 2 gas as a carrier gas, a second CVD method is performed on the first active material layer by a plasma CVD method. A silicon thin film was formed as an active material layer to produce a negative electrode. The conditions for forming the thin film were as follows: source gas flow rate: 10 sc
cm, carrier gas flow rate: 200 sccm, substrate temperature:
The reaction pressure was 180 ° C., the reaction pressure was 40 Pa, and the high frequency power was 555 W. The thickness of the formed silicon thin film is 2 μm,
Raman spectroscopic analysis confirmed that the film was a microcrystalline silicon thin film.

【0021】第1の活物質層中の黒鉛と第2の活物質層
であるシリコン薄膜との重量比は、84:4.6であっ
た。なお、上記の実施例では、CVD法によりシリコン
薄膜を形成しているが、スパッタリング法及び蒸着法な
どの他の薄膜形成法で形成してもよい。また、シリコン
粉末を結着剤を用いて塗布することによって第2の活物
質層を形成してもよい。
The weight ratio of the graphite in the first active material layer to the silicon thin film as the second active material layer was 84: 4.6. In the above embodiment, the silicon thin film is formed by the CVD method, but may be formed by another thin film forming method such as a sputtering method and an evaporation method. Alternatively, the second active material layer may be formed by applying silicon powder using a binder.

【0022】〔正極の作製〕正極活物質としてLiCo
2 を用い、結着剤としてフッ素樹脂(PVdF)を用
いて正極を作製した。具体的には、LiCoO2粉末1
00gを、フッ素樹脂が5重量%となるように溶解した
N−メチルピロリドン溶液に混合し、30分間らいかい
機でらいかいしてスラリーを作製した。このスラリーを
ドクターブレード法によって、厚み20μmのアルミニ
ウム箔上に塗布し、乾燥して正極を得た。
[Preparation of positive electrode] LiCo as a positive electrode active material
A positive electrode was produced using O 2 and a fluororesin (PVdF) as a binder. Specifically, LiCoO 2 powder 1
00 g was mixed with a solution of N-methylpyrrolidone in which the fluororesin was dissolved at 5% by weight, and the mixture was stirred for 30 minutes using a mill to prepare a slurry. This slurry was applied on a 20 μm-thick aluminum foil by a doctor blade method, and dried to obtain a positive electrode.

【0023】〔電池の作製〕上記負極と上記正極を、ポ
リプロピレン製セパレータを介して積層した後、巻き取
ることによって、電極群を作製した。この電極群を電池
缶に挿入した後、電解液を注入し、封口して電池を作製
した。なお、電解液としては、エチレンカーボネートと
ジエチルカーボネートとの等体積混合溶媒に、LiPF
6 を1モル/リットル溶解したものを用いた。
[Preparation of Battery] The above-mentioned negative electrode and the above-mentioned positive electrode were laminated via a polypropylene separator, and then wound up to prepare an electrode group. After inserting this electrode group into a battery can, an electrolytic solution was injected and sealed, to prepare a battery. In addition, as an electrolytic solution, LiPF was mixed with an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
6 dissolved at 1 mol / liter was used.

【0024】(本発明電池Bの作製) 〔下層の負極第1活物質層の作製〕第1の活物質層の厚
みを30μmとする以外は、上記本発明電池Aにおける
負極第1活物質層と同様にして、下層の負極第1活物質
層を作製した。
(Preparation of Battery B of the Present Invention) [Preparation of Lower Electrode First Active Material Layer] Negative electrode first active material layer of Battery A of the present invention except that the thickness of the first active material layer was 30 μm. In the same manner as in the above, a lower negative electrode first active material layer was produced.

【0025】〔負極第2活物質層の作製〕上記本発明電
池Aにおける負極第2活物質層と同様にして、上記の下
層の負極第1活物質層の上にシリコン薄膜を形成した。
シリコン薄膜の膜厚は2μmとした。
[Preparation of Negative Electrode Second Active Material Layer] A silicon thin film was formed on the lower negative electrode first active material layer in the same manner as the negative electrode second active material layer in Battery A of the present invention.
The thickness of the silicon thin film was 2 μm.

