JP4412885B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4412885B2
JP4412885B2 JP2002246452A JP2002246452A JP4412885B2 JP 4412885 B2 JP4412885 B2 JP 4412885B2 JP 2002246452 A JP2002246452 A JP 2002246452A JP 2002246452 A JP2002246452 A JP 2002246452A JP 4412885 B2 JP4412885 B2 JP 4412885B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002246452A
Other languages
Japanese (ja)
Other versions
JP2004087284A (en
Inventor
紫織 中溝
智一 吉田
佳典 喜田
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002246452A priority Critical patent/JP4412885B2/en
Publication of JP2004087284A publication Critical patent/JP2004087284A/en
Application granted granted Critical
Publication of JP4412885B2 publication Critical patent/JP4412885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、正極と、リチウムと合金化する材料を負極活物質に用いた負極と、非水系溶媒に溶質を溶解させた非水電解液を用いた非水電解質とを備えたリチウム二次電池に係り、特に、負極集電体の表面にリチウムと合金化する材料からなる負極活物質の薄層が設けられた負極を用いた場合において、この負極の安定性を高めて充放電効率を向上させ、十分な充放電サイクル特性が得られるようにした点に特徴を有するものである。
【0002】
【課題を解決するための手段】
近年、高出力,高エネルギー密度の新型二次電池の1つとして、非水系溶媒にリチウム塩からなる溶質を溶解させた非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が利用されるようになった。
【0003】
そして、このようなリチウム二次電池においては、その負極における負極活物質として、一般に、金属リチウムや、リチウムイオンの吸蔵,放出が可能な黒鉛,コークス,有機物焼成体等の炭素材料や、Si,Zn,Cd,Al,Ga,In,Tl,Ge,Sn,Pb,Sb,Bi,Se,Te,Rh,Ir等のリチウムと合金化する材料が用いられていた。
【0004】
ここで、負極活物質に金属リチウムを用いた場合、充放電によって負極の表面にデンドライトが発生して、正極と負極との間に短絡が生じる等の問題があり、また炭素材料を用いた場合には、充放電によって非水電解液がこの負極において分解したり、炭素材料が負極から脱離して、次第に容量が低下する等の問題があった。
【0005】
そして、近年においては、負極活物質にリチウムと合金化する材料を用いることについて検討が行われ、リチウムと合金化する材料からなる負極活物質の薄層を負極集電体の表面に設けた負極を用いることが試みられるようになった。
【0006】
ここで、このような負極を用いたリチウム二次電池を充放電させると、負極集電体の表面に形成されたリチウムと合金化する材料からなる負極活物質の薄層が膨張,収縮し、これにより負極活物質の薄層に割れが生じ、特に、表面に凹凸が形成された電解銅箔等の負極集電体を用いた場合には、この負極集電体の表面において負極活物質が柱状に分離された状態で存在するようになる。
【0007】
そして、このように負極集電体の表面において負極活物質が柱状に分離された状態で、このリチウム二次電池を充放電させると、柱状に分離された負極活物質間の隙間によって負極活物質の膨張,収縮による応力が緩和され、この負極活物質が負極集電体の表面から脱離するのが抑制されるようになる。
【0008】
しかし、この場合においても、充放電によって柱状に分離された負極活物質が不安定になって劣化し、充放電効率が低下して、充放電サイクル特性が悪くなるという問題があった。
【0009】
【発明が解決しようとする課題】
この発明は、正極と、リチウムと合金化する材料を負極活物質に用いた負極と、非水系溶媒に溶質を溶解させた非水電解液を用いた非水電解質とを備えたリチウム二次電池において、上記の負極活物質からなる薄層を負極集電体の表面に設けた負極を使用した場合における上記のような問題を解決することを課題とするものである。
【0010】
すなわち、この発明においては、上記のようなリチウム二次電池を充放電させた場合において、負極集電体の表面において柱状に分離された負極活物質が劣化して充放電効率が低下するのを抑制し、リチウム二次電池における充放電サイクル特性を向上させることを課題とするものである。
【0011】
【課題を解決するための手段】
この発明においては、上記のような課題を解決するため、正極と、リチウムと合金化する材料を負極活物質に用いた負極と、非水系溶媒に溶質を溶解させた非水電解液を用いた非水電解質とを備えたリチウム二次電池において、負極集電体の表面に上記の負極活物質の薄層が設けられた負極を用いると共に、環内にS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンを上記の非水電解液に対して0.5〜30wt%の範囲で添加させるようにしたのである。
【0012】
そして、この発明におけるリチウム二次電池のように、負極集電体の表面にリチウムと合金化する材料からなる負極活物質の薄層が設けられた負極を用いると共に、環内にS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンを、非水電解液に対して0.5〜30wt%の範囲で添加させた非水電解液を使用すると、このリチウム二次電池の充放電により、負極集電体の表面における上記の負極活物質の薄層に割れが生じて、柱状に分離された負極活物質が生じた場合において、上記のS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンにより柱状に分離された負極活物質の表面に被膜が形成され、この被膜によって上記の負極活物質が強化されて安定化し、充放電効率が低下するのが抑制されて、充放電サイクル特性が向上するようになる。
【0014】
また、上記の非水電解液に使用する非水系溶媒としては、従来より一般に使用されている公知のものを用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の溶媒を1種又は2種以上組み合わせて用いることができる。
【0015】
また、上記の非水系溶媒に溶解させる溶質としても、従来より一般に使用されている公知のものを用いることができ、例えば、LiPF6 、LiBF4 、LiClO4 、LiSbF6 、LiCF3 SO3 、LiAsF6 、LiN(Cm 2m+1SO2 )(Cn 2n+1SO2 )(式中、m,nは1〜4の何れかの整数である。)、LiC(Cl 2l+1SO2 )(Cm 2m+1SO2 )(Cn 2n+1SO2 )(式中、l,m,nは1〜4の何れかの整数である。)等のリチウム塩を使用することができる。
【0016】
また、この発明においては、上記の非水電解質として、上記のように環内にS及び/又はOを含む複素環式化合物を添加させた非水電解液をそのまま使用する他、このような非水電解液をポリエチレンオキシド、ポリアクリロニトリル等のポリマーに含浸させてゲル状高分子電解質として使用することもできる。
【0017】
一方、負極における負極活物質に用いるリチウムと合金化する材料としては、従来より一般に使用されている、Si,Zn,Cd,Al,Ga,In,Tl,Ge,Sn,Pb,Sb,Bi,Se,Te,Rh,Ir等を用いることができ、特に、高い電池容量が得られるようにするためにはシリコンSiを用いることが好ましい。
【0018】
また、負極集電体の表面に上記のようなリチウムと合金化する材料からなる負極活物質の薄層を設けるにあたっては、負極集電体の表面に対する負極活物質の薄層の付着力を高めるため、表面における算術平均粗さRaが0.01〜1μmの範囲になった凹凸のある負極集電体を用いることが好ましい。
【0019】
そして、このように凹凸のある負極集電体の表面に前記の負極活物質の薄層が形成された負極を用い、このリチウム二次電池を充放電させると、負極活物質の薄層が膨張,収縮して、負極活物質の薄層に割れが生じ、負極集電体の表面に負極活物質が柱状に分離された状態になり、このように柱状に分離された負極活物質の表面に、上記のようにS及び/又はOを含む複素環式化合物による被膜が形成されようになる。
【0020】
また、この発明におけるリチウム二次電池において、その正極における正極活物質としては、従来のリチウム二次電池において一般に使用されているものを用いることができ、例えば、リチウム含有マンガン酸化物、リチウム含有コバルト酸化物、リチウム含有バナジウム酸化物、リチウム含有ニッケル酸化物、リチウム含有鉄酸化物、リチウム含有クロム酸化物、リチウム含有チタン酸化物等のリチウム含有遷移金属酸化物を使用することができる。
【0021】
【実施例】
以下、この発明に係るリチウム二次電池について実施例を挙げて具体的に説明すると共に、この発明の実施例のリチウム二次電池においては、充放電効率が低下するのが抑制されて、充放電サイクル特性が向上することを、比較例を挙げて明らかにする。なお、この発明におけるリチウム二次電池は下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜様々な変更を行って実施できるものである。
【0022】
(実施例1)
実施例1においては、下記のようにして作製した正極と負極と非水電解液とを用い、図1及び図2(A),(B)に示すような薄型のリチウム二次電池を作製した。
【0023】
[正極の作製]
正極を作製するにあたっては、正極活物質として平均粒径が10μmになったLiCoO2 粉末を用い、このLiCoO2 粉末と、導電剤である炭素粉末と、結着剤であるポリフッ化ビニリデンとが85:10:5の重量比になるように混合し、これにN−メチル−2−ピロリドンを加えてスラリーを調製した。そして、このスラリーを厚みが20μmのアルミニウム箔からなる正極集電体の片面にドクターブレード法により塗布し、これを100℃で2時間真空乾燥させた後、2.0cm×2.0cmの大きさに切断して正極を作製した。
【0024】
[負極の作製]
負極を作製するにあたっては、負極集電体として、厚みが17μmで、表面における算術平均粗さRaが0.5μmになった凹凸を有する電解銅箔を使用し、高周波スパッタリング法により、この電解銅箔の片面に厚みが約5μmになったシリコンからなる負極活物質の薄層を形成し、その後、これを2.5cm×2.5cmの大きさに切断して負極を作製した。なお、上記の高周波スパッタリングは、スパッタガス(Ar)流量:100sccm,基板温度:室温(加熱なし),反応圧力:1.0×10-3Torr,高周波電力:200Wの条件で行った。また、上記のように形成したシリコンの薄層をXRDにより解析したところ、非晶質になっていた。
【0025】
[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合させた混合溶媒にLiPF6 を1mol/lの割合で溶解させて非水電解液を作製した後、この非水電解液に対して、環内に二重結合をもつ複素環状エステルである1,3−プロペンスルトンを0.5wt%添加させた。
【0026】
[電池の作製]
電池を作製するにあたっては、図2(A),(B)に示すように、アルミニウムからなる金属シート11aの両面がポリプロピレンからなる樹脂11bで被覆されたラミネートフィルム11を用いて電池容器10を作製し、この電池容器10内に、上記のように作製した正極12と負極13との間にポリエチレン製の微多孔膜からなるセパレータ14を挟んだ状態で収容させると共に、この電池容器10内に上記の非水電解液を注液させた。
【0027】
そして、上記の正極12における正極集電体12aの一部を延出させた正極端子12bと、負極13における負極集電体13aの一部を延出させた負極端子13bとをそれぞれ電池容器10内から外部に延出させ、この状態で、この電池容器10を熱融着させて封止し、図1に示すような薄型のリチウム二次電池を作製した。
【0028】
(実施例2〜7)
実施例2〜7においては、上記の実施例1における非水電解液の作製において、上記のようにエチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合させた混合溶媒にLiPF6 を1mol/lの割合で溶解させた非水電解液に対して添加させる1,3−プロペンスルトンの量を変更し、1,3−プロペンスルトンの添加量を、実施例2では1wt%、実施例3では3wt%、実施例4では5wt%、実施例5では10wt%、実施例6では20wt%、実施例7では30wt%にした。
【0029】
そして、上記のように1,3−プロペンスルトンの添加量を変更させた各非水電解液を用いる以外は、上記の実施例1の場合と同様にして、実施例2〜7の各リチウム二次電池を作製した。
【0030】
(比較例1)
比較例1においては、上記の実施例1における非水電解液の作製において、非水電解液に1,3−プロペンスルトンを添加させないようにし、上記のようにエチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合させた混合溶媒にLiPF6 を1mol/lの割合で溶解させた非水電解液をそのまま用いるようにし、それ以外については、上記の実施例1の場合と同様にして、比較例1のリチウム二次電池を作製した。
【0031】
次に、上記のようにして作製した実施例1〜7及び比較例1の各リチウム二次電池を用い、それぞれ25℃の室温条件下において、13mAの定電流で4.20Vまで充電させた後、さらに4.20Vの定電圧に保持して電流が0.65mAになるまで定電圧充電させ、その後、13mAの定電流で2.75Vまで放電させて1サイクル目の充放電を行い、その後、1サイクル目の場合と同様にして2サイクル目の充電を行い、2サイクル目の充電容量Qaを求めた後、1サイクル目の場合と同様にして2サイクル目の放電を行い、2サイクル目の放電容量Qbを求め、下記の式により2サイクル目の充放電効率(%)を算出し、その結果を下記の表1に示した。
【0032】
充放電効率(%)=(Qb/Qa)×100
【0033】
【表1】

Figure 0004412885
【0034】
この結果から明らかなように、負極集電体の表面にリチウムと合金化するシリコンからなる負極活物質の薄層を設けた負極を用いた場合において、1,3−プロペンスルトンを添加させた非水電解液を用いた実施例1〜7の各リチウム二次電池は、1,3−プロペンスルトンを添加させていない非水電解液を用いた比較例1のリチウム二次電池に比べて、2サイクル目の充放電効率が向上しており、充放電を繰り返して行った場合においても放電容量が低下するのが抑制され、充放電サイクル特性が向上する。特に、非水電解液に対して1,3−プロペンスルトンを5〜20wt%の範囲で添加させたものを用いた実施例4〜6のリチウム二次電池においては、さらに充放電効率が向上していた。
【0035】
なお、上記の実施例及び比較例においては、負極活物質に用いるリチウムと合金化する材料として、シリコンSiを用いた場合を示しただけであるが、リチウムと合金化する他の材料を負極活物質に用いた場合においても同様の効果が得られる。
【0036】
また、上記の実施例及び比較例においては、非水電解液に1,3−プロペンスルトンを添加させた場合を示しただけであるが、環内にS及び/又はOを含むその他の複素環式化合物を添加させた場合においても同様の効果が得られる。
【0037】
【発明の効果】
以上詳述したように、この発明におけるリチウム二次電池においては、負極集電体の表面にリチウムと合金化する材料からなる負極活物質の薄層が設けられた負極を用いた場合において、環内にS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンを、非水電解液に対して0.5〜30wt%の範囲で添加させた非水電解液を使用するようにしたため、このリチウム二次電池の充放電により、負極集電体の表面における上記の負極活物質の薄層に割れが生じて、柱状に分離された負極活物質が生じた場合に、上記のS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンにより柱状に分離された負極活物質の表面に被膜が形成され、この被膜によって負極活物質が強化されて安定化し、充放電効率が低下するのが抑制されて、充放電サイクル特性が向上した。
【図面の簡単な説明】
【図1】この発明の実施例及び比較例において作製したリチウム二次電池の概略斜視図である。
【図2】上記の実施例及び比較例において作製したリチウム二次電池の内部構造を示した断面説明図である。
【符号の説明】
12 正極
13 負極
13a 負極集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode using a material alloying with lithium as a negative electrode active material, and a non-aqueous electrolyte using a non-aqueous electrolyte obtained by dissolving a solute in a non-aqueous solvent. In particular, in the case of using a negative electrode in which a thin layer of a negative electrode active material made of a material alloyed with lithium is provided on the surface of the negative electrode current collector, the stability of the negative electrode is improved to improve charge / discharge efficiency. Therefore, it is characterized in that sufficient charge / discharge cycle characteristics can be obtained.
[0002]
[Means for Solving the Problems]
In recent years, as one of the new secondary batteries with high output and high energy density, a non-aqueous electrolyte in which a solute composed of a lithium salt is dissolved in a non-aqueous solvent is used, and lithium ions are moved between the positive electrode and the negative electrode. Thus, lithium secondary batteries that are charged and discharged have been used.
[0003]
In such a lithium secondary battery, as the negative electrode active material in the negative electrode, generally, metallic lithium, carbon materials such as graphite, coke, and organic fired body capable of occluding and releasing lithium ions, Si, Materials that alloy with lithium, such as Zn, Cd, Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, Se, Te, Rh, and Ir, have been used.
[0004]
Here, when metallic lithium is used as the negative electrode active material, there is a problem that dendrites are generated on the surface of the negative electrode due to charge / discharge, and a short circuit occurs between the positive electrode and the negative electrode, and when a carbon material is used However, there is a problem that the non-aqueous electrolyte is decomposed at the negative electrode due to charge and discharge, or the capacity is gradually reduced due to the carbon material being detached from the negative electrode.
[0005]
In recent years, the use of a material that is alloyed with lithium as a negative electrode active material has been studied, and a negative electrode in which a thin layer of a negative electrode active material made of a material that is alloyed with lithium is provided on the surface of the negative electrode current collector. Attempted to use.
[0006]
Here, when a lithium secondary battery using such a negative electrode is charged and discharged, a thin layer of a negative electrode active material made of a material alloyed with lithium formed on the surface of the negative electrode current collector expands and contracts, As a result, the thin layer of the negative electrode active material is cracked. In particular, when a negative electrode current collector such as an electrolytic copper foil having irregularities formed on the surface is used, the negative electrode active material is formed on the surface of the negative electrode current collector. It comes to exist in a state of being separated into columns.
[0007]
Then, when the lithium secondary battery is charged and discharged in a state where the negative electrode active material is separated in a columnar shape on the surface of the negative electrode current collector as described above, a negative electrode active material is formed by a gap between the columnar separated negative electrode active materials. The stress due to the expansion and contraction is relaxed, and the negative electrode active material is prevented from being detached from the surface of the negative electrode current collector.
[0008]
However, even in this case, there is a problem in that the negative electrode active material separated into columns by charge / discharge becomes unstable and deteriorates, charge / discharge efficiency decreases, and charge / discharge cycle characteristics deteriorate.
[0009]
[Problems to be solved by the invention]
The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode using a material alloying with lithium as a negative electrode active material, and a non-aqueous electrolyte using a non-aqueous electrolyte obtained by dissolving a solute in a non-aqueous solvent. Therefore, it is an object of the present invention to solve the above-described problems when a negative electrode in which a thin layer made of the negative electrode active material is provided on the surface of a negative electrode current collector is used.
[0010]
That is, in the present invention, when the lithium secondary battery as described above is charged and discharged, the negative electrode active material separated in a columnar shape on the surface of the negative electrode current collector is deteriorated and the charge and discharge efficiency is reduced. It is an object to suppress and improve charge / discharge cycle characteristics in a lithium secondary battery.
[0011]
[Means for Solving the Problems]
In the present invention, in order to solve the above-described problems, a positive electrode, a negative electrode using a material that forms an alloy with lithium as a negative electrode active material, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent are used. In a lithium secondary battery provided with a non-aqueous electrolyte, a negative electrode in which a thin layer of the negative electrode active material is provided on the surface of the negative electrode current collector, and a heterocyclic type containing S and / or O in the ring 1,3-propene sultone compound is to that so as to be added in a range of 0.5 to 30% for the above non-aqueous electrolyte.
[0012]
And like the lithium secondary battery in this invention, while using the negative electrode by which the thin layer of the negative electrode active material which consists of a material alloyed with lithium was provided on the surface of the negative electrode collector, S and / or in the ring When a non-aqueous electrolyte solution in which 1,3-propene sultone, which is a heterocyclic compound containing O, is added in a range of 0.5 to 30 wt% with respect to the non-aqueous electrolyte solution , the lithium secondary battery When the thin layer of the negative electrode active material on the surface of the negative electrode current collector is cracked by charging / discharging to form a negative electrode active material separated into a columnar shape, the above heterocycle containing S and / or O A film is formed on the surface of the negative electrode active material separated into columns by 1,3-propene sultone, which is a formula compound, and the negative electrode active material is strengthened and stabilized by this film, and the charge / discharge efficiency is reduced. Suppressed and released Cycle characteristics can be improved.
[0014]
In addition, as the non-aqueous solvent used in the non-aqueous electrolyte, a known solvent that has been conventionally used can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone. , Sulfolane, dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, One or two solvents such as dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate It can be used in combination or more.
[0015]
Moreover, as a solute to be dissolved in the above non-aqueous solvent, known ones that are conventionally used can be used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiCF 3 SO 3 , LiAsF 6, LiN (wherein, m, n is any integer of 1~4.) (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2), LiC (C l F 2l +1 SO 2 ) (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (wherein l, m, n are any integers of 1 to 4). Salt can be used.
[0016]
In the present invention, as the nonaqueous electrolyte, a nonaqueous electrolytic solution in which a heterocyclic compound containing S and / or O is added as described above is used as it is. A polymer such as polyethylene oxide or polyacrylonitrile can be impregnated with a water electrolyte and used as a gel polymer electrolyte.
[0017]
On the other hand, as a material to be alloyed with lithium used for the negative electrode active material in the negative electrode, Si, Zn, Cd, Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, which have been generally used conventionally. Se, Te, Rh, Ir, or the like can be used. In particular, silicon Si is preferably used in order to obtain a high battery capacity.
[0018]
In addition, when providing a thin layer of the negative electrode active material made of a material alloying with lithium as described above on the surface of the negative electrode current collector, the adhesion of the thin layer of the negative electrode active material to the surface of the negative electrode current collector is increased. For this reason, it is preferable to use a negative electrode current collector having irregularities whose arithmetic average roughness Ra on the surface is in the range of 0.01 to 1 μm.
[0019]
Then, when a negative electrode in which a thin layer of the negative electrode active material is formed on the surface of the uneven negative electrode current collector as described above and this lithium secondary battery is charged and discharged, the thin layer of the negative electrode active material expands. , Contraction occurs, and a thin layer of the negative electrode active material is cracked, and the negative electrode active material is separated into a columnar shape on the surface of the negative electrode current collector, and thus the surface of the negative electrode active material thus separated into a columnar shape is formed. As described above, a film made of a heterocyclic compound containing S and / or O is formed.
[0020]
In the lithium secondary battery of the present invention, as the positive electrode active material in the positive electrode, those generally used in conventional lithium secondary batteries can be used, for example, lithium-containing manganese oxide, lithium-containing cobalt Lithium-containing transition metal oxides such as oxides, lithium-containing vanadium oxides, lithium-containing nickel oxides, lithium-containing iron oxides, lithium-containing chromium oxides, and lithium-containing titanium oxides can be used.
[0021]
【Example】
Hereinafter, the lithium secondary battery according to the present invention will be specifically described with reference to examples, and in the lithium secondary battery according to the examples of the present invention, the charge / discharge efficiency was suppressed from being reduced, and charge / discharge was performed. The improvement of cycle characteristics will be clarified by giving a comparative example. In addition, the lithium secondary battery in this invention is not limited to what was shown to the following Example, In the range which does not change the summary, it can carry out by making various changes suitably.
[0022]
Example 1
In Example 1, a thin lithium secondary battery as shown in FIG. 1 and FIGS. 2A and 2B was manufactured using a positive electrode, a negative electrode, and a non-aqueous electrolyte prepared as described below. .
[0023]
[Production of positive electrode]
In producing the positive electrode, LiCoO 2 powder having an average particle diameter of 10 μm was used as the positive electrode active material, and this LiCoO 2 powder, carbon powder as a conductive agent, and polyvinylidene fluoride as a binder were 85. The mixture was mixed at a weight ratio of 10: 5, and N-methyl-2-pyrrolidone was added thereto to prepare a slurry. And this slurry was apply | coated to the single side | surface of the positive electrode electrical power collector which consists of an aluminum foil with a thickness of 20 micrometers by the doctor blade method, and this was vacuum-dried at 100 degreeC for 2 hours, Then, the magnitude | size of 2.0 cm x 2.0 cm The positive electrode was fabricated by cutting into pieces.
[0024]
[Production of negative electrode]
In producing the negative electrode, an electrolytic copper foil having irregularities with a thickness of 17 μm and an arithmetic average roughness Ra of 0.5 μm on the surface was used as a negative electrode current collector. A thin layer of negative electrode active material made of silicon having a thickness of about 5 μm was formed on one side of the foil, and then this was cut into a size of 2.5 cm × 2.5 cm to produce a negative electrode. The high frequency sputtering was performed under the conditions of sputtering gas (Ar) flow rate: 100 sccm, substrate temperature: room temperature (no heating), reaction pressure: 1.0 × 10 −3 Torr, high frequency power: 200 W. Further, when the thin silicon layer formed as described above was analyzed by XRD, it was amorphous.
[0025]
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, LiPF 6 was dissolved at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7, and then the non-aqueous electrolyte was prepared. Then, 0.5 wt% of 1,3-propene sultone, which is a heterocyclic ester having a double bond in the ring, was added to the non-aqueous electrolyte.
[0026]
[Production of battery]
In manufacturing the battery, as shown in FIGS. 2A and 2B, the battery container 10 is manufactured using a laminate film 11 in which both surfaces of a metal sheet 11a made of aluminum are coated with a resin 11b made of polypropylene. In addition, the battery container 10 is housed in a state in which the separator 14 made of a polyethylene microporous film is sandwiched between the positive electrode 12 and the negative electrode 13 produced as described above, and the battery container 10 contains the above-mentioned The nonaqueous electrolyte solution was injected.
[0027]
Then, the battery container 10 includes a positive electrode terminal 12b in which a part of the positive electrode current collector 12a in the positive electrode 12 is extended and a negative electrode terminal 13b in which a part of the negative electrode current collector 13a in the negative electrode 13 is extended. The battery container 10 was extended from the inside to the outside, and in this state, the battery case 10 was heat-sealed and sealed to produce a thin lithium secondary battery as shown in FIG.
[0028]
(Examples 2 to 7)
In Examples 2 to 7, in the preparation of the non-aqueous electrolyte in Example 1 above, 1 mol of LiPF 6 was added to the mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 as described above. The amount of 1,3-propene sultone added to the non-aqueous electrolyte dissolved at a ratio of 1 / l was changed, and the amount of 1,3-propene sultone added was 1 wt% in Example 2, Example 3 3 wt%, Example 4 5 wt%, Example 5 10 wt%, Example 6 20 wt%, and Example 7 30 wt%.
[0029]
Then, each lithium secondary solution of Examples 2 to 7 was used in the same manner as in Example 1 except that each non-aqueous electrolyte in which the addition amount of 1,3-propene sultone was changed as described above was used. A secondary battery was produced.
[0030]
(Comparative Example 1)
In Comparative Example 1, in the preparation of the non-aqueous electrolyte in Example 1 described above, 1,3-propene sultone was not added to the non-aqueous electrolyte, and ethylene carbonate and diethyl carbonate were mixed with 3: A non-aqueous electrolyte solution in which LiPF 6 was dissolved at a rate of 1 mol / l in a mixed solvent mixed at a volume ratio of 7 was used as it was, and the rest was the same as in Example 1 above. A lithium secondary battery of Comparative Example 1 was produced.
[0031]
Next, each of the lithium secondary batteries of Examples 1 to 7 and Comparative Example 1 manufactured as described above was charged to 4.20 V at a constant current of 13 mA under a room temperature condition of 25 ° C., respectively. Further, the battery is held at a constant voltage of 4.20 V and charged at a constant voltage until the current reaches 0.65 mA, and then discharged to 2.75 V at a constant current of 13 mA to perform charge and discharge in the first cycle, The second cycle is charged in the same manner as in the first cycle, the charge capacity Qa in the second cycle is obtained, and then the second cycle is discharged in the same manner as in the first cycle. The discharge capacity Qb was determined, the charge / discharge efficiency (%) of the second cycle was calculated by the following formula, and the results are shown in Table 1 below.
[0032]
Charging / discharging efficiency (%) = (Qb / Qa) × 100
[0033]
[Table 1]
Figure 0004412885
[0034]
As is clear from this result, when a negative electrode provided with a thin layer of a negative electrode active material made of silicon alloyed with lithium on the surface of the negative electrode current collector, 1,3-propene sultone was added. Each of the lithium secondary batteries of Examples 1 to 7 using an aqueous electrolyte was 2 in comparison with the lithium secondary battery of Comparative Example 1 using a non-aqueous electrolyte to which 1,3-propene sultone was not added. The charging / discharging efficiency of the cycle is improved, and even when charging / discharging is repeated, the reduction of the discharge capacity is suppressed, and the charging / discharging cycle characteristics are improved. In particular, in the lithium secondary batteries of Examples 4 to 6 using 1,3-propene sultone added in a range of 5 to 20 wt% with respect to the nonaqueous electrolytic solution, the charge / discharge efficiency was further improved. It was.
[0035]
In the above examples and comparative examples, only the case where silicon Si is used as the material to be alloyed with lithium used for the negative electrode active material is shown, but other materials that are alloyed with lithium are used as the negative electrode active material. The same effect can be obtained when used as a substance.
[0036]
In the above examples and comparative examples, only the case where 1,3-propene sultone is added to the non-aqueous electrolyte is shown, but other heterocyclic rings containing S and / or O in the ring are shown. The same effect can be obtained when a formula compound is added.
[0037]
【The invention's effect】
As described above in detail, in the lithium secondary battery according to the present invention, when a negative electrode in which a thin layer of a negative electrode active material made of a material alloyed with lithium is provided on the surface of the negative electrode current collector, A non-aqueous electrolyte in which 1,3-propene sultone, which is a heterocyclic compound containing S and / or O therein, is added in a range of 0.5 to 30 wt% with respect to the non-aqueous electrolyte is used. Therefore, when the lithium secondary battery is charged and discharged, cracking occurs in the thin layer of the negative electrode active material on the surface of the negative electrode current collector, and the negative electrode active material separated into a columnar shape is generated. A film is formed on the surface of the negative electrode active material separated into columns by 1,3-propene sultone, which is a heterocyclic compound containing S and / or O, and the negative electrode active material is strengthened and stabilized by this film. Discharge efficiency decreases There is suppressed, and improved charge-discharge cycle characteristics.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of lithium secondary batteries produced in Examples and Comparative Examples of the present invention.
FIG. 2 is an explanatory cross-sectional view showing the internal structure of a lithium secondary battery produced in the above-described examples and comparative examples.
[Explanation of symbols]
12 Positive electrode 13 Negative electrode 13a Negative electrode current collector

Claims (3)

正極と、リチウムと合金化する材料を負極活物質に用いた負極と、非水系溶媒に溶質を溶解させた非水電解液を用いた非水電解質とを備えたリチウム二次電池において、負極集電体の表面に上記の負極活物質の薄層が設けられた負極を用いると共に、環内にS及び/又はOを含む複素環式化合物である1,3−プロペンスルトンを上記の非水電解液に対して0.5〜30wt%の範囲で添加させたことを特徴とするリチウム二次電池。In a lithium secondary battery comprising a positive electrode, a negative electrode using a material alloying with lithium as a negative electrode active material, and a non-aqueous electrolyte using a non-aqueous electrolyte in which a solute is dissolved in a non-aqueous solvent, While using a negative electrode in which a thin layer of the above negative electrode active material is provided on the surface of the electric conductor, 1,3-propene sultone, which is a heterocyclic compound containing S and / or O in the ring, is converted into the above non-aqueous solution. lithium secondary battery is characterized in that is added in a range of 0.5 to 30% for the electrolyte. 請求項1に記載したリチウム二次電池において、前記の負極集電体の表面に、算術平均粗さRaが0.01〜1μmの範囲になった凹凸が形成されていることを特徴とするリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein unevenness having an arithmetic average roughness Ra in a range of 0.01 to 1 μm is formed on a surface of the negative electrode current collector. Secondary battery. 請求項1又は2に記載したリチウム二次電池において、前記の負極活物質に、シリコンを用いたことを特徴とするリチウム二次電池。 3. The lithium secondary battery according to claim 1, wherein silicon is used for the negative electrode active material . 4.
JP2002246452A 2002-08-27 2002-08-27 Lithium secondary battery Expired - Fee Related JP4412885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246452A JP4412885B2 (en) 2002-08-27 2002-08-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246452A JP4412885B2 (en) 2002-08-27 2002-08-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004087284A JP2004087284A (en) 2004-03-18
JP4412885B2 true JP4412885B2 (en) 2010-02-10

Family

ID=32054345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246452A Expired - Fee Related JP4412885B2 (en) 2002-08-27 2002-08-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4412885B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485314A1 (en) 2005-06-10 2012-08-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary cell
CN101248552B (en) 2005-06-23 2011-06-22 三菱化学株式会社 Non-aqueous electrolytic liquid and non-aqueous electrolytic liquid secondary battery
JP2007273184A (en) * 2006-03-30 2007-10-18 Sony Corp Battery
US20090325065A1 (en) 2006-04-27 2009-12-31 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
JP2008135368A (en) * 2006-11-01 2008-06-12 Sony Corp Anode for secondary battery, its manufacturing method and secondary battery
KR20160011227A (en) 2006-12-06 2016-01-29 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
EP2190054B1 (en) 2007-09-12 2016-10-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP5206735B2 (en) * 2010-06-10 2013-06-12 ソニー株式会社 Negative electrode for secondary battery and secondary battery
WO2012001885A1 (en) * 2010-06-29 2012-01-05 パナソニック株式会社 Thin flexible battery
US11398624B2 (en) 2016-10-13 2022-07-26 Tesla, Inc. Large-format battery anodes comprising silicon particles

Also Published As

Publication number Publication date
JP2004087284A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4236390B2 (en) Lithium secondary battery
JP4248240B2 (en) Lithium secondary battery
JP4225727B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5219340B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
US7556881B2 (en) Lithium secondary battery
JP4212458B2 (en) Lithium secondary battery
JP6279233B2 (en) Lithium secondary battery
JP6933216B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP2017022120A (en) Lithium ion secondary battery
JP3913438B2 (en) Lithium secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP3670938B2 (en) Lithium secondary battery
JP4412885B2 (en) Lithium secondary battery
JP2001250559A (en) Lithium secondary cell
JP2004087209A (en) Lithium secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4318405B2 (en) Lithium secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
JP4436624B2 (en) Lithium secondary battery
JP5933252B2 (en) Non-aqueous secondary battery
JPH10255762A (en) Lithium battery
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4204281B2 (en) Nonaqueous electrolyte secondary battery
JP3825571B2 (en) Non-aqueous electrolyte battery
JP4212439B2 (en) How to use lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees