JPH0974344A - Drive circuit for insulated gate semiconductor element - Google Patents

Drive circuit for insulated gate semiconductor element

Info

Publication number
JPH0974344A
JPH0974344A JP7226215A JP22621595A JPH0974344A JP H0974344 A JPH0974344 A JP H0974344A JP 7226215 A JP7226215 A JP 7226215A JP 22621595 A JP22621595 A JP 22621595A JP H0974344 A JPH0974344 A JP H0974344A
Authority
JP
Japan
Prior art keywords
voltage
circuit
gate
state
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226215A
Other languages
Japanese (ja)
Inventor
Yoshinari Minotani
由成 簑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7226215A priority Critical patent/JPH0974344A/en
Publication of JPH0974344A publication Critical patent/JPH0974344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To accelerate switching speed while suppressing transient voltage or current oscillation to be frequently generated when turning on or off a semiconductor element. SOLUTION: A drive circuit uses a voltage detecting means 10 for comparing a gate voltage Vg of a semiconductor element 1 with a reference value and generating a voltage detect signal Sd to change a logical state corresponding to that result, potential divider circuits 21 and 22 for ON and OFF operations for dividing a gate drive power supply voltage Vd, tristate circuits 31 and 32 for which those respective potential dividing points are commonly connected with output points, and control means 40 for controlling the ON/OFF of a pair of those respective transistors corresponding to the logical states of an input signal Si and the voltage detect signal Sd. During delay time τp or τn from a change in the logical state of the input signal Si to a change in the logical state of the voltage detect signal Sd, the output points of the tristate circuits 31 and 32 are alternately controlled into a floating state, and voltages divided by the potential divider circuits 21 and 22 are outputted as intermediate values Vip and Vin of output signals Sop and Son. An output signal So is derived from the mutual node of drive transistors 50p and 50n for receiving those voltages, and the gate of the semiconductor element 1 is driven.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁ゲートバイポーラト
ランジスタ(以下IGBTという)等の電力用の絶縁ゲート
半導体素子をオンオフないしはスイッチング動作させる
際の過渡的な過電圧や過電流の発生防止に適する駆動回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit suitable for preventing a transient overvoltage or overcurrent from occurring when an insulated gate semiconductor element for electric power such as an insulated gate bipolar transistor (hereinafter referred to as an IGBT) is turned on / off or switched. Regarding

【0002】[0002]

【従来の技術】上述のIGBT等の絶縁ゲート半導体素子は
バイポーラ素子と比べてゲートの入力インダクタンスが
高いので小電力で駆動でき,かつ負荷を高周波でスイッ
チングできる利点があるため、種々な用途の電力装置の
制御用に広く採用されている。しかし、高速でスイッチ
ング動作させると過電圧や過電流が発生しやすいので、
半導体素子をその絶縁ゲートに抵抗を接続した状態で簡
単な駆動回路によりオンオフ動作させるのが通例であ
る。図3はこのような従来例を関連する主な信号の波形
とともに示すものである。
2. Description of the Prior Art Insulated gate semiconductor devices such as the above-mentioned IGBTs have a high input inductance of the gate as compared with bipolar devices, and therefore have the advantage that they can be driven with a small amount of power and the load can be switched at a high frequency. Widely used for controlling equipment. However, when switching at high speed, overvoltage and overcurrent are likely to occur, so
It is customary to turn a semiconductor element on and off by a simple drive circuit with a resistance connected to its insulated gate. FIG. 3 shows the waveforms of main signals related to such a conventional example.

【0003】図3(a) の右側部に示す半導体素子1はIG
BTであって、エミッタ側を接地してコレクタ側に電源電
圧Vを受ける負荷2を接続した状態で使用される。負荷
2は図の例では誘導性であり、半導体素子1のオフ動作
時の過電圧の発生を防止するダイオード3が逆並列接続
されている。駆動回路4は半導体素子1のオンオフの状
態を指定する論理信号である5V程度の入力信号Siを受け
て、図の例ではそれと同じ論理状態でその電源電圧Vdと
同じ15Vの出力信号Soを発する。
The semiconductor element 1 shown on the right side of FIG.
BT is used in a state where the emitter side is grounded and the collector side is connected to the load 2 receiving the power supply voltage V. The load 2 is inductive in the illustrated example, and a diode 3 that prevents the generation of an overvoltage when the semiconductor element 1 is turned off is connected in antiparallel. The drive circuit 4 receives an input signal Si of about 5V which is a logic signal designating the on / off state of the semiconductor element 1, and issues an output signal So of 15V which is the same as the power supply voltage Vd in the same logic state in the example of the figure. .

【0004】この出力信号Soを前述の抵抗Rgを介して受
ける半導体素子1のゲートにはそのエミッタとコレクタ
との間に静電容量CgeとCgcがそれぞれあり、これらは
それぞれ数百〜数千pFとかなり大きな静電容量なので、
駆動回路4にはそれらを合成した半導体素子1のゲート
容量Cgを所望の短時間内に充放電するのに充分な駆動能
力が賦与される。なお、図3(b) と図3(c) に駆動回路
4の入力信号Siと出力信号Soの波形をそれぞれ示す。
The gate of the semiconductor device 1 which receives the output signal So through the resistor Rg has electrostatic capacitances Cge and Cgc between its emitter and collector, respectively, and these capacitances are several hundreds to several thousand pF, respectively. Since it is a fairly large capacitance,
The drive circuit 4 is provided with sufficient drive capability for charging / discharging the gate capacitance Cg of the semiconductor element 1 that combines them in a desired short time. 3 (b) and 3 (c) show the waveforms of the input signal Si and the output signal So of the drive circuit 4, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述の図3
(a) のような駆動回路4では半導体素子1のスイッチン
グ速度を高めるためその駆動能力を上げ, あるいはゲー
ト抵抗Rgの抵抗値を下げてターンオン時間やターンオフ
時間を縮めて行くと、オンオフ時に半導体素子1に掛か
る電圧やそれに流れる電流に過渡的な振動が発生しやす
くなる問題がある。以下、この様子を図3(d) 〜図3
(f) を参照して説明する。
However, the above-mentioned FIG.
In the drive circuit 4 as shown in (a), if the drive capability is increased to increase the switching speed of the semiconductor element 1 or the turn-on time and turn-off time are shortened by decreasing the resistance value of the gate resistance Rg, the semiconductor element is turned on and off. There is a problem that transient vibration is likely to occur in the voltage applied to 1 and the current flowing through it. Below, this state is shown in FIG.
It will be explained with reference to (f).

【0006】図3(d) に半導体素子1が駆動回路4から
図3(c) に示す波形の出力信号Soを受けた際のゲート電
圧Vgの波形を示す。前述のゲート容量Cgに関連するゲー
ト・エミッタ間容量Cgeやゲート・コレクタ間容量Cgc
がターンオン動作中やターンオフ動作中の半導体素子1
が受ける電圧値や電流値により変化するので、ゲート電
圧Vgの波形は図のようち単純な充放電波形とかなり異な
ってくる。
FIG. 3D shows the waveform of the gate voltage Vg when the semiconductor device 1 receives the output signal So having the waveform shown in FIG. 3C from the drive circuit 4. Gate-emitter capacitance Cge and gate-collector capacitance Cgc related to the aforementioned gate capacitance Cg
Semiconductor device 1 during turn-on operation or turn-off operation
The waveform of the gate voltage Vg is considerably different from the simple charge / discharge waveform as shown in the figure, because it changes depending on the voltage value and current value received by.

【0007】図3(e) と図3(f) に半導体素子1に掛か
るコレクタ・エミッタ間電圧Vceとそれに流れる電流I
の波形をそれぞれ示す。図3(e) のように電圧Vceのタ
ーンオン時の波形には振動がないが、ターンオフ時の波
形に大きな振動が現れて鋭いピーク電圧が発生してい
る。図3(f) のように電流Iの波形にはターンオフ時に
若干の振動が現れるが、ターンオン時には大きな振動が
現れて非常に鋭いピーク電流が発生している。
3 (e) and 3 (f), a collector-emitter voltage Vce applied to the semiconductor element 1 and a current I flowing therethrough are shown.
Respectively are shown. As shown in FIG. 3 (e), there is no vibration in the waveform of the voltage Vce at the time of turn-on, but a large vibration appears in the waveform at the time of turn-off and a sharp peak voltage is generated. As shown in FIG. 3 (f), the waveform of the current I shows some vibration at turn-off, but large vibration appears at turn-on, and a very sharp peak current is generated.

【0008】これからわかるように半導体素子1のター
ンオン時にはその電流Iに, ターンオフ時には電圧Vce
にそれぞれ過渡的な振動がとくに生じやすく、振動の振
幅は駆動回路4の駆動力が大きいほど, ゲート抵抗Rgの
抵抗値が低いほど, 負荷2が誘導性でそのインダクタン
ス値が大きいほど急増する傾向がある。このように、半
導体素子1のスイッチング速度を高めて行く上でそのオ
ンオフ動作に付随して発生する過渡的な振動が隘路にな
っているのが実情である。
As can be seen from the above, when the semiconductor device 1 is turned on, its current I is applied, and when it is turned off, the voltage Vce is applied.
Transient vibrations are particularly likely to occur, and the vibration amplitude tends to increase rapidly as the driving force of the drive circuit 4 increases, the resistance value of the gate resistance Rg decreases, and the load 2 inductively increases its inductance value. There is. As described above, in the actual situation, in order to increase the switching speed of the semiconductor element 1, the transient vibration that accompanies the on / off operation is a bottleneck.

【0009】かかる現状に鑑みて、本発明の目的は絶縁
ゲート半導体素子のターンオン時やターンオフ時に生じ
やすい過渡振動を抑制しながらスイッチング速度を従来
より高めることができる駆動回路を提供することにあ
る。
In view of the above situation, an object of the present invention is to provide a drive circuit capable of increasing the switching speed as compared with the conventional one while suppressing the transient vibrations which are likely to occur at the time of turning on and off the insulated gate semiconductor device.

【0010】[0010]

【課題を解決するための手段】本発明によれば上記の目
的は、半導体素子のゲートに掛かる電圧を受けてその電
圧値の基準値の比較結果に応じて論理状態が切り換わる
電圧検出信号を発する電圧検出手段と、ゲートの駆動電
源電圧を所定比に分圧する分圧回路と、1対のトランジ
スタを駆動電源電圧に対して直列接続し,両者の相互接
続点を出力点としてその論理状態がフロート状態を含む
3状態に制御され,分圧回路の分圧点と共通に接続され
たこの出力点から半導体素子のゲートを駆動する出力信
号が導出されるトライステート回路と、半導体素子のオ
ンオフを指定する入力信号と電圧検出信号を受けて両信
号の論理状態に応じトライステート回路のトランジスタ
のオンオフ状態を制御する制御手段とを用い、入力信号
の論理状態が切り換わった後に電圧検出信号の論理状態
が切り換わるまでの時間内は制御手段によりトライステ
ート回路をフロート状態に制御して分圧回路による分圧
値を出力信号として取り出すことによって達成される。
According to the present invention, the above object is to provide a voltage detection signal which receives a voltage applied to a gate of a semiconductor element and switches a logic state according to a comparison result of reference values of the voltage values. A voltage detecting means for generating a voltage, a voltage dividing circuit for dividing the gate drive power supply voltage to a predetermined ratio, and a pair of transistors connected in series to the drive power supply voltage, and the logical state of the two interconnected points is an output point. The tri-state circuit is controlled in three states including the float state, and the output signal for driving the gate of the semiconductor element is derived from this output point that is commonly connected to the voltage dividing point of the voltage dividing circuit and the on / off of the semiconductor element. The logic state of the input signal is switched by using the control means that receives the designated input signal and the voltage detection signal and controls the on / off state of the transistor of the tri-state circuit according to the logic state of both signals. The time until the switching logic state of the voltage detection signal after divided is achieved by taking the partial pressure value by controlling the tristate circuit to float voltage divider circuit as an output signal by the control means.

【0011】上記の構成中にいう電圧検出手段には半導
体素子のゲート電圧値を比較すべきその基準値がゲート
電圧の上昇時と下降時とで異なるように動作上の履歴特
性をもたせることができる。また、分圧回路では1対の
分圧要素のそれぞれにトランジスタを直列に接続し、ト
ライステート回路内のトランジスタをオンさせる際に分
圧回路のそれに直列に入るトランジスタをオフ状態に制
御し,さらにはそれに並列に入るトランジスタをオン状
態に制御するのが有利である。制御手段を論理ゲートな
いしその組み合わせ回路として構成するのが最も簡単で
ある。
The voltage detecting means referred to in the above configuration may be provided with operational hysteresis characteristics such that the reference value to be compared with the gate voltage value of the semiconductor element is different when the gate voltage rises and when it falls. it can. In the voltage dividing circuit, a transistor is connected in series to each of the pair of voltage dividing elements, and when the transistor in the tri-state circuit is turned on, the transistor that enters in series with that of the voltage dividing circuit is controlled to the off state. Advantageously controls the transistors that enter it in parallel to the on state. The simplest way is to configure the control means as a logic gate or a combination circuit thereof.

【0012】分圧回路は場合によって単一としてもよい
が、半導体素子のオン動作用とオフ動作用に分離して設
けてそれらの分圧比を独立に設定し得るようにするのが
最も合理的である。この場合でもトライステート回路は
単一で済ませることも可能であるが、分圧回路ごとにト
ライステート回路を付随させて入力信号の論理状態の一
方から他方への変化と他方から一方への変化とに応じて
制御手段により交互にフロート状態に制御するのが有利
である。
The voltage dividing circuit may be a single voltage dividing circuit in some cases, but it is most rational to provide it separately for the ON operation and the OFF operation of the semiconductor element so that the voltage dividing ratios thereof can be set independently. Is. Even in this case, a single tri-state circuit can be used, but a tri-state circuit can be attached to each voltage divider circuit to change the logic state of the input signal from one to the other and from the other to the one. It is advantageous to alternately control the float state by the control means in accordance with the above.

【0013】さらにこの場合、分圧回路と対応するトラ
イステート回路の組み合わせごとに両者から出力信号を
受ける駆動トランジスタを設け、これらのオン動作用と
オフ動作用の駆動トランジスタを駆動電源電圧に対し直
列に接続して、両駆動トランジスタの相互接続点から半
導体素子に対するゲート駆動用として出力信号を取り出
すようにするのが有利である。
Further, in this case, a drive transistor for receiving an output signal from each of the voltage dividing circuit and the corresponding tri-state circuit is provided, and the drive transistors for ON operation and OFF operation are connected in series with the drive power supply voltage. It is advantageous to take the output signal from the interconnection point of both drive transistors for gate drive to the semiconductor element.

【0014】[0014]

【作用】本発明による絶縁ゲート半導体素子の駆動回路
は、(1)半導体素子のオンオフ動作に伴う前述の電流や
電圧の過渡振動がターンオン時間やターンオフ時間のご
く初期の半導体素子のゲート電圧の急激な変化により誘
発される点に着目して、前項の構成にいう分圧回路によ
りオンオフ動作の開始直後のゲートの充放電をそれによ
り設定した分圧値までしか進行させないようにしてゲー
ト電圧の変化速度を過渡振動が誘発されない程度に抑制
し、(2)その際の充放電に必ず若干の時間を要する点に
着目して、前項の構成にいう電圧検出手段により変化速
度を抑制すべき時間をゲート電圧が所定の基準値まで変
化する時間から設定して、この時間内は制御手段により
トライステート回路をフロート状態におくようにし、さ
らに、(3)この時間の経過後は制御手段によりトライス
テート回路をフロート状態から解除してトライステート
回路に半導体素子のゲートを駆動させ、短時間内にその
充放電を完了させて半導体素子を正規のオンオフ状態に
入れることにより前述の所期の目的の達成に成功したも
のである。
In the drive circuit for the insulated gate semiconductor device according to the present invention, (1) the transient oscillation of the current or voltage due to the on / off operation of the semiconductor device is caused by the abrupt change of the gate voltage of the semiconductor device at the very early stage of the turn-on time or turn-off time. Paying attention to the point of being induced by such changes, the voltage divider circuit in the configuration of the previous section changes the gate voltage by allowing charge / discharge of the gate immediately after the start of on / off operation to proceed to the divided voltage value set by it. Suppress the speed to the extent that transient vibration is not induced, and (2) pay attention to the fact that it takes some time to charge and discharge at that time. It is set from the time when the gate voltage changes to a predetermined reference value, the control means keeps the tri-state circuit in a floating state within this time, and (3) this time elapses. After that, the control means releases the tri-state circuit from the floating state, causes the tri-state circuit to drive the gate of the semiconductor element, completes charging and discharging of the semiconductor element within a short time, and puts the semiconductor element into a regular on / off state. It has succeeded in achieving the intended purpose of.

【0015】[0015]

【実施例】次に図を参照して本発明の実施例を説明す
る。図1は本発明による駆動回路を半導体素子とともに
示すその実施例の回路図および関連する主な信号の波形
図であり、図2は電圧検出手段に動作上の履歴をもたせ
る場合の動作特性図である。なお、以下説明する実施例
では半導体素子のオン動作用およびオフ動作用に分圧回
路が別個に設けられ、各分圧回路にはその1対の分圧要
素のそれぞれに対してトランジスタが直列接続され、か
つ各分圧回路に対応してトライステート回路が設けられ
るものとするが、本発明はかかる実施例に限らず前述の
要旨の範囲内で種々変形された態様で実施をすることが
できる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a circuit diagram of the embodiment showing a drive circuit according to the present invention together with a semiconductor element and a waveform diagram of relevant main signals, and FIG. 2 is an operation characteristic diagram in the case where a voltage detecting means has an operation history. is there. In the embodiments described below, voltage dividing circuits are separately provided for turning on and off the semiconductor element, and each voltage dividing circuit has a transistor connected in series to each of the pair of voltage dividing elements. It is assumed that the tri-state circuit is provided corresponding to each voltage dividing circuit, but the present invention is not limited to this embodiment and can be implemented in various modified modes within the scope of the above-mentioned gist. .

【0016】図1(a) の右側部に示すIGBTである絶縁ゲ
ート半導体素子1と負荷2とそれに並列なダイオード3
は前に説明した図3の従来例の場合と同じである。本発
明による駆動回路は図1(b) に波形を示す入力信号Siを
受けて図1(h) に波形を示す出力信号Soを図示の例では
入力信号Siと同じ論理状態で出力して半導体素子1のゲ
ートを図3(a) のようなゲート抵抗Rgを介することなく
駆動する。
An insulated gate semiconductor device 1 which is an IGBT, a load 2 and a diode 3 in parallel with the load 3 are shown on the right side of FIG. 1 (a).
Is the same as the case of the conventional example of FIG. 3 described above. The drive circuit according to the present invention receives an input signal Si having a waveform shown in FIG. 1 (b), and outputs an output signal So having a waveform shown in FIG. 1 (h) in the same logic state as the input signal Si in the illustrated example. The gate of the device 1 is driven without passing through the gate resistance Rg as shown in FIG.

【0017】図1(a) の中央部にブロックで簡略に示す
電圧検出手段10はこの出力信号Soによりゲートを充放電
した結果である半導体素子1のゲート電圧Vgを受けて、
その電圧値を所定の基準値と比較してその結果に応じて
論理状態が変化する電圧検出信号Sdを図1(c) に示す波
形で発する。図1(b) の入力信号Siの論理状態が切り換
わると図1(h) の出力信号Soないしゲート電圧Vgはそれ
に応じて立ち上がりや立ち下がりをすぐ開始するが、半
導体素子1のゲートには静電容量があってその充放電に
若干の時間を要するため電圧検出信号Sdの論理状態の変
化は図1(c) のように入力信号Siより図でτpやτnで
示す短時間だけ遅れてくる。
The voltage detecting means 10, which is simply shown by a block in the center of FIG. 1A, receives the gate voltage Vg of the semiconductor element 1 which is the result of charging and discharging the gate by this output signal So,
The voltage value is compared with a predetermined reference value, and a voltage detection signal Sd whose logic state changes according to the result is generated in the waveform shown in FIG. 1 (c). When the logic state of the input signal Si in FIG. 1 (b) is switched, the output signal So or the gate voltage Vg in FIG. 1 (h) immediately starts rising or falling accordingly, but the gate of the semiconductor device 1 Since there is an electrostatic capacity and it takes some time to charge and discharge, the change in the logic state of the voltage detection signal Sd is delayed from the input signal Si by a short time shown by τp and τn in the figure as shown in Fig. 1 (c). come.

【0018】図1(a) に一点鎖線で囲んで示す分圧回路
21と22は半導体素子1のゲート用の駆動電源電圧Vdを受
けてそれを所定比に分圧するもので、場合により1個だ
けで済ませることも可能であるが、この実施例では半導
体素子1のオン動作用の分圧回路21とオフ動作用の分圧
回路22とを設けてそれらの分圧比を互いに独立に設定で
きるようにする。これらの分圧回路21と22は通例のよう
にそれぞれ1対の分圧抵抗21rと22rを含むが、さらに
この実施例では各分圧抵抗21rと22rに対してそれぞれ
p形とn形のトランジスタ21pと21n, および22pと22
nが図のように直列に接続される。
A voltage divider circuit surrounded by a chain line in FIG. 1 (a)
Reference numerals 21 and 22 are for receiving the driving power supply voltage Vd for the gate of the semiconductor element 1 and dividing it into a predetermined ratio. In some cases, it is possible to use only one, but in this embodiment, the semiconductor element 1 A voltage dividing circuit 21 for on-operation and a voltage dividing circuit 22 for off-operation are provided so that the voltage division ratios thereof can be set independently of each other. These voltage dividing circuits 21 and 22 each include a pair of voltage dividing resistors 21r and 22r as usual, but in this embodiment, p-type and n-type transistors are respectively provided for the voltage dividing resistors 21r and 22r. 21p and 21n, and 22p and 22
n are connected in series as shown.

【0019】同様に図1(a) に一点鎖線で囲んで示すト
ライステート回路31と32は出力点の論理状態がハイとロ
ーの2状態に切り換わるインバータ回路としての動作の
ほかフロート状態にも制御される3状態回路であり、こ
の実施例では上述の分圧回路21と22に対応して半導体素
子1のオン動作用のトライステート31とオフ動作用のト
ライステート回路32が設けられ、それらの出力点が対応
する分圧回路21と22の分圧点とそれぞれ共通に接続され
る。また、トライステート回路31の出力点からオン動作
用の出力信号Sopが, トライステート回路32の出力点か
らオフ動作用の出力信号Sonがそれぞれ導出される。
Similarly, the tri-state circuits 31 and 32 surrounded by the one-dot chain line in FIG. 1 (a) operate not only as an inverter circuit in which the logic state of the output point switches to two states of high and low but also in the float state. This is a controlled three-state circuit. In this embodiment, a tri-state 31 for on-operation and a tri-state circuit 32 for off-operation of the semiconductor element 1 are provided corresponding to the voltage dividing circuits 21 and 22 described above. Of the voltage dividing circuits 21 and 22 are commonly connected to the corresponding voltage dividing points. Further, the output signal Sop for on operation is derived from the output point of the tri-state circuit 31, and the output signal Son for off operation is derived from the output point of the tri-state circuit 32.

【0020】なお、これらトライステート回路31と32は
図示のように駆動電源電圧Vdに対しp形のトランジスタ
31p, 32pおよびn形のトランジスタ31n, 32nをそれぞれ
直列接続してなり、それらの各1対のトランジスタの相
互接続点を分圧回路21と22の分圧点と共通接続された出
力点とするものであり、次に述べる制御手段40により入
力信号Siの論理状態の一方から他方への変化およびその
逆方向の変化に応じて前述の遅れ時間τpやτnの間だ
け交互にフロート状態に制御される。
The tri-state circuits 31 and 32 are p-type transistors for the driving power supply voltage Vd as shown in the figure.
31p, 32p and n-type transistors 31n, 32n are respectively connected in series, and the interconnection point of each pair of these transistors is used as an output point commonly connected to the voltage dividing points of the voltage dividing circuits 21 and 22. The control means 40, which will be described below, alternately controls the floating state for the delay times τp and τn in accordance with the change of the logic state of the input signal Si from one to the other and vice versa. It

【0021】この実施例の制御手段40は分圧回路21と22
およびトライステート回路31と32のトランジスタのオン
オフ状態を制御するもので、本発明ではこれを入力信号
Siと電圧検出信号Sdを受ける論理ゲートないしはその組
み合わせ回路として構成するのがよく、この実施例では
オン動作用のアンドゲート41およびオフ動作用のオアゲ
ート42から構成され、それらの出力である制御信号S41
とS42を発するほかに入力信号Siをそのまま出力する。
図1(d) と図1(e) には制御信号S41とS42の波形がそ
れぞれ示されている。
The control means 40 of this embodiment comprises voltage dividing circuits 21 and 22.
It controls the on / off state of the transistors of the tri-state circuits 31 and 32.
It is preferable to configure the logic gate that receives Si and the voltage detection signal Sd or a combination circuit thereof, and in this embodiment, it is configured by an AND gate 41 for ON operation and an OR gate 42 for OFF operation, and a control signal that is an output thereof. S41
And S42, the input signal Si is output as it is.
The waveforms of control signals S41 and S42 are shown in FIGS. 1 (d) and 1 (e), respectively.

【0022】いま、図1(b) の入力信号Siがローからハ
イに変化したとすると、その直後は図1(c) の電圧検出
信号Sdはローの状態なので、制御手段40のアンドゲート
41による図1(d) の制御信号S41はローであり、従って
オン動作用のトライステート回路31の入力信号Siのハイ
を受けるp形のトランジスタ31pおよび制御信号Sdのロ
ーを受けるn形のトランジスタ31nはともにオフし、ト
ライステート回路31はフロート状態になる。一方、分圧
回路21内の制御信号S41のローを受けるp形のトランジ
スタ21pと入力信号Siのハイを受けるn形のトランジス
タ21nがともにオンするので、図1(f) に示すオン動作
用の出力信号Sopは分圧回路21によって駆動電源電圧Vd
を分圧した中間電圧Vipになる。
Now, assuming that the input signal Si in FIG. 1B changes from low to high, the voltage detection signal Sd in FIG. 1C is in a low state immediately after that, so that the AND gate of the control means 40 is operated.
The control signal S41 of FIG. 1 (d) by 41 is low, and therefore the p-type transistor 31p receiving the high of the input signal Si of the tri-state circuit 31 for ON operation and the n-type transistor receiving the low of the control signal Sd. Both 31n are turned off, and the tri-state circuit 31 enters a floating state. On the other hand, since both the p-type transistor 21p that receives the low control signal S41 and the n-type transistor 21n that receives the high input signal Si in the voltage dividing circuit 21 turn on, the on-operation shown in FIG. The output signal Sop is driven by the voltage dividing circuit 21 to drive the power supply voltage Vd.
Is the intermediate voltage Vip.

【0023】これに対してオフ動作側では、ノアゲート
42による図1(e) の制御信号S42が入力信号Siの立ち上
がりと同時にハイになり、トライステート回路32内のこ
れを受けるp形のトランジスタ32pがオフし入力信号Si
のハイを受けるn形のトランジスタ32nがオンするの
で、出力点から導出される図1(g) に示すオフ動作用の
出力信号Sonはローの状態になる。前述の遅れ時間τp
の経過後にオン動作側の制御信号S41がハイになるとト
ライステート回路31のn形のトランジスタ31nがオンす
るので、オン動作用の出力信号Sopがローに切り換わ
る。
On the other hand, on the off operation side, the NOR gate
The control signal S42 of FIG. 1 (e) due to 42 becomes high at the same time as the rising of the input signal Si, and the p-type transistor 32p in the tri-state circuit 32 that receives it turns off and the input signal Si
Since the n-type transistor 32n receiving the high level is turned on, the output signal Son for the off operation shown in FIG. 1 (g), which is derived from the output point, is in the low state. The delay time τp described above
When the control signal S41 on the on-operation side becomes high after the passage of, the n-type transistor 31n of the tri-state circuit 31 is turned on, so that the output signal Sop for on-operation is switched to low.

【0024】次に入力信号Siがハイからローに変わると
制御信号S41はすぐローに変化し、トライステート回路
31内のp形のトランジスタ31pが入力信号Siのハイでオ
ンしn形のトランジスタ31nが制御信号S41のローでオ
フするのでオン動作用の出力信号Sopはハイの状態に変
わる。一方、制御信号S42は電圧検出信号Sdの前述の遅
れ時間τnの間はまだハイの状態を保ち、トライステー
ト回路32はそのハイを受けるp形のトランジスタ32pと
入力信号Siのローを受けるn形のトランジスタ32nがと
もにオフするのでフロート状態になる。しかし、分圧回
路22の方は入力信号Siのハイを受けるp形トランジスタ
22pと制御信号S42のハイを受けるn形トランジスタ22
nがともにオンするので、オフ動作用の出力信号Sonは
駆動電源電圧Vdを分圧した中間電圧Vinになる。遅れ時
間τnの経過後に制御信号S42がローに変わると、トラ
イステート回路32のp形のトランジスタ32pがそのロー
でオンし, n形のトランジスタ32nが制御信号Siのロー
でオフするので、この出力信号Sonは中間電圧Vinから
ハイの電圧Vdに立ち上がる。
Next, when the input signal Si changes from high to low, the control signal S41 immediately changes to low, and the tri-state circuit
Since the p-type transistor 31p in 31 is turned on when the input signal Si is high and the n-type transistor 31n is turned off when the control signal S41 is low, the output signal Sop for on-operation changes to a high state. On the other hand, the control signal S42 is still high during the delay time τn of the voltage detection signal Sd, and the tri-state circuit 32 receives the high p-type transistor 32p and the low of the input signal Si n-type. Both of the transistors 32n are turned off, so that a floating state occurs. However, the voltage divider circuit 22 is a p-type transistor that receives the high level of the input signal Si.
N-type transistor 22 receiving 22p and control signal S42 high
Since both n are turned on, the output signal Son for the off operation becomes the intermediate voltage Vin obtained by dividing the driving power supply voltage Vd. When the control signal S42 changes to low after the elapse of the delay time τn, the p-type transistor 32p of the tri-state circuit 32 turns on at that low, and the n-type transistor 32n turns off at the low of the control signal Si. The signal Son rises from the intermediate voltage Vin to the high voltage Vd.

【0025】以上のように、制御手段40は入力信号Siの
論理状態が切り換わり後に電圧検出信号Sdの論理状態が
切り換わるまでの遅れ時間τpやτnの間はトライステ
ート回路31や32をフロート状態にこの実施例では交互に
制御して、駆動電源電圧Vdの分圧回路21や22による分圧
値を出力信号SopやSonの中間電圧VipやVinとして出
力させる役目を果たす。
As described above, the control means 40 floats the tri-state circuits 31 and 32 during the delay time τp or τn until the logic state of the voltage detection signal Sd is switched after the logic state of the input signal Si is switched. In this embodiment, the state is alternately controlled to output the divided voltage values of the drive power supply voltage Vd by the voltage dividing circuits 21 and 22 as the intermediate voltages Vip and Vin of the output signals Sop and Son.

【0026】なお、この実施例における制御手段40はト
ライステート回路31や32にフロート状態以外のインバー
タ動作をさせる場合そのトランジスタをオンさせる際に
分圧回路21や22内の駆動電源電圧Vdに対しそれに直列に
入るトランジスタを必ずオフ状態に制御し、さらに並列
に入るトランジスタをオン状態に制御する。例えば、ト
ライステート回路31のp形のトランジスタ31pを入力信
号Siのローによりオンさせるとき、分圧回路21の駆動電
源電圧Vdに対しそれに直列に入るn形のトランジスタ21
nを同じ入力信号Siのローによりオフ状態に制御し、そ
のp形のトランジスタ21pを制御信号S41のハイにより
オン状態に制御する。このトランジスタ21nのオフによ
りトライステート31が発する出力信号Sopを分圧回路21
の影響を受けることなく駆動電源電圧Vdに同じハイの論
理状態におくことができ、トランジスタ21pのオンによ
りそれを一層確実にすることができる。
When the tristate circuits 31 and 32 are made to operate in an inverter other than the floating state, the control means 40 in this embodiment turns on the transistors thereof with respect to the drive power supply voltage Vd in the voltage dividing circuits 21 and 22. Be sure to control the transistors that are connected in series to the off state and the transistors that are connected in parallel to the on state. For example, when the p-type transistor 31p of the tri-state circuit 31 is turned on by the low level of the input signal Si, the n-type transistor 21 that enters in series with the drive power supply voltage Vd of the voltage dividing circuit 21
n is turned off by the same low input signal Si, and its p-type transistor 21p is turned on by the high control signal S41. The voltage dividing circuit 21 outputs the output signal Sop generated by the tri-state 31 when the transistor 21n is turned off.
Can be set to the same high logic state as the drive power supply voltage Vd without being affected by, and it can be made even more reliable by turning on the transistor 21p.

【0027】図1(a) の回路例では、半導体素子1に対
する駆動能力を高めるために以上のようにして発生され
たオン動作用の出力信号Sopとオフ動作用の出力信号So
nを駆動電源電圧Vdに対して直列に接続されたp形の駆
動トランジスタ50pとn形の駆動トランジスタ50nにそ
れぞれ受けて、両者の相互接続点から半導体素子1のゲ
ートを駆動する図1(h) に波形を示す出力信号Soを取り
出すように構成されている。p形の駆動トランジスタ50
pは半導体素子1のゲートがもつ静電容量Cgの充電用,
n形の駆動トランジスタ50nはその放電用であって、両
出力信号SopとSonによりもちろん交互にオンオフ操作
される。
In the circuit example of FIG. 1A, the output signal Sop for the ON operation and the output signal So for the OFF operation generated in the above-described manner in order to enhance the driving capability for the semiconductor element 1.
FIG. 1 (h) in which n is received by a p-type drive transistor 50p and an n-type drive transistor 50n which are connected in series to the drive power supply voltage Vd, and the gate of the semiconductor device 1 is driven from the interconnection point between them. ) Is configured to take out the output signal So having a waveform. p-type drive transistor 50
p is for charging the capacitance Cg of the gate of the semiconductor device 1,
The n-type drive transistor 50n is for its discharge, and of course is alternately turned on / off by both output signals Sop and Son.

【0028】この出力信号Soは半導体素子1に掛かるゲ
ート電圧Vgでもあり、オン動作用の出力信号Sopとオフ
動作用の出力信号Sonが入力信号Siの状態変化時にそれ
ぞれ前述の遅れ時間τpやτn内に中間電圧VipやVin
を経由して切り換わり, かつ半導体素子1のゲート容量
Cgの充放電にも若干の時間を要するので、図1(h) のよ
うに出力信号SopやSonに比べてなだらかに変化する波
形になる。
This output signal So is also the gate voltage Vg applied to the semiconductor element 1, and the output signal Sop for ON operation and the output signal Son for OFF operation are respectively the aforementioned delay times τp and τn when the state of the input signal Si changes. Intermediate voltage Vip and Vin
And the gate capacitance of the semiconductor device 1
Since it takes some time to charge and discharge Cg, the waveform changes gently as compared with the output signals Sop and Son as shown in FIG. 1 (h).

【0029】この図1(h) のゲート電圧Vgの波形には電
圧検出手段10によってその電圧値が比較される基準値が
示されており、この実施例では電圧検出手段10に図2に
示すような動作上の履歴をもたせてゲート電圧Vgの上昇
時の基準電圧VH と下降時の基準電圧VL が異なるよう
に構成される。この電圧検出手段10には図2のように電
圧検出信号Sdの論理状態をゲート電圧Vgが基準電圧VH
やVL になったときにそれぞれ変化させるように図では
矢印で示す通常の反時計回り方向の履歴特性をもたせる
ことでよいが、必要な場合はそれに時計回り方向の履歴
特性をもたせることも可能である。この履歴特性は例え
ば15Vの駆動電源電圧Vdの半分の7.5Vの上下の基準値V
H やVL の差dVが2〜数Vになるよう設定するのがよ
い。
The waveform of the gate voltage Vg in FIG. 1 (h) shows a reference value with which the voltage value is compared by the voltage detecting means 10. In this embodiment, the voltage detecting means 10 is shown in FIG. With such a history of operation, the reference voltage V H when the gate voltage Vg rises and the reference voltage V L when the gate voltage Vg fall are configured to be different. In the voltage detecting means 10, the gate voltage Vg is set to the reference voltage V H as the logic state of the voltage detecting signal Sd as shown in FIG.
It is sufficient to have a normal counterclockwise history characteristic shown by an arrow in the figure so as to be changed respectively when it becomes V L or V L , but it is also possible to give it a clockwise history characteristic if necessary. Is. This hysteresis characteristic is, for example, a reference value V above and below 7.5V, which is half the driving power supply voltage Vd of 15V.
It is preferable to set the difference dV between H and V L to be 2 to several V.

【0030】入力信号Siの論理状態が変化した直後に出
力信号SopやSonの中間電圧VipやVinをゲートに受け
て駆動トランジスタ50pまたは50nがオンすると、それ
らは飽和領域で動作して半導体素子1のゲート容量Cgを
ほぼ一定の電流で充電ないし放電するので、図1(h) に
示すようにゲート電圧Vgはほぼ一定勾配で立ち上がりあ
るいは立ち下がる。このゲート電圧Vgが電圧検出回路10
の基準電圧VH に立ち上がるまでの時間が前述のオン動
作時の遅れ時間τpであり、基準電圧VL まで立ち下が
る時間がオフ動作時の遅れ時間τnである。
Immediately after the logic state of the input signal Si changes, the intermediate voltage Vip or Vin of the output signal Sop or Son is received by the gate and the drive transistor 50p or 50n is turned on, they operate in the saturation region and the semiconductor element 1 is operated. Since the gate capacitance Cg is charged or discharged with a substantially constant current, the gate voltage Vg rises or falls with a substantially constant slope as shown in FIG. 1 (h). This gate voltage Vg is the voltage detection circuit 10
The time until the reference voltage V H rises is the above-mentioned delay time τp during the ON operation, and the time until the reference voltage V L falls is the delay time τn during the OFF operation.

【0031】これら遅れ時間τpやτnを設定する要領
を具体的に述べると以下のとおりである。いま、p形の
トランジスタ50pのチャネルの移動度とゲート酸化膜の
静電容量で決まる定数をkpとし, そのチャネル幅とチャ
ネル長さの比をWp/Lp とし,そのゲートしきい値をVtp
とすると、ゲートに中間電圧Vipを受けたときの駆動ト
ランジスタ50pの半導体素子1のゲート容量Cgに対する
一定の充電電流Ipは、周知のようにIp=(kp/2)(Wp/Lp)
(Vip-Vtp)2 で表され、従ってオン動作時の遅れ時間τ
pはこの充電電流Ipの値を用いてτp=VH Cg/Ipで設
定できる。同様にn形トランジスタ50nによるゲート容
量Cgに対する放電電流Inは、そのチャネル移動度とゲー
ト酸化膜の静電容量で決まる定数をkn, チャネル幅とチ
ャネル長の比を Wn/Ln, ゲートしきい値をVtn とする
と、In=(kn/2)(Wn/Ln)(Vin-Vtn)2 になり、オフ動作時
の遅れ時間はτn=VL Cg/Inで設定できる。
The procedure for setting the delay times τp and τn will be specifically described as follows. Now, let kp be the constant determined by the mobility of the channel and the capacitance of the gate oxide film of the p-type transistor 50p, the ratio of the channel width to the channel length be Wp / Lp, and its gate threshold be Vtp.
Then, the constant charging current Ip with respect to the gate capacitance Cg of the semiconductor element 1 of the drive transistor 50p when the gate receives the intermediate voltage Vip is, as is well known, Ip = (kp / 2) (Wp / Lp)
(Vip-Vtp) 2 and therefore the delay time τ during ON operation
p can be set by τp = V H Cg / Ip using the value of this charging current Ip. Similarly, the discharge current In with respect to the gate capacitance Cg by the n-type transistor 50n is a constant determined by the channel mobility and the capacitance of the gate oxide film, kn, the ratio of the channel width and the channel length is Wn / Ln, and the gate threshold value. Is Vtn, In = (kn / 2) (Wn / Ln) (Vin-Vtn) 2 and the delay time during the OFF operation can be set by τn = V L Cg / In.

【0032】以上のように構成されたこの実施例におい
て、半導体素子1のオンオフ動作に伴いそのコレクタ・
エミッタ間に掛かる両端電圧Vceの波形を図1(i) に示
し、それに流れる電流Iの波形を図1(j) に示す。前述
の従来例における図3(e) や図3(f) の波形と比較すれ
ばわかるように、本発明回路では半導体素子1のオン動
作時の電流Iやオフ動作時の両端電圧Vceの波形に小さ
なピークは出るものの従来のような過渡振動に伴う大き
な過電流や過電圧は生じない。
In this embodiment having the above-described structure, the collector and
The waveform of the voltage Vce across the emitter is shown in FIG. 1 (i), and the waveform of the current I flowing through it is shown in FIG. 1 (j). As can be seen by comparing with the waveforms of FIG. 3 (e) and FIG. 3 (f) in the above-mentioned conventional example, in the circuit of the present invention, the waveform of the current I during the on-operation of the semiconductor element 1 and the voltage Vce at both ends during the off-operation of the semiconductor element 1 Although there is a small peak at, there is no large overcurrent or overvoltage due to transient vibration as in the past.

【0033】さらに、本発明回路では従来のように図3
(a) に示したゲート抵抗Rgを用いる必要がなく、とくに
遅れ時間τpやτnが経過した後は半導体素子1のゲー
トの充放電をごく短時間内に完了することができる。遅
れ時間τpやτnはもちろん場合によって異なるが 0.1
〜0.5 μSの範囲内に設定するのがよく、これにより従
来1〜2μS必要であった半導体素子1のターンオン時
間やターンオン時間を約半分の 0.5〜1μS程度に短縮
することができる。
Further, in the circuit of the present invention, as shown in FIG.
It is not necessary to use the gate resistance Rg shown in (a), and the charging and discharging of the gate of the semiconductor element 1 can be completed within a very short time especially after the delay times τp and τn have passed. The delay time τp and τn are, of course, 0.1 depending on the case.
It is preferable to set it within the range of .about.0.5 .mu.S, whereby the turn-on time and turn-on time of the semiconductor device 1 which has conventionally required 1-2 .mu.S can be reduced to about 0.5 to 1 .mu.S.

【0034】以上説明した実施例に限らず本発明は種々
の態様で実施をすることができる。例えば実施例では駆
動回路をすべてCMOS回路として構成したが、例えば
バイポーラ回路として構成することもできる。電圧検出
手段に実施例のように動作の履歴特性をもたせなくて
も、分圧回路の分圧比により遅れ時間の設定を調整する
こともできる。分圧回路の分圧抵抗に直列なトランジス
タを省略して回路構成を全体的に簡易化することもでき
る。
The present invention is not limited to the embodiments described above, and the present invention can be implemented in various modes. For example, in the embodiment, all the drive circuits are configured as CMOS circuits, but they may be configured as bipolar circuits, for example. The setting of the delay time can be adjusted by the voltage dividing ratio of the voltage dividing circuit, even if the voltage detecting means does not have the history characteristic of the operation as in the embodiment. It is also possible to simplify the circuit configuration as a whole by omitting the transistor in series with the voltage dividing resistor of the voltage dividing circuit.

【0035】また、実施例ではオン動作用の分圧回路と
オフ動作用の分圧回路を用いたが、回路構成を簡単化す
るために単一の分圧回路を両動作用に共通に設け、対応
するトライステート回路を制御手段によりオン動作時と
オフ動作時の遅れ時間の間にフロート状態に制御するよ
うにしてもよい。もちろん、かかる実施態様における制
御手段はトライステート回路内のトランジスタをそれに
必要な動作に合わせてオンオフ制御するよう容易に構成
できる。さらに、実施例におけるオン動作側やオフ動作
側の分圧回路とトライステート回路の組み合わせの動作
波形からわかるように、出力信号がオン動作時とオフ動
作時の遅れ時間のいずれかの間だけ中間電圧になるよう
に本発明を実施することもできる。
In the embodiment, the voltage dividing circuit for ON operation and the voltage dividing circuit for OFF operation are used. However, in order to simplify the circuit configuration, a single voltage dividing circuit is commonly provided for both operations. The corresponding tri-state circuit may be controlled by the control means to be floated during the delay time between the on-operation and the off-operation. Of course, the control means in such an embodiment can easily be configured to control the transistors in the tri-state circuit on and off in accordance with the operation required for it. Further, as can be seen from the operation waveforms of the combination of the voltage divider circuit and the tri-state circuit on the ON operation side and the OFF operation side in the embodiment, the output signal is only intermediate between the delay times of the ON operation and the OFF operation. It is also possible to implement the invention so that it is at a voltage.

【0036】[0036]

【発明の効果】以上説明したとおり本発明による半導体
素子の駆動回路では、電圧検出手段により半導体素子の
ゲート電圧を基準電圧と比較した結果に応じて論理状態
が切り換わる電圧検出信号を作り, 分圧回路に半導体素
子のゲート用の駆動電源電圧を所定比に分圧させ, トラ
イステート回路に分圧回路の分圧点と共通に接続された
その出力点から論理状態がフロート状態を含めた3状態
に制御される出力信号を発生させ, 制御手段により半導
体素子のオンオフを指定する入力信号と電圧検出信号の
論理状態に応じてトライステート回路内のトランジスタ
のオンオフを制御するようにしておき、入力信号の論理
状態が変化後に電圧検出信号の論理状態が変化するまで
の遅れ時間内は制御手段によりトライステート回路の出
力点の論理状態をフロート状態に制御して分圧回路によ
る分圧値を出力信号の中間電圧値として取り出すことに
よって次の効果を挙げることができる。
As described above, in the semiconductor element drive circuit according to the present invention, the voltage detection signal is generated and divided by the voltage detection means in accordance with the result of comparing the gate voltage of the semiconductor element with the reference voltage. The voltage supply circuit divides the drive power supply voltage for the gate of the semiconductor element to a predetermined ratio, and the tristate circuit outputs the output voltage that is commonly connected to the voltage dividing point of the voltage dividing circuit. The output signal that is controlled to the state is generated, and the on / off of the transistor in the tri-state circuit is controlled according to the logic state of the input signal that specifies the on / off of the semiconductor element and the voltage detection signal by the control means. Within the delay time after the logic state of the signal changes until the logic state of the voltage detection signal changes, the control means changes the logic state of the output point of the tri-state circuit. It may be mentioned the following effects by taking the partial pressure value of the control to the voltage divider circuit to over preparative state as an intermediate voltage value of the output signal.

【0037】(a) 入力信号の変化に対する電圧検出信号
の変化の遅れ時間内は半導体素子のゲートを駆動する出
力信号を分圧回路により駆動電源電圧を分圧した中間電
圧におくことにより、ゲートの充放電をこの中間電圧ま
で部分的に進行させてゲート電圧の変化速度を過渡振動
を誘発しないように抑制できる。 (b) 半導体素子のゲートがもつ静電容量の充放電に時間
が必要な点を利用してゲート電圧の変化速度を抑制すべ
き遅れ時間を電圧検出手段によりその電圧値が所定の基
準値まで変化する時間から簡単かつ正確にしかもゲート
の静電容量値に応じて合理的に設定することができる。
(A) By placing the output signal for driving the gate of the semiconductor element at an intermediate voltage obtained by dividing the driving power supply voltage by the voltage dividing circuit within the delay time of the change of the voltage detection signal with respect to the change of the input signal, It is possible to suppress the change rate of the gate voltage so as not to induce the transient oscillation by partially advancing the charging / discharging to the intermediate voltage. (b) Use the point that it takes time to charge and discharge the electrostatic capacity of the gate of the semiconductor device, and use the voltage detection means to set the delay time to suppress the rate of change of the gate voltage until the voltage value reaches a predetermined reference value. It can be set easily and accurately from the changing time and rationally according to the capacitance value of the gate.

【0038】(c) 従来のようにゲート抵抗を用いる必要
がなく、とくに遅れ時間の経過後はトライステート回路
をフロート状態から解除してゲートを直接強く駆動して
その静電容量の充放電を短時間内に完了させることによ
り、半導体素子のターンオン時間やターンオフ時間を従
来の半分程度に短縮することができる。このように、本
発明はゲート抵抗を用いる従来の駆動方式がもっていた
電圧や電流の過渡振動の抑制とスイッチング速度の高速
化との間の矛盾ないしトレードオフの問題を解決して、
半導体素子を過渡振動による過電圧や過電流から安全に
保護しながら,そのスイッチング動作が可能な周波数を
従来より高周波領域側に拡大することを可能にするもの
である。
(C) It is not necessary to use a gate resistance as in the conventional case, and especially after a lapse of delay time, the tri-state circuit is released from the floating state and the gate is directly driven strongly to charge / discharge its capacitance. By completing the process within a short time, the turn-on time and turn-off time of the semiconductor device can be reduced to about half of the conventional one. As described above, the present invention solves the problem of the contradiction or trade-off between the suppression of the transient vibration of the voltage and the current and the increase in the switching speed which the conventional driving method using the gate resistance has.
While safely protecting semiconductor elements from overvoltage and overcurrent due to transient vibration, it is possible to expand the frequency at which the switching operation can be performed to the high-frequency region side compared to the past.

【0039】なお、電圧検出手段に半導体素子のゲート
電圧と比較すべき基準電圧がゲート電圧の上昇時と下降
時で異なるように動作上の履歴特性をもたせる本発明の
実施態様は、半導体素子やその負荷の過渡特性がオン動
作時とオフ動作時とで異なる場合にそれに合わせてゲー
ト電圧の変化速度を過渡振動の発生を確実に抑制するよ
う正確に設定できる利点を有する。また、分圧回路の各
分圧要素に対しトランジスタを直列に接続してトライス
テート回路内のトランジスタをオンさせる際に分圧回路
のそれに直列に入るトランジスタをオフ状態に制御する
態様,さらにはそれに並列に入るトランジスタをオン状
態に制御する態様は、ゲートの駆動力を強めて半導体素
子のスイッチング速度を高速化する効果がある。制御手
段を論理ゲートやそれを組み合わせて構成する態様は、
簡単な回路構成でトライステート回路や分圧回路の動作
を正確に制御できる利点を有する。
The embodiment of the present invention in which the voltage detecting means has a history characteristic in operation so that the reference voltage to be compared with the gate voltage of the semiconductor element is different when the gate voltage increases and decreases When the transient characteristics of the load are different between the ON operation and the OFF operation, there is an advantage that the changing speed of the gate voltage can be accurately set so as to surely suppress the occurrence of the transient vibration. Also, when a transistor is connected in series to each voltage dividing element of the voltage dividing circuit to turn on the transistor in the tri-state circuit, a mode of controlling the transistor which enters in series with that of the voltage dividing circuit to the off state, The mode in which the transistors in parallel are controlled to be in the ON state has the effect of increasing the gate driving force and increasing the switching speed of the semiconductor element. A mode in which the control means is configured by a logic gate or a combination thereof is
It has the advantage that the operations of the tri-state circuit and the voltage dividing circuit can be accurately controlled with a simple circuit configuration.

【0040】分圧回路をオン動作用とオフ動作用に分離
して設けて分圧比を独立に設定する態様,さらに各分圧
回路ごとにトライステート回路を設ける態様は、過渡振
動を確実に防止するように半導体素子のオン動作時とオ
フ動作時のゲート電圧の変化速度を特性に合わせて独立
に設定できる効果がある。オン動作用とオフ動作用の分
圧回路とトライステート回路の組み合わせごとに駆動ト
ランジスタを設けて、両駆動トランジスタの相互接続点
から出力信号を導出して半導体素子のゲートを駆動する
態様は、駆動トランジスタの一定の飽和電流でゲートを
中間電圧値まで充放電して遅れ時間の設定を正確にする
とともにゲートに対する駆動力を強めて半導体素子のス
イッチング速度を高める効果を有する。
The mode in which the voltage dividing circuit is separately provided for the ON operation and the OFF operation to independently set the voltage dividing ratio, and the mode in which the tristate circuit is provided for each voltage dividing circuit surely prevents the transient vibration. As described above, there is an effect that the changing speed of the gate voltage during the on-operation and the off-operation of the semiconductor element can be independently set according to the characteristics. A driving transistor is provided for each combination of a voltage dividing circuit for ON operation and an OFF operation and a tri-state circuit, and an output signal is derived from an interconnection point of both driving transistors to drive a gate of a semiconductor element. This has the effects of charging / discharging the gate to an intermediate voltage value with a constant saturation current of the transistor to accurately set the delay time and increasing the driving force for the gate to increase the switching speed of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体素子の駆動回路の実施例回
路と関連する主な信号の波形を示し、同図(a) は駆動回
路を半導体素子等とともに示す回路図、同図(b) は入力
信号の波形図、同図(c) は電圧検出信号の波形図、同図
(d) はオン動作用の制御信号の波形図、同図(e) はオフ
動作用の制御信号の波形図、同図(f) はオン動作用の出
力信号の波形図、同図(g) はオフ動作用の出力信号の波
形図、同図(h) は半導体素子駆動用出力信号の波形図、
同図(i) は半導体素子に掛かる両端電圧の波形図、同図
(j) は半導体素子に流れる電流の波形図である。
FIG. 1 shows waveforms of main signals related to an embodiment circuit of a semiconductor element drive circuit according to the present invention. FIG. 1 (a) is a circuit diagram showing the drive circuit together with a semiconductor element, and FIG. Input signal waveform diagram, Figure (c) shows voltage detection signal waveform diagram.
(d) is a waveform diagram of the control signal for ON operation, (e) is a waveform diagram of the control signal for OFF operation, (f) is a waveform diagram of the output signal for ON operation, and (g) is the same. ) Is a waveform diagram of the output signal for OFF operation, (h) is a waveform diagram of the output signal for driving the semiconductor element,
Figure (i) is a waveform diagram of the voltage across the semiconductor element.
(j) is a waveform diagram of the current flowing through the semiconductor element.

【図2】動作上の履歴をもつ電圧検出手段の動作特性図
である。
FIG. 2 is an operation characteristic diagram of a voltage detection unit having an operation history.

【図3】従来の駆動回路の例と関連する主な信号の波形
を示し、同図(a) は駆動回路を半導体素子とともに示す
回路図、同図(b) は入力信号の波形図、同図(c) は出力
信号の波形図、同図(d) は半導体素子のゲート電圧の波
形図、同図(e) は半導体素子に掛かる両端電圧の波形
図、同図(f) は半導体素子に流れる電流の波形図であ
る。
3A and 3B show main signal waveforms related to an example of a conventional drive circuit, FIG. 3A is a circuit diagram showing a drive circuit together with a semiconductor element, and FIG. 3B is a waveform diagram of an input signal. Figure (c) is the waveform diagram of the output signal, (d) is the waveform diagram of the gate voltage of the semiconductor element, (e) is the waveform diagram of the voltage across the semiconductor element, and (f) is the semiconductor element. It is a wave form diagram of the electric current which flows into.

【符号の説明】[Explanation of symbols]

1 絶縁ゲート半導体素子ないしはIGBT 2 半導体素子の負荷 10 電圧検出手段 21 オン動作用の分圧回路 21r 分圧抵抗 21p,21n 分圧抵抗に直列なトランジスタ 22 オフ動作用の分圧回路 22r 分圧抵抗 22p,22n 分圧抵抗に直列なトランジスタ 31 オン動作用のトライステート回路 31p,31n トライステート回路のトランジスタ 32 オフ動作用のトライステート回路 32p,32n トライステート回路のトランジスタ 40 制御手段 41 制御手段用のアンドゲート 42 制御手段用のオアゲート 50p,50n 駆動トランジスタ Cg 半導体素子のゲートの静電容量 I 半導体素子に流れる電流 Sd 電圧検出信号 Si 入力信号 So 半導体素子駆動用の出力信号 Son オフ動作用の出力信号 Sop オン動作用の出力信号 S41 オン動作用の制御信号 S42 オフ動作用の制御信号 τn オフ動作時の電圧検出信号の遅れ時間 τp オン動作時の電圧検出信号の遅れ時間 V 負荷用の電源電圧 Vce 半導体素子の両端電圧 Vd 半導体素子のゲート用の駆動電源電圧 Vg 半導体素子のゲート電圧 Vin オフ動作用の出力信号の中間電圧 Vip オン動作用の出力信号の中間電圧 VH 電圧検出手段のゲート電圧の上昇時の基準電
圧 VL 電圧検出手段のゲート電圧の下降時の基準電
1 Insulated gate semiconductor element or IGBT 2 Load of semiconductor element 10 Voltage detection means 21 Voltage dividing circuit for ON operation 21r Voltage dividing resistor 21p, 21n Transistor in series with voltage dividing resistor 22 Voltage dividing circuit for OFF operation 22r Voltage dividing resistor 22p, 22n Transistor in series with voltage dividing resistor 31 Tri-state circuit for ON operation 31p, 31n Tri-state circuit transistor 32 Off-state tri-state circuit 32p, 32n Tri-state circuit transistor 40 Control means 41 Control means AND gate 42 OR gate for control means 50p, 50n Drive transistor Cg Capacitance of gate of semiconductor element I Current flowing in semiconductor element Sd Voltage detection signal Si input signal So Output signal for driving semiconductor element Son Output signal for off operation Sop output signal for ON operation S41 control signal for ON operation S42 control signal for OFF operation τn voltage detection signal during OFF operation Signal delay time τp Delay time of voltage detection signal during ON operation V Power supply voltage for load Vce Voltage across semiconductor device Vd Drive power supply voltage for semiconductor device gate Vg Gate voltage for semiconductor device Vin Output signal for OFF operation Intermediate voltage Vip Intermediate voltage of output signal for ON operation V H Reference voltage when gate voltage of voltage detecting means is rising VL Reference voltage when gate voltage of voltage detecting means is falling

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 19/013 H03K 19/00 101F 19/0948 19/094 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H03K 19/013 H03K 19/00 101F 19/0948 19/094 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体素子のゲートに掛かる電圧を受けて
その値の基準値との比較結果に応じて論理状態が切り換
わる電圧検出信号を発する電圧検出手段と、ゲート用の
駆動電源電圧を所定比に分圧する分圧回路と、1対のト
ランジスタを駆動電源電圧に対して直列接続してなり,
両者の相互接続点を出力点としてその論理状態がフロー
ト状態を含む3状態に制御され,分圧回路の分圧点と共
通接続されたこの出力点から半導体素子のゲート駆動用
の出力信号が導出されるトライステート回路と、半導体
素子のオンオフを指定する入力信号と電圧検出信号とを
受けて両信号の論理状態に応じてトライステート回路の
トランジスタのオンオフ状態を制御する制御手段とを備
え、入力信号の論理状態が切り換わった後に電圧検出信
号の論理状態が変化するまでの時間内は制御手段によっ
てトライステート回路をフロート状態に制御して分圧回
路の分圧を出力信号として取り出すようにしたことを特
徴とする絶縁ゲート半導体素子の駆動回路。
1. A voltage detection means for receiving a voltage applied to a gate of a semiconductor element and issuing a voltage detection signal whose logic state is switched according to a result of comparison with a reference value, and a driving power supply voltage for the gate are predetermined. A voltage divider circuit that divides the voltage into a ratio and a pair of transistors connected in series to the drive power supply voltage.
An output signal for gate drive of the semiconductor device is derived from the output point which is commonly connected to the voltage dividing point of the voltage dividing circuit and whose logical state is controlled to three states including the float state by using the mutual connecting point of the both as an output point. And a control unit that receives an input signal designating on / off of the semiconductor element and a voltage detection signal and controls the on / off state of the transistor of the tristate circuit according to the logical states of both signals. During the time until the logic state of the voltage detection signal changes after the logic state of the signal is switched, the tri-state circuit is controlled to the floating state by the control means so that the divided voltage of the voltage divider circuit is taken out as the output signal. A drive circuit for an insulated gate semiconductor device characterized by the above.
【請求項2】請求項1に記載の回路において、制御手段
が論理ゲートないしその組み合わせ回路として構成され
ることを特徴とする絶縁ゲート半導体素子の駆動回路。
2. A drive circuit for an insulated gate semiconductor device according to claim 1, wherein the control means is configured as a logic gate or a combination circuit thereof.
【請求項3】請求項1に記載の回路において、分圧回路
の1対の分圧要素のそれぞれに対してトランジスタを直
列に接続し、トライステート回路内のトランジスタをオ
ンさせる際に分圧回路のそれに直列に入るトランジスタ
をオフ状態に制御するようにしたことを特徴とする絶縁
ゲート半導体素子の駆動回路。
3. The circuit according to claim 1, wherein a transistor is connected in series to each of the pair of voltage dividing elements of the voltage dividing circuit, and the voltage dividing circuit is turned on when the transistor in the tristate circuit is turned on. A drive circuit for an insulated gate semiconductor device, characterized in that a transistor connected in series with the control circuit is controlled to an off state.
【請求項4】請求項1に記載の回路において、分圧回路
を半導体素子のオン動作用とオフ動作用に分離して設
け、それらの分圧比を独立に設定し得るようにしたこと
を特徴とする絶縁ゲート半導体素子の駆動回路。
4. The circuit according to claim 1, wherein a voltage dividing circuit is provided separately for the ON operation and the OFF operation of the semiconductor element, and the voltage dividing ratios thereof can be set independently. And a drive circuit for an insulated gate semiconductor device.
【請求項5】請求項4に記載の回路において、トライス
テート回路を各分圧回路に対して設け、入力信号の論理
状態の一方から他方への変化および他方から一方への変
化に応じて制御手段により交互にフロート状態に制御す
るようにしたことを特徴とする絶縁ゲート半導体素子の
駆動回路。
5. A circuit according to claim 4, wherein a tri-state circuit is provided for each voltage dividing circuit, and control is performed in response to a change in the logical state of the input signal from one side to the other side and a change from the other side to the one side. A driving circuit for an insulated gate semiconductor device, characterized in that the driving circuit alternately controls the floating state by means.
【請求項6】請求項5に記載の回路において、各分圧回
路とそれに対応するトライステート回路の組み合わせご
とに両回路から出力信号を受ける駆動トランジスタを設
け、このオン動作用およびオフ動作用の駆動トランジス
タを駆動電源電圧に対し直列に接続して、両駆動トラン
ジスタの相互接続点から半導体素子に対するゲート駆動
用として出力信号を導出するようにしたことを特徴とす
る絶縁ゲート半導体素子の駆動回路。
6. The circuit according to claim 5, wherein a drive transistor for receiving an output signal from both voltage dividing circuits and a corresponding tri-state circuit is provided for each of the ON operation and the OFF operation. A drive circuit for an insulated gate semiconductor device, wherein a drive transistor is connected in series to a drive power supply voltage, and an output signal for driving a gate of the semiconductor device is derived from an interconnection point of both drive transistors.
【請求項7】請求項1に記載の回路において、電圧検出
手段の半導体素子のゲート電圧値を比較すべき基準値が
ゲート電圧の上昇時と下降時で異なるように電圧検出手
段に動作履歴特性をもたせるようにしたことを特徴とす
る絶縁ゲート半導体素子の駆動回路。
7. The circuit according to claim 1, wherein the reference voltage for comparing the gate voltage values of the semiconductor elements of the voltage detecting means is different when the gate voltage is increasing and when the gate voltage is decreasing. A drive circuit for an insulated gate semiconductor device, characterized in that the drive circuit is provided.
JP7226215A 1995-09-04 1995-09-04 Drive circuit for insulated gate semiconductor element Pending JPH0974344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226215A JPH0974344A (en) 1995-09-04 1995-09-04 Drive circuit for insulated gate semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226215A JPH0974344A (en) 1995-09-04 1995-09-04 Drive circuit for insulated gate semiconductor element

Publications (1)

Publication Number Publication Date
JPH0974344A true JPH0974344A (en) 1997-03-18

Family

ID=16841705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226215A Pending JPH0974344A (en) 1995-09-04 1995-09-04 Drive circuit for insulated gate semiconductor element

Country Status (1)

Country Link
JP (1) JPH0974344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218068A (en) * 2004-02-02 2005-08-11 Nippon Precision Circuits Inc Semiconductor switching circuit
WO2005109616A1 (en) * 2004-05-11 2005-11-17 Rohm Co., Ltd Pwm driver circuit
JP2007166655A (en) * 2007-02-05 2007-06-28 Hitachi Ltd Device for driving power semiconductor element
CN107710616A (en) * 2015-06-22 2018-02-16 三菱电机株式会社 Drive circuit, semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218068A (en) * 2004-02-02 2005-08-11 Nippon Precision Circuits Inc Semiconductor switching circuit
WO2005109616A1 (en) * 2004-05-11 2005-11-17 Rohm Co., Ltd Pwm driver circuit
JPWO2005109616A1 (en) * 2004-05-11 2008-03-21 ローム株式会社 PWM drive circuit
JP2007166655A (en) * 2007-02-05 2007-06-28 Hitachi Ltd Device for driving power semiconductor element
CN107710616A (en) * 2015-06-22 2018-02-16 三菱电机株式会社 Drive circuit, semiconductor device

Similar Documents

Publication Publication Date Title
JP3666843B2 (en) Gate circuit of insulated gate semiconductor device
US8427225B2 (en) Gate driving circuit
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP6171553B2 (en) Power converter
US6538481B1 (en) Driving control device, power converting device, method of controlling power converting device and method of using power converting device
EP2015453B1 (en) Drive circuit for voltage driven switching element
EP0420582A2 (en) Drive circuit for a semiconductor device
JPH0965644A (en) Insulated gate transistor driving circuit
CN105281721A (en) Semiconductor apparatus
JPH0479759A (en) Driving circuit of voltage-driven semiconductor device
KR970005567B1 (en) Device for protecting power semiconductor device against short circuit
JP3645220B2 (en) Power module
JP4161737B2 (en) Method and apparatus for driving semiconductor device
JP2001223571A (en) Gate driving device for voltage driving-type semiconductor element
JPH0317713A (en) Power-transistor driver circuit having improved short-circuit protective function
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JP4991446B2 (en) Power converter
JP3430878B2 (en) MOS gate type element driving circuit
JP2008193717A (en) Method and apparatus for driving semiconductor device
JP4396036B2 (en) Control device for voltage-driven semiconductor elements connected in series
JPH1051285A (en) Drive circuit for voltage controlled transistor
JPH0393457A (en) Drive circuit for voltage driving type element
JP2006340579A (en) Gate circuit of insulating gate semiconductor element
JPH07106934A (en) Turnoff circuit device at time of overcurrent of semiconductor device
US9318973B2 (en) Driving device