【0026】〔上層の負極第1活物質層の作製〕上記シ
リコン薄膜の上に、下層の負極第1活物質層と同様にし
て、上層の負極第1活物質層を作製した。
[Preparation of Upper Negative Electrode First Active Material Layer] An upper negative electrode first active material layer was prepared on the silicon thin film in the same manner as the lower negative electrode first active material layer.

【0027】以上のようにして、集電体である電解銅箔
の上に、第1の活物質層/第2の活物質層/第1の活物
質層の3層を積層し、負極を得た。上層及び下層の第1
の活物質層中の合計の黒鉛と、第2の活物質層であるシ
リコン薄膜との重量比は、84:4.6であった。
As described above, three layers of a first active material layer / a second active material layer / a first active material layer are laminated on an electrolytic copper foil as a current collector, and a negative electrode is formed. Obtained. First of upper layer and lower layer
The weight ratio of the total graphite in the active material layer to the silicon thin film as the second active material layer was 84: 4.6.

【0028】〔正極の作製〕上記本発明電池Aと同様に
して正極を作製した。 〔電池の作製〕上記負極及び上記正極を用い、上記本発
明電池Aと同様にして電池を作製した。
[Preparation of Positive Electrode] A positive electrode was prepared in the same manner as in Battery A of the present invention. [Preparation of Battery] A battery was prepared in the same manner as the battery A of the present invention using the negative electrode and the positive electrode.

【0029】(比較電池の作製)黒鉛粉末とケイ素粉末
を重量比84:4.6となるように混合し、結着剤とし
て上記と同様のフッ素樹脂を用いてスラリー化した後、
電解銅箔上に塗布して負極を作製した。この負極を用い
る以外は上記本発明電池と同様にして、比較電池を作製
した。
(Preparation of Comparative Battery) Graphite powder and silicon powder were mixed in a weight ratio of 84: 4.6, and slurried using the same fluororesin as a binder,
A negative electrode was prepared by coating on an electrolytic copper foil. A comparative battery was produced in the same manner as the battery of the present invention except that this negative electrode was used.

【0030】(充放電サイクル試験)本発明電池A及び
B並びに比較電池について、充放電サイクル試験を行っ
た。充電は電池電圧4.2Vまでとし、放電は電池電圧
2.75Vまでとし、充放電電流は100mAとして、
充放電を行い、1サイクル目、2サイクル目、5サイク
ル目、及び10サイクル目の放電容量及び充放電効率を
測定した。測定結果を表1に示す。
(Charge / Discharge Cycle Test) The batteries A and B of the present invention and the comparative battery were subjected to a charge / discharge cycle test. The charging is performed up to a battery voltage of 4.2 V, the discharging is performed up to a battery voltage of 2.75 V, and the charging and discharging current is 100 mA.
Charge / discharge was performed, and the discharge capacity and charge / discharge efficiency at the first cycle, the second cycle, the fifth cycle, and the tenth cycle were measured. Table 1 shows the measurement results.

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示すように、本発明電池A及びB
は、比較電池に比べ、高い放電容量及び充放電効率を示
している。10サイクル後に各電池を分解したところ、
本発明電池A及びBの負極活物質は、集電体である銅箔
から剥離している部分が認められず、負極活物質自体は
その形状を保っていた。一方、比較電池においては、ほ
とんどの負極活物質が集電体から剥離、ケイ素粉末と思
われる銀白色の微粉が電解液中に分散していることが確
認された。
As shown in Table 1, the batteries A and B of the present invention were
Indicates higher discharge capacity and higher charge / discharge efficiency than the comparative battery. When each battery was disassembled after 10 cycles,
In the negative electrode active materials of the batteries A and B of the present invention, no portion peeled off from the copper foil as the current collector was observed, and the negative electrode active materials themselves maintained their shapes. On the other hand, in the comparative battery, it was confirmed that most of the negative electrode active material was peeled off from the current collector, and silver white fine powder considered to be silicon powder was dispersed in the electrolytic solution.

【0033】[0033]

【発明の効果】本発明によれば、充放電時の膨張収縮に
よる集電体からの活物質の剥離を防止することができ、
良好なサイクル特性を得ることができる。
According to the present invention, peeling of the active material from the current collector due to expansion and contraction during charging and discharging can be prevented,
Good cycle characteristics can be obtained.

フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS10 CC01 EE01 5H029 AJ05 AK03 AL01 AL06 AL11 AM00 AM03 AM04 AM05 AM07 AM16 BJ12 HJ13 5H050 AA07 BA17 CA08 CA09 CB01 CB07 CB11 FA02 FA18 FA19 HA13 Continuation of the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H017 AA03 AS10 CC01 EE01 5H029 AJ05 AK03 AL01 AL06 AL11 AM00 AM03 AM04 AM05 AM07 AM16 BJ12 HJ13 5H050 AA07 BA17 CA08 CA09 CB01 CB07 CB11 FA02 FA18 FA19 HA13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Liと合金化しない材料からなる集電体
の上に、炭素からなる第1の活物質層を設け、該第1の
活物質層の上にLiと合金化する金属または半導体から
なる第2の活物質層を設けた電極を用いることを特徴と
する二次電池。
1. A first active material layer made of carbon is provided on a current collector made of a material that is not alloyed with Li, and a metal or semiconductor that is alloyed with Li is formed on the first active material layer. A secondary battery using an electrode provided with a second active material layer made of
【請求項2】 前記電極において、前記第2の活物質層
の上にさらに前記第1の活物質層が設けられていること
を特徴とする請求項1に記載の二次電池。
2. The secondary battery according to claim 1, wherein, in the electrode, the first active material layer is further provided on the second active material layer.
【請求項3】 前記電極において、前記第2の活物質層
の上に前記第1の活物質層及び前記第2の活物質層がこ
の順序で交互に繰り返し積層されていることを特徴とす
る請求項1に記載の二次電池。
3. The electrode according to claim 1, wherein the first active material layer and the second active material layer are alternately and repeatedly laminated on the second active material layer in this order. The secondary battery according to claim 1.
【請求項4】 前記第1の活物質層及び前記第2の活物
質層の充放電時における膨張収縮率が実質的に互いに同
程度となるように調整されていることを特徴とする請求
項1〜3のいずれか1項に記載の二次電池。
4. The method according to claim 1, wherein the expansion and contraction rates of the first active material layer and the second active material layer during charge and discharge are adjusted to be substantially equal to each other. The secondary battery according to any one of claims 1 to 3.
【請求項5】 前記第2の活物質層が、Si、Ge、ま
たはSi−Ge合金からなることを特徴とする請求項1
〜4のいずれか1項に記載の二次電池。
5. The method according to claim 1, wherein the second active material layer is made of Si, Ge, or a Si—Ge alloy.
The secondary battery according to any one of claims 4 to 4.
【請求項6】 前記第2の活物質層が、気相から堆積さ
せた薄膜であることを特徴とする請求項1〜5のいずれ
か1項に記載の二次電池。
6. The secondary battery according to claim 1, wherein the second active material layer is a thin film deposited from a gas phase.
【請求項7】 層間距離dが3.37Å以下、積層方向
の結晶子寸法Lcが300Å以上の黒鉛を、前記第1の
活物質層の炭素として用いることを特徴とする請求項1
〜6のいずれか1項に記載の二次電池。
7. The graphite of the first active material layer, wherein graphite having an interlayer distance d of 3.37 ° or less and a crystallite size Lc in the stacking direction of 300 ° or more is used.
The secondary battery according to any one of claims 1 to 6.
【請求項8】 前記集電体が銅箔であることを特徴とす
る請求項1〜7のいずれか1項に記載の二次電池。
8. The secondary battery according to claim 1, wherein the current collector is a copper foil.
JP2000100406A 2000-04-03 2000-04-03 Lithium secondary battery Expired - Fee Related JP3913438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100406A JP3913438B2 (en) 2000-04-03 2000-04-03 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100406A JP3913438B2 (en) 2000-04-03 2000-04-03 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001283833A true JP2001283833A (en) 2001-10-12
JP3913438B2 JP3913438B2 (en) 2007-05-09

Family

ID=18614619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100406A Expired - Fee Related JP3913438B2 (en) 2000-04-03 2000-04-03 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3913438B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2003073535A1 (en) * 2002-02-26 2003-09-04 Nec Corporation Negative electrode for secondary cell, secondary cell, and method for producing negative electrode for secondary cell
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
JP2004362789A (en) * 2003-06-02 2004-12-24 Nec Corp Negative electrode material and secondary battery using it
US6844113B2 (en) 2001-04-13 2005-01-18 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and method for producing the same
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2006073480A (en) * 2004-09-06 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery and its manufacturing method
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2010251339A (en) * 2010-08-11 2010-11-04 Nec Corp Secondary battery, and negative electrode for the same
JP2010272540A (en) * 2010-08-06 2010-12-02 Nec Corp Anode material and secondary battery using it
JP2011009228A (en) * 2010-08-09 2011-01-13 Nec Corp Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery
JP2012146398A (en) * 2011-01-07 2012-08-02 Hitachi Ltd Lithium secondary battery
JP2014531121A (en) * 2011-10-25 2014-11-20 エルジー・ケム・リミテッド Secondary battery negative electrode and secondary battery including the same
JP2015069712A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN111213262A (en) * 2017-12-01 2020-05-29 株式会社Lg化学 Negative electrode and secondary battery comprising same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
US6844113B2 (en) 2001-04-13 2005-01-18 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and method for producing the same
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
JP4517560B2 (en) * 2001-12-28 2010-08-04 日本電気株式会社 Lithium ion secondary battery and method of using lithium secondary battery
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP2003203625A (en) * 2001-12-28 2003-07-18 Nec Corp Lithium ion secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
CN100431202C (en) * 2002-02-26 2008-11-05 日本电气株式会社 Negative electrode for secondary cell,secondary cell, and method for producing negative electrode for secondary cell
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
WO2003073535A1 (en) * 2002-02-26 2003-09-04 Nec Corporation Negative electrode for secondary cell, secondary cell, and method for producing negative electrode for secondary cell
US7118831B2 (en) 2002-04-10 2006-10-10 Nec Corporation Nonaqueous electrolyte cell
CN1324729C (en) * 2002-04-10 2007-07-04 日本电气株式会社 Nonaqueous electrolyte cell
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
JP4623940B2 (en) * 2003-06-02 2011-02-02 日本電気株式会社 Negative electrode material and secondary battery using the same
JP2004362789A (en) * 2003-06-02 2004-12-24 Nec Corp Negative electrode material and secondary battery using it
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2006073480A (en) * 2004-09-06 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery and its manufacturing method
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2010272540A (en) * 2010-08-06 2010-12-02 Nec Corp Anode material and secondary battery using it
JP2011009228A (en) * 2010-08-09 2011-01-13 Nec Corp Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery
JP2010251339A (en) * 2010-08-11 2010-11-04 Nec Corp Secondary battery, and negative electrode for the same
JP2012146398A (en) * 2011-01-07 2012-08-02 Hitachi Ltd Lithium secondary battery
JP2014531121A (en) * 2011-10-25 2014-11-20 エルジー・ケム・リミテッド Secondary battery negative electrode and secondary battery including the same
JP2015069712A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN111213262A (en) * 2017-12-01 2020-05-29 株式会社Lg化学 Negative electrode and secondary battery comprising same
CN111213262B (en) * 2017-12-01 2023-08-22 株式会社Lg新能源 Negative electrode and secondary battery comprising same
US12002949B2 (en) 2017-12-01 2024-06-04 Lg Energy Solution, Ltd. Negative electrode and secondary battery including the same

Also Published As

Publication number Publication date
JP3913438B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP3913439B2 (en) Lithium secondary battery
US7560192B2 (en) Rechargeable lithium ion battery
US7521151B2 (en) Rechargeable lithium battery with specific surface roughness of positive electrode and/or negative electrode
JP4201509B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP3913438B2 (en) Lithium secondary battery
US20080118841A1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4212458B2 (en) Lithium secondary battery
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2004139886A (en) Nonaqueous electrolyte secondary battery
JP4895503B2 (en) Lithium secondary battery
JP3670938B2 (en) Lithium secondary battery
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
JP4412885B2 (en) Lithium secondary battery
US8642216B2 (en) Composite anode active material, with intermetallic compound, method of preparing the same, and anode and lithium battery containing the material
JP4212439B2 (en) How to use lithium secondary battery
CN101494285B (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4204281B2 (en) Nonaqueous electrolyte secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP4841125B2 (en) Method for manufacturing lithium secondary battery
US20230137413A1 (en) Lithium secondary battery and method for using same
JP2004296097A (en) Usage of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees