JPH0973898A - Processing method for hydrogen storage alloy for battery - Google Patents

Processing method for hydrogen storage alloy for battery

Info

Publication number
JPH0973898A
JPH0973898A JP7225483A JP22548395A JPH0973898A JP H0973898 A JPH0973898 A JP H0973898A JP 7225483 A JP7225483 A JP 7225483A JP 22548395 A JP22548395 A JP 22548395A JP H0973898 A JPH0973898 A JP H0973898A
Authority
JP
Japan
Prior art keywords
hydrogen storage
battery
alloy
storage alloy
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7225483A
Other languages
Japanese (ja)
Other versions
JP3136960B2 (en
Inventor
Tatsuo Nagata
辰夫 永田
Noriyuki Negi
教之 禰宜
Hideya Kaminaka
秀哉 上仲
Yukiteru Takeshita
幸輝 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07225483A priority Critical patent/JP3136960B2/en
Publication of JPH0973898A publication Critical patent/JPH0973898A/en
Application granted granted Critical
Publication of JP3136960B2 publication Critical patent/JP3136960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method for a hydrogen storage alloy which has high initial activity when used in an Ni-hydrogen battery and from which a battery that self-discharges little and is therefore excellent in long-range shelf life can be fabricated. SOLUTION: This hydrogen storage alloy processing method is characterized by dipping an Ni-containing hydrogen storage alloy in a nonoxidizing acid solution (e.g. hydrochloric acid, hydrofluoric acid, or a mixture of these acids) containing a 40wt.% or more organic solvent (e.g. alcohol, ketone, or amine). The hydrogen storage alloy to be processed by the method is an AB5 or AB2 type alloy having a composition shown in Figure 1, containing Ni in particular as a component element, for use in an Ni-hydrogen secondary battery. Therefore, the processing method is applicable to both AB5 and AB2 types without depending on the alloy composition only if the alloy contains Ni.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Niを含有する電池
用水素吸蔵合金の処理方法に関し、より詳しくは初期活
性度が高く、自己放電の少ないNi−水素電池用の水素吸
蔵合金を得るための処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a hydrogen storage alloy for a battery containing Ni, and more specifically, to obtain a hydrogen storage alloy for a Ni-hydrogen battery having high initial activity and less self-discharge. Regarding the processing method of.

【0002】[0002]

【従来の技術】現在、携帯用AV機器の電源やコンピュ
ーターのメモリ・バックアップ用に用いる二次電池は、
Ni−Cd電池が主流である。しかし、Cdの公害問題、Cdが
亜鉛精錬の副産物という資源量制約の問題、そしてより
高容量の二次電池開発といった観点から、Cdの代わりに
水素吸蔵合金を負極材料 (厳密には負極の活物質) に用
いたNi−水素電池と呼ばれる二次電池が開発された。
2. Description of the Related Art Currently, secondary batteries used for power supplies of portable AV equipment and computer memory backup are
Ni-Cd batteries are the mainstream. However, from the viewpoints of pollution problems of Cd, resource limitation problem that Cd is a by-product of zinc refining, and development of higher capacity secondary batteries, a hydrogen storage alloy is used instead of Cd as a negative electrode material (strictly speaking, negative electrode A secondary battery called Ni-hydrogen battery was developed.

【0003】Ni−水素電池は、Ni−Cd電池やNi−Zn電池
に比べて容量が高く、しかも電極に有害元素を含まない
という特長がある。そのため、Ni−水素電池は、携帯用
AV機器やコンピュラーに使われ始めており、また地球
環境問題から無公害車、省エネルギー車として利用が拡
大しつつある電気自動車用の二次電池としての利用も検
討されており、既に量産体制に入っている。
The Ni-hydrogen battery has the features that it has a higher capacity than Ni-Cd batteries and Ni-Zn batteries, and that the electrodes do not contain harmful elements. For this reason, Ni-hydrogen batteries have begun to be used in portable AV devices and popular ones, and also as secondary batteries for electric vehicles whose use is expanding as pollution-free vehicles and energy-saving vehicles due to global environmental problems. It is under consideration and is already in mass production.

【0004】Ni−水素電池用の水素吸蔵合金として検討
されてきた主な合金系は、LaNi5 系やMmNi5 系 (Mmは希
土類金属混合物であるミッシュメタル) で代表されるA
5型の結晶構造をとる金属間化合物と、ZnV0.4Ni1.6
で代表されるAB2 型のラーベス相構造をとる金属間化
合物である。即ち、いずれもNiを主成分として含有す
る。実用化に関してはAB5 型水素吸蔵合金の方が進ん
でいるが、AB2 型水素吸蔵合金も高容量を示すので有
望である。
The major alloy systems that have been studied as hydrogen storage alloys for Ni-hydrogen batteries are LaNi 5 system and MmNi 5 system (Mm is Misch metal which is a rare earth metal mixture).
An intermetallic compound having a B 5 type crystal structure and ZnV 0.4 Ni 1.6
Is an intermetallic compound having an AB 2 type Laves phase structure. That is, both contain Ni as a main component. AB 5 type hydrogen storage alloys are more promising for practical use, but AB 2 type hydrogen storage alloys are also promising because they show high capacity.

【0005】しかし、これらのNi−水素電池用の水素吸
蔵合金の量産が始まると、新たな問題点がいくつか浮上
してきた。その1つは、Ni−水素電池を構成した後の初
期活性化処理 (電池の放電容量を所定の定常値まで増大
させる処理) に非常に時間がかかり、生産性が著しく阻
害されることである。
However, when mass production of these hydrogen storage alloys for Ni-hydrogen batteries began, some new problems came up. One is that the initial activation process (the process of increasing the discharge capacity of the battery to a predetermined steady-state value) after constructing the Ni-hydrogen battery takes a very long time, and productivity is significantly impaired. .

【0006】現在行われている初期活性化処理は、低電
流で長時間の充電後に放電する処理(15〜20時間の充電
と数時間の放電) を所定の放電容量が得られるようにな
るまで数回繰り返すことからなる。このため、電池を組
み立ててから出荷するまでに初期活性化処理として工場
内で充電・放電を数日間にわたって繰り返す必要があっ
た。
The initial activation process currently performed is a process of discharging at low current for a long time and then discharging (charging for 15 to 20 hours and discharging for several hours) until a predetermined discharge capacity is obtained. It consists of repeating several times. Therefore, it is necessary to repeat charging and discharging in the factory for several days as an initial activation process from the time the battery is assembled to the time it is shipped.

【0007】この問題点を解決する手段として、水素吸
蔵合金の粒界制御により初期活性の向上を図ることが試
みられた。例えば、特開平3−219036号公報には、水素
吸蔵合金にホウ素を添加して粉化し易いホウ素リッチ相
を生成させ、粉化による比表面積増大により初期活性化
効率を向上させることが提案されている。しかし、これ
は合金の粉化を伴うため、Ni−水素電池の電池寿命(充
電・放電繰り返しサイクル寿命)が著しく低下する。従
って、このような手段で初期活性と電池寿命を両立させ
ることは困難である。
As a means for solving this problem, it has been attempted to improve the initial activity by controlling the grain boundaries of the hydrogen storage alloy. For example, JP-A-3-219036 proposes that boron is added to a hydrogen storage alloy to generate a boron-rich phase that is easily pulverized, and the initial activation efficiency is improved by increasing the specific surface area by pulverization. There is. However, this is accompanied by pulverization of the alloy, so that the battery life of the Ni-hydrogen battery (charge / discharge repeated cycle life) is significantly reduced. Therefore, it is difficult to achieve both the initial activity and the battery life by such means.

【0008】別の活性化手段として、電極を作製する前
に水素吸蔵合金を酸、アルカリまたは塩を含む水溶液中
で浸漬処理する方法が知られている。例えば、特開平4
−328252号公報には次亜りん酸塩水溶液を用いた浸漬処
理、特開平3−49154 号公報には、りん酸塩、ケイ酸
塩、ヒ酸塩、クロム酸塩、次亜リン酸塩、テトラヒドロ
ホウ酸塩等を用いた浸漬処理が提案されている。しか
し、このように塩の水溶液を用いた浸漬処理では、処理
に用いた化学成分が粉末表面に残存し、正極側の電気化
学特性(電池の正極特性)が劣化し、電池容量が早期に
低下するという問題がある。
As another activation means, there is known a method of immersing a hydrogen storage alloy in an aqueous solution containing an acid, an alkali or a salt before producing an electrode. For example, JP-A-4
-328252 discloses a dipping treatment using an aqueous solution of hypophosphite, and JP-A-3-49154 discloses a phosphate, silicate, arsenate, chromate, hypophosphite, Immersion treatments using tetrahydroborate and the like have been proposed. However, in such a dipping treatment using an aqueous salt solution, the chemical components used for the treatment remain on the powder surface, the electrochemical characteristics on the positive electrode side (the positive electrode characteristics of the battery) deteriorate, and the battery capacity decreases early. There is a problem of doing.

【0009】一方、特開平4−179055号公報および同6
−223827号公報には、合金表面の酸化物の除去を目的と
した酸水溶液を用いた浸漬処理が、特開平5−195007号
公報には合金表面を比表面積の大きな水酸化物層で被覆
するためのアルカリ水溶液を用いた浸漬処理が、さらに
特開平3−152868号公報および同4−98760 号公報に
は、最初に酸水溶液、次にアルカリ水溶液による浸漬処
理が提案されている。
On the other hand, Japanese Patent Laid-Open No. 4-179055 and 6
-223827 discloses an immersion treatment using an acid aqueous solution for the purpose of removing oxides on the surface of the alloy, and JP-A-5-195007 describes coating the surface of the alloy with a hydroxide layer having a large specific surface area. A dipping treatment using an alkaline aqueous solution is proposed in Japanese Patent Laid-Open Nos. 3-152868 and 4-98760. First, an dipping treatment using an acid aqueous solution and then an alkaline aqueous solution is proposed.

【0010】[0010]

【発明が解決しようとする課題】上記のように酸水溶液
および/またはアルカリ水溶液で処理した水素吸蔵合金
粉末をNi−水素電池の負極に使用すると、初期活性は確
かに改善されるが、自己放電特性が悪影響を受け、充電
後に長期保存をした時の容量低下が大きくなるという問
題があることが判明した。Ni−水素電池の使用状況下で
は、充電後に使用されずに放置されることは珍しいこと
ではないので、この問題はNi−水素電池の実用性を著し
く低下させる。
When the hydrogen storage alloy powder treated with the acid aqueous solution and / or the alkaline aqueous solution as described above is used for the negative electrode of the Ni-hydrogen battery, the initial activity is certainly improved, but the self-discharge is self-discharged. It has been found that there is a problem that the characteristics are adversely affected, and the capacity decreases greatly after long-term storage after charging. This problem significantly reduces the practicality of the Ni-hydrogen battery because it is not uncommon to leave the Ni-hydrogen battery unused and unused after charging.

【0011】本発明の目的は、Ni−水素電池に使用した
時に初期活性度が高く、かつ自己放電が少ない長期保存
性に優れた電池を作製することができる、水素吸蔵合金
の処理方法を提供することである。
An object of the present invention is to provide a method for treating a hydrogen storage alloy, which is capable of producing a battery having a high initial activity when used in a Ni-hydrogen battery and having little self-discharge and excellent long-term storage stability. It is to be.

【0012】[0012]

【課題を解決するための手段】ここに、本発明は、Niを
含有する水素吸蔵合金を、重量比率で40%以上の有機溶
媒を含む非酸化性酸溶液に浸漬することを特徴とする、
電池用水素吸蔵合金の処理方法である。
The present invention is characterized in that a hydrogen storage alloy containing Ni is immersed in a non-oxidizing acid solution containing an organic solvent in an amount of 40% by weight or more,
It is a method of treating a hydrogen storage alloy for a battery.

【0013】本発明者らは、Niを含有する水素吸蔵合金
(以下、単に水素吸蔵合金という)をNi−水素電池の負
極に使用した場合、電池の初期活性度は合金粉末表面の
酸化物量に依存し、自己放電量は合金粉末表面の水酸化
物量に依存することを確認した。即ち、酸化物が少ない
ほど初期活性度が高く、水酸化物が少ないほど自己放電
量が少なくなる。
The present inventors have developed a hydrogen storage alloy containing Ni.
When (hereinafter simply referred to as hydrogen storage alloy) is used for the negative electrode of a Ni-hydrogen battery, the initial activity of the battery depends on the amount of oxide on the surface of the alloy powder, and the amount of self-discharge depends on the amount of hydroxide on the surface of the alloy powder. Confirmed to do. That is, the smaller the oxide content, the higher the initial activity, and the smaller the hydroxide content, the smaller the self-discharge amount.

【0014】このうち酸化物は、水素吸蔵合金粉末の製
造において行われる溶解、熱処理、粉砕の各工程で、合
金表面の金属が大気中の酸素や処理雰囲気中の酸素と反
応して形成されたものである。酸化物は導電性が悪いた
め、電池の初期活性度を低下させる。しかし、従来技術
で知られているように、酸化物は酸水溶液により除去で
きるので、酸水溶液で処理すると初期活性度は著しく向
上する。
Of these, the oxide is formed by the reaction of the metal on the surface of the alloy with oxygen in the atmosphere or oxygen in the treatment atmosphere in each of the steps of melting, heat treatment and crushing performed in the production of the hydrogen storage alloy powder. It is a thing. Oxides have poor conductivity and therefore reduce the initial activity of the battery. However, as known in the prior art, oxides can be removed with an aqueous acid solution, so treatment with an aqueous acid solution significantly improves the initial activity.

【0015】一方、水酸化物は水素吸蔵合金をアルカリ
水溶液で処理した場合に合金表面に生成し、特にNi(OH)
2 が多く生成する。酸水溶液による処理では水酸化物は
生成しないと考えられてきたが、本発明者らは、酸処理
した水素吸蔵合金の表面にもNi(OH)2 が存在することを
突き止めた。
On the other hand, hydroxide is formed on the surface of the alloy when the hydrogen storage alloy is treated with an alkaline aqueous solution, and especially Ni (OH)
2 is generated a lot. Although it has been considered that hydroxide is not formed by the treatment with the acid aqueous solution, the present inventors have found that Ni (OH) 2 is also present on the surface of the acid-treated hydrogen storage alloy.

【0016】Ni(OH)2 はNi−水素電池の正極に用いられ
る物質であり、これが負極活物質である水素吸蔵合金に
付着すると、その部分で自己放電反応 (負極の蓄えた電
気が正極との放電反応以外の化学反応で消費されてしま
う反応) が起こる。そのため、水酸化物量が多いと、充
電後に長期保存する間に自己放電を起こして、充電した
電気量が減少し、電池の放電容量が低下するため、電池
の長期保存性が悪化する。
Ni (OH) 2 is a substance used in the positive electrode of a Ni-hydrogen battery, and when it adheres to a hydrogen storage alloy that is the negative electrode active material, it undergoes a self-discharge reaction (electricity stored in the negative electrode acts as the positive electrode). (A reaction that is consumed by a chemical reaction other than the discharge reaction of) occurs. Therefore, when the amount of hydroxide is large, self-discharge occurs during long-term storage after charging, the amount of electricity charged decreases, and the discharge capacity of the battery decreases, which deteriorates the long-term storability of the battery.

【0017】以上より、本発明の目的を達成するには、
水素吸蔵合金を酸処理して合金表面の酸化物を除去し、
その際に水酸化物の生成を抑制することが必要であるこ
とが判明した。酸処理により酸化物を除去すると電池の
初期活性度が向上し、その際に水酸化物の生成量が少な
いと、自己放電による電池の長期保存性の低下が防止で
きるからである。アルカリ処理は、多量の水酸化物を合
金表面に生成させるため、Ni−水素電池の長期保存性に
は不利である。
From the above, in order to achieve the object of the present invention,
The hydrogen storage alloy is treated with acid to remove oxides on the alloy surface,
At that time, it was found necessary to suppress the formation of hydroxide. This is because when the oxide is removed by acid treatment, the initial activity of the battery is improved, and if the amount of hydroxide produced is small at that time, the long-term storage stability of the battery due to self-discharge can be prevented. Alkali treatment is disadvantageous for long-term storability of Ni-hydrogen battery because it produces a large amount of hydroxide on the alloy surface.

【0018】この知見に基づき、本発明者らは酸水溶液
による処理で合金表面に水酸化物、特にNi(OH)2 が生成
する理由について探究した結果、次の点を究明した。即
ち、水素吸蔵合金を酸水溶液に浸漬すると、アノード反
応として合金表面の酸化物や合金の成分金属が溶解する
結果、液中に金属イオンが生成するが、液中に溶出した
金属イオンは合金表面に近いほど高濃度で存在する。こ
のアノード反応と対をなすカソード反応として水素発生
反応が起こり、それにより液中の水素イオンが消費さ
れ、水酸イオンが生成するため、合金の最近傍では局所
的にpHが上昇し、水酸イオン濃度が高くなる。液中に
溶出した金属イオンのうち、特にNiイオンはpHが上昇
すると水酸イオンと結合して水酸化物[Ni(OH)2] として
析出し易いので、酸処理条件下でも合金の最近傍ではNi
(OH)2 の析出が起こり易い条件がそろっており、そのた
め合金表面にNi(OH)2 が存在するようになる。
Based on this finding, the present inventors have investigated the reason why hydroxide, especially Ni (OH) 2, is produced on the surface of the alloy by the treatment with the acid aqueous solution, and as a result, the following points have been clarified. That is, when a hydrogen storage alloy is immersed in an aqueous acid solution, the oxides on the alloy surface and the component metals of the alloy are dissolved as a result of the anode reaction, and as a result, metal ions are generated in the liquid, but the metal ions eluted in the liquid are The closer to, the higher the concentration. A hydrogen generation reaction occurs as a cathode reaction that is paired with this anodic reaction, which consumes hydrogen ions in the liquid and generates hydroxide ions. Higher ion concentration. Of the metal ions eluted in the liquid, Ni ions in particular tend to combine with hydroxide ions to precipitate as hydroxide [Ni (OH) 2 ] when the pH rises, so even under acid treatment conditions, the nearest neighbors to the alloy. Then Ni
The conditions under which precipitation of (OH) 2 is likely to occur are complete, so that Ni (OH) 2 will be present on the alloy surface.

【0019】従って、Ni−水素電池の長期保存性を改善
するには、Ni(OH)2 の生成を阻止するため、酸処理中に
液中に溶出したNiイオンが水酸イオンと結合するのを抑
制すればよく、それには溶媒の一部として有機溶媒を使
用することが有効であることを見出し、前述した本発明
を完成したのである。
Therefore, in order to improve the long-term storage stability of the Ni-hydrogen battery, in order to prevent the formation of Ni (OH) 2 , Ni ions eluted in the liquid during the acid treatment are combined with hydroxide ions. Therefore, it was found that it is effective to use an organic solvent as a part of the solvent, and the present invention described above was completed.

【0020】[0020]

【発明の実施の形態】以下、本発明についてより詳しく
説明する。本発明の方法で処理対象となる水素吸蔵合金
は、Ni−水素二次電池用に用いられるAB5 型またはA
2 型等の合金であり、特にNiを構成元素として含有す
るものである。本発明の効果は合金組成には影響され
ず、Niを含有していればAB5 型とAB2 型のいずれに
も本発明の処理方法を適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The hydrogen storage alloy to be treated by the method of the present invention is AB 5 type or A type used for Ni-hydrogen secondary batteries.
It is an alloy of B 2 type or the like, and particularly contains Ni as a constituent element. The effect of the present invention is not affected by the alloy composition, and the treatment method of the present invention can be applied to both AB 5 type and AB 2 type as long as Ni is contained.

【0021】AB5 型合金の例は、LaNix またはMmNix
(xは 4.7〜5.2)を基本組成とし、場合によりNiの一部を
Co、Mn、Al、Fe、Cr、Cu、V、Be、Zr、Ti、Moなどの1
種もしくは2種以上の元素で置換したものである。LaNi
x は高価である上、寿命低下も速いので、実用的にはMm
Nix の方が好ましい。
Examples of AB 5 type alloys are LaNi x or MmNi x
(x is 4.7 to 5.2) as the basic composition, and in some cases, a part of Ni
Co, Mn, Al, Fe, Cr, Cu, V, Be, Zr, Ti, Mo, etc. 1
It has been replaced with one or more elements. LaNi
x is expensive and its lifespan decreases quickly, so Mm is practically
Ni x is preferred.

【0022】AB2 型合金の例は、ZrNiy (yは 1.9〜2.
25) を基本組成とし、場合によりNiの一部をV、M
n、Cr、Co、Fe、Al、Mo、Cu、Beなどの1種もしくは2
種以上の元素で置換したものである。具体例としてZr
1.0V0.4Ni1.6、Zr1.0Mn0.4Cr0.2Ni1.2、Zr1.0Ni1.2Mn
0.6V0.2Co0.1、Zr1.0Ni1.2Mn0.6V0.2Fe0.1、Zr1.0V0.4N
i1.6などがある。なお、これらは例示にすぎず、他の組
成のものも使用できる。
An example of an AB 2 type alloy is ZrNi y (y is 1.9 to 2.
25) as a basic composition, and if necessary, a part of Ni is V, M
One or two of n, Cr, Co, Fe, Al, Mo, Cu, Be, etc.
It is the one that is replaced by one or more elements. As a specific example, Zr
1.0 V 0.4 Ni 1.6 , Zr 1.0 Mn 0.4 Cr 0.2 Ni 1.2 , Zr 1.0 Ni 1.2 Mn
0.6 V 0.2 Co 0.1 , Zr 1.0 Ni 1.2 Mn 0.6 V 0.2 Fe 0.1 , Zr 1.0 V 0.4 N
i 1.6 etc. It should be noted that these are merely examples, and other compositions can be used.

【0023】水素吸蔵合金の製造方法としては、通常の
インゴット法 (合金溶湯を鋳造して得たインゴットを粉
砕したもの) の他に、回転電極法、ロール急冷法、アト
マイズ法などの急冷凝固を利用した各種の方法が知られ
ている。本発明方法は、これらのいずれの方法で製造さ
れた水素吸蔵合金についても適用できる。電極の製造に
は水素吸蔵合金を粉末状で使用するので、粉末が直接得
られるアトマイズ法以外の方法で製造された水素吸蔵合
金については、一般に生成した合金を粉砕する必要があ
る。この粉砕工程で合金粉末の表面に酸化物が生成し、
初期活性が低下するため、本発明の処理方法は、最終粒
度まで粉砕した粉末状の水素吸蔵合金に適用することが
望ましい。また、急冷凝固法で製造された水素吸蔵合金
は、急冷中に生じた歪を除去するため、本発明の処理前
に非酸化性雰囲気中で熱処理を施すことが好ましい。
As a method for producing a hydrogen storage alloy, in addition to a usual ingot method (a crushed ingot obtained by casting a molten alloy), a rapid solidification method such as a rotating electrode method, a roll quenching method or an atomizing method is used. Various methods used are known. The method of the present invention can be applied to the hydrogen storage alloy produced by any of these methods. Since the hydrogen storage alloy is used in the form of powder in the production of the electrode, it is generally necessary to grind the produced alloy for the hydrogen storage alloy produced by a method other than the atomization method in which the powder is directly obtained. Oxides are generated on the surface of the alloy powder in this crushing process,
Since the initial activity is lowered, it is desirable to apply the treatment method of the present invention to a powdery hydrogen storage alloy pulverized to a final particle size. Further, the hydrogen storage alloy produced by the rapid solidification method is preferably heat-treated in a non-oxidizing atmosphere before the treatment of the present invention in order to remove the strain generated during the rapid cooling.

【0024】本発明による水素吸蔵合金の処理には、非
酸化性の酸の溶液を用いる。水素吸蔵合金の製造および
粉砕過程で合金表面に生成する酸化物は、主にNi酸化物
と希土類酸化物 (AB5 型の場合) またはZr酸化物 (A
2 型の場合) である。非酸化性の酸はこれらの酸化物
を合金表面から除去するのに効果的であり、それにより
電池の初期活性度が著しく改善される。
For the treatment of the hydrogen storage alloy according to the present invention, a non-oxidizing acid solution is used. The oxides formed on the surface of the hydrogen storage alloy during the production and pulverization are mainly Ni oxide and rare earth oxides (for AB 5 type) or Zr oxides (A
In the case of B 2 type). Non-oxidizing acids are effective in removing these oxides from the alloy surface, which significantly improves the initial activity of the cell.

【0025】本発明で使用するのに適した非酸化性の酸
の例は塩酸およびフッ化水素酸であり、塩酸とフッ化水
素酸の混酸も使用できる。非酸化性であれば、その他の
酸も単独で、または塩酸および/またはフッ化水素酸と
混合して使用できる。硝酸や硫酸などの酸化性の酸を使
用すると、その酸化力により酸化皮膜が新たに生成しや
すく、合金の初期活性度を十分に改善することができな
い。
Examples of non-oxidizing acids suitable for use in the present invention are hydrochloric acid and hydrofluoric acid, and mixed acids of hydrochloric acid and hydrofluoric acid can also be used. If non-oxidizing, other acids can be used alone or in a mixture with hydrochloric acid and / or hydrofluoric acid. When an oxidizing acid such as nitric acid or sulfuric acid is used, an oxide film is likely to be newly formed due to its oxidizing power, and the initial activity of the alloy cannot be sufficiently improved.

【0026】かかる非酸化性の酸の溶液中で水素吸蔵合
金を浸漬処理するのであるが、本発明では、この溶液に
水混和性の有機溶媒を多量に含有させる。それにより、
酸と反応して合金から液中に溶出したNiイオンと、対反
応で生成した水酸イオンの両者が有機溶媒中に溶け込
み、有機溶媒は水と違って水酸イオンや水素イオンに解
離しないため、結果としてこれらのイオンの濃度が希釈
され、これらのイオンが結合してNi(OH)2 として合金表
面に析出する反応が抑制されるものと考えられる。その
ため、Ni−水素電池の負極とした場合の自己放電が少な
くなり、長期保存性が向上する。
The hydrogen storage alloy is immersed in such a non-oxidizing acid solution. In the present invention, this solution contains a large amount of a water-miscible organic solvent. Thereby,
Both Ni ions, which are eluted from the alloy in the liquid by reacting with an acid, and hydroxide ions, which are generated by the counter reaction, dissolve in the organic solvent, and unlike water, the organic solvent does not dissociate into hydroxide ions and hydrogen ions. As a result, it is considered that the concentrations of these ions are diluted, and the reaction in which these ions combine and precipitate as Ni (OH) 2 on the alloy surface is suppressed. Therefore, self-discharge when used as a negative electrode of a Ni-hydrogen battery is reduced, and long-term storage stability is improved.

【0027】有機溶媒の種類は特に制限されないが、酸
溶液が水を含有する (例えば、後述するように酸の原液
として濃塩酸や濃フッ化水素酸を使用する) 場合には、
溶媒が相分離しないように水混和性の有機溶媒を使用す
ることが望ましい。本発明に使用するのに適した水混和
性の有機溶媒の例としては、総炭素数10以下の1価もし
くは多価アルコール類 (例、メタノール、エタノール、
プロパノール、イソプロパノール、n−ブタノール、i
−ブタノール、t−ブタノール、ヘキサノール、デカノ
ール、エチレングリコール、シクロプロパノール、シク
ロヘキサノール等) 、総炭素数10以下のケトン類 (例、
アセトン、シクロヘキサノン等) 、総炭素数10以下のア
ミン類 (例、メチルアミン、エチルアミン、ブチルアミ
ン、アミルアミン、ジエチルアミン、ピリジン等) など
が挙げられる。有機溶媒は1種または2種以上を用いる
ことができる。
The type of organic solvent is not particularly limited, but when the acid solution contains water (for example, concentrated hydrochloric acid or concentrated hydrofluoric acid is used as the stock solution of the acid as described below),
It is desirable to use a water-miscible organic solvent so that the solvent does not phase separate. Examples of water-miscible organic solvents suitable for use in the present invention include monohydric or polyhydric alcohols having a total carbon number of 10 or less (eg, methanol, ethanol,
Propanol, isopropanol, n-butanol, i
-Butanol, t-butanol, hexanol, decanol, ethylene glycol, cyclopropanol, cyclohexanol, etc.), ketones having a total carbon number of 10 or less (eg,
Acetone, cyclohexanone, etc.), amines having a total carbon number of 10 or less (eg, methylamine, ethylamine, butylamine, amylamine, diethylamine, pyridine, etc.) and the like. The organic solvent can use 1 type (s) or 2 or more types.

【0028】処理に用いる酸溶液中の有機溶媒の含有量
は、重量比率で40%以上とする。溶液の残部は、酸と水
分である。酸溶液中の有機溶媒の量が40%より少ない
と、溶液の水分量が多くなるため、酸処理中のNi(OH)2
の析出量を十分に抑制できない。有機溶媒の含有量を高
くして水分量を下げるほど、Ni(OH)2 の生成による自己
放電の抑制効果が高くなる。従って、酸と有機溶媒のみ
からなる溶液であってもよいが、工業的に入手可能な塩
酸やフッ化水素酸には50%以上の水分が含まれているた
め、工業的に実施する場合には水分量をゼロとすること
は困難である。
The content of the organic solvent in the acid solution used for the treatment is 40% or more by weight. The balance of the solution is acid and water. When the amount of organic solvent in the acid solution is less than 40%, the water content of the solution increases, so Ni (OH) 2
Cannot be sufficiently suppressed. The higher the content of the organic solvent and the lower the water content, the higher the effect of suppressing self-discharge due to the formation of Ni (OH) 2 . Therefore, it may be a solution consisting only of an acid and an organic solvent, but industrially available hydrochloric acid and hydrofluoric acid contain 50% or more of water, so when industrially carried out It is difficult to reduce the water content to zero.

【0029】本発明の処理に用いる酸溶液は、市販の試
薬特級もしくは1級またはそれと同程度の濃度の非酸化
性の酸の原液 (濃度は一般に塩酸で35〜36%、フッ化水
素酸では44〜46%) を、水と水混和性有機溶媒、または
水混和性有機溶媒のみ、で希釈することにより調製する
ことができる。酸溶液中の酸濃度は、この原液の含有量
(重量%) として、塩酸で1〜15%、フッ化水素酸で
0.2〜10%、塩酸とフッ化水素酸との混酸で 0.2〜15%
の範囲が望ましい。酸濃度が下限より低くなると、酸化
物と酸溶液との反応性が低く、浸漬処理を行っても十分
な初期活性度の改善が得られにくい。一方、酸濃度が上
限を超えると、溶解反応が急激に起こり、合金表面の酸
化膜を除去するだけでなく、合金そのものの溶解が進行
し、損失量が多くなる。
The acid solution used in the treatment of the present invention is a stock solution of commercially available reagent grade or first grade or a nonoxidizing acid having a similar concentration (concentration is generally 35 to 36% with hydrochloric acid, with hydrofluoric acid. 44-46%) can be prepared by diluting with water and a water-miscible organic solvent or only a water-miscible organic solvent. The acid concentration in the acid solution is the content of this stock solution.
(% By weight), hydrochloric acid 1-15%, hydrofluoric acid
0.2-10%, mixed acid of hydrochloric acid and hydrofluoric acid 0.2-15%
The range of is desirable. When the acid concentration is lower than the lower limit, the reactivity between the oxide and the acid solution is low, and it is difficult to obtain a sufficient improvement in the initial activity even after the immersion treatment. On the other hand, when the acid concentration exceeds the upper limit, the dissolution reaction rapidly occurs, not only the oxide film on the surface of the alloy is removed, but also the dissolution of the alloy itself proceeds, and the loss amount increases.

【0030】酸溶液によるその他の処理条件は特に制限
されないが、温度は10〜50℃の範囲が望ましい。10℃以
下では、酸化物の除去反応が十分に進行せず、処理に時
間がかかりすぎる。一方、50℃以上では有機溶媒の気化
が活発となり、処理中の有機溶媒の濃度低下が顕著とな
るため、安定な処理を行えなくなることがある。
Other treatment conditions with the acid solution are not particularly limited, but the temperature is preferably in the range of 10 to 50 ° C. At 10 ° C. or lower, the oxide removal reaction does not proceed sufficiently and the treatment takes too long. On the other hand, when the temperature is 50 ° C. or higher, the vaporization of the organic solvent becomes vigorous, and the concentration of the organic solvent decreases remarkably during the treatment, so that stable treatment may not be performed.

【0031】酸処理時間 (酸溶液への浸漬時間) は、温
度や酸溶液の種類や濃度に応じて異なるが、一般には数
分ないし数時間であり、ほとんどの場合には1時間以内
で十分である。塩酸に比べてフッ酸の方が処理時間が短
くてすむ。また、処理中に酸溶液を攪拌することが望ま
しい。
The acid treatment time (immersion time in the acid solution) varies depending on the temperature and the type and concentration of the acid solution, but is generally several minutes to several hours, and in most cases, one hour or less is sufficient. Is. Hydrofluoric acid requires a shorter treatment time than hydrochloric acid. It is also desirable to stir the acid solution during processing.

【0032】有機溶媒を含有する非酸化性の酸溶液に浸
漬処理した水素吸蔵合金は、次いで十分に水洗して付着
した酸を除去し、乾燥すればよい。乾燥は、真空中また
は不活性ガス中で行うことが好ましい。
The hydrogen storage alloy soaked in a non-oxidizing acid solution containing an organic solvent may be washed sufficiently with water to remove the attached acid, and then dried. Drying is preferably performed in vacuum or in an inert gas.

【0033】こうして処理した水素吸蔵合金から当業者
に周知の方法で電極を作製し、Ni−水素電池の負極とし
て使用する。電極は、水素吸蔵合金粉末を適当な結着剤
(ポリビニルアルコールなどの樹脂) および水 (または
他の液体) と混合してペースト状とし、ニッケル多孔体
に充填して乾燥した後、所望の電極形状に加圧成形する
ことにより作製できる。
An electrode is prepared from the hydrogen storage alloy thus treated by a method well known to those skilled in the art and used as a negative electrode of a Ni-hydrogen battery. For the electrode, hydrogen storage alloy powder is used as a suitable binder.
It can be prepared by mixing (resin such as polyvinyl alcohol) and water (or other liquid) to form a paste, filling a nickel porous body, drying and then pressure-molding into a desired electrode shape.

【0034】[0034]

【実施例】次の実施例は本発明の構成と効果を例示する
ものである。実施例中、%は特に指定しない限り重量%
である。
EXAMPLE The following example illustrates the constitution and effect of the present invention. In the examples,% means% by weight unless otherwise specified.
It is.

【0035】実施例に用いた水素吸蔵合金粉末は、表1
に示す組成を持つAB5 型またはAB2 型合金であっ
た。これらの合金の鋳造に用いた原料は、純度99.9%の
フレーク状Ni、純度99.8%の電解Co、純度99.9%のショ
ット状Al、純度99.8%の板状Mn、Ni−56.9%V母合金、
純度99.5%以上のスポンジ状Zr、希土類金属純度が99.8
%以上のミッシュメタル(Mm) (La=28%、Ce=48%、Nd
=18%、Pr=6%) であった。
The hydrogen storage alloy powders used in the examples are shown in Table 1.
It was an AB 5 type or AB 2 type alloy having the composition shown in. Raw materials used for casting of these alloys are flake Ni having a purity of 99.9%, electrolytic Co having a purity of 99.8%, shot Al having a purity of 99.9%, plate Mn having a purity of 99.8%, Ni-56.9% V mother alloy,
Spur-like Zr with a purity of 99.5% or higher, rare earth metal purity 99.8
% Or more of misch metal (Mm) (La = 28%, Ce = 48%, Nd
= 18%, Pr = 6%).

【0036】[0036]

【表1】 [Table 1]

【0037】これらの原料から真空中の高周波誘導加熱
により溶製した合金溶湯を用いて、75 kg/chのArガスア
トマイズ法 (融液状からの冷却速度=1×103 〜1×10
4 ℃/sec) または100 kg/ch のインゴット法 (融液状か
らの冷却速度=1.0 ℃/sec)により、所定組成の水素吸
蔵合金粉末を作製した。インゴット法で得た水素吸蔵合
金は、次いでステンレス鋼製ボールミルによりAr雰囲気
中で機械的に粉砕して平均粒径40μmの粉末状にした。
アトマイズ法で得た水素吸蔵合金粉末 (平均粒径40μ
m) と、インゴット法で得て粉砕した水素吸蔵合金粉末
は、いずれも純度99.99 %のAr雰囲気中で 900℃×10hr
の熱処理を行った。
75 kg / ch of Ar gas atomizing method (cooling rate from molten liquid = 1 × 10 3 to 1 × 10 5) was used by using an alloy melt melted from these raw materials by high frequency induction heating in vacuum.
A hydrogen storage alloy powder having a predetermined composition was produced by the ingot method of 4 ° C./sec) or 100 kg / ch (cooling rate from molten liquid = 1.0 ° C./sec). The hydrogen storage alloy obtained by the ingot method was then mechanically crushed by a stainless steel ball mill in an Ar atmosphere into a powder having an average particle size of 40 μm.
Hydrogen storage alloy powder obtained by atomization method (average particle size 40μ
m) and the hydrogen storage alloy powder obtained by the ingot method and crushed are both 900 ° C x 10hr in an Ar atmosphere with a purity of 99.99%.
Was heat-treated.

【0038】これらの水素吸蔵合金粉末 500gを、有機
溶媒を含有する塩酸(HCl) および/またはフッ化水素酸
(HF) の溶液3kg中で、溶液を30 rpmで攪拌しながら浸
漬処理した。処理条件は、温度25℃、浸漬時間10分間で
あった。浸漬処理に用いた酸溶液は、酸の原液(HCl=試
薬特級の濃塩酸、濃度36%;HF=試薬特級の濃フッ化水
素酸、濃度46%) を、有機溶媒 (試薬1級) および必要
により脱イオン水で希釈することにより調製した。使用
した酸溶液中の有機溶媒の含有量と酸濃度 (各原液の含
有量) を表2に示す。なお、酸溶液中の水分量は、100
%から表2に示す有機溶媒の含有量を差し引いた残り
に、酸濃度 (原液の含有量) に含まれる水分量を加えた
量となる。
500 g of these hydrogen storage alloy powders were mixed with hydrochloric acid (HCl) and / or hydrofluoric acid containing an organic solvent.
The solution was immersed in 3 kg of the solution of (HF) with stirring at 30 rpm. The treatment conditions were a temperature of 25 ° C. and an immersion time of 10 minutes. The acid solution used for the dipping treatment is an undiluted solution of acid (HCl = concentrated hydrochloric acid for reagent grade, concentration 36%; HF = concentrated hydrofluoric acid for reagent grade, concentration 46%) and organic solvent (grade 1 reagent) and Prepared by diluting with deionized water as needed. Table 2 shows the content of the organic solvent and the acid concentration (content of each stock solution) in the used acid solution. The amount of water in the acid solution is 100
It is the amount obtained by adding the amount of water contained in the acid concentration (content of the stock solution) to the remainder obtained by subtracting the content of the organic solvent shown in Table 2 from%.

【0039】上記のように浸漬処理した水素吸蔵合金粉
末を、重量比でその10倍量の水により水洗した後、真空
乾燥した。この合金粉末を、74μm以下、32μm以上に
分級し、結着剤 (ポリビニルアルコール5%水溶液) を
添加して混練した。得られた合金粉末のペーストを、ニ
ッケル製発泡状金属多孔体 (住友電工製セルメット)に
充填し、乾燥した後に1.5 ton/cm2 の圧力で加圧して、
合金粉末をNi多孔体内に担持させ、電池の負極を作製し
た。このときの水素吸蔵合金粉末の担持量は12gであっ
た。
The hydrogen-absorbing alloy powder soaked as described above was washed with 10 times the weight ratio of water and then vacuum dried. This alloy powder was classified into 74 μm or less and 32 μm or more, and a binder (5% polyvinyl alcohol aqueous solution) was added and kneaded. The obtained alloy powder paste was filled in a foam metal porous body made of nickel (Sumitomo Electric Celmet), dried and then pressurized at a pressure of 1.5 ton / cm 2 ,
The alloy powder was supported in a porous Ni body to prepare a negative electrode for a battery. At this time, the supported amount of the hydrogen storage alloy powder was 12 g.

【0040】正極には市販の公称2000 mA のNi電極を用
い、正極と負極の間に6N-KOHのアルカリ電解液を含浸さ
せたナイロン不織布をセパレータとして挟み込み、公称
2000mA のNi−水素電池を作製した。この電池を単2型
のケースに密閉し、試験に供する電池を得た。この電池
は負極の容量が大きい正極規制型の電池である。
A commercially available Ni electrode with a nominal value of 2000 mA was used as the positive electrode, and a nylon nonwoven fabric impregnated with an alkaline electrolyte of 6N-KOH was sandwiched between the positive electrode and the negative electrode as a separator.
A 2000mA Ni-hydrogen battery was fabricated. This battery was sealed in a C2 type case to obtain a battery to be tested. This battery is a positive electrode regulated battery having a large negative electrode capacity.

【0041】この電池を用いて下記の電池性能を調査し
た結果を表2に併せて示す。初期活性度 作製した正極容量規制型Ni−水素電池について、25℃に
おいて 80 mA/g (負極に担持された水素吸蔵合金1gに
対する電流) で3時間充電した後、160 mA/gで端子電圧
0.9 Vまで放電する、繰り返し充電・放電を10回行う、
1回目の放電容量と10回目の放電容量を測定し、その比
(1回目の放電容量/10回目の放電容量×100 %) によ
って、初期活性度を求めた。初期活性度が95%以上であ
れば合格と評価できる。
Table 2 shows the results of the following battery performance investigations using this battery. Initial activity The prepared positive electrode capacity-regulated Ni-hydrogen battery was charged at 80 mA / g (current for 1 g of hydrogen storage alloy supported on the negative electrode) at 25 ° C for 3 hours, then at 160 mA / g for terminal voltage.
Discharge to 0.9 V, repeat charging and discharging 10 times,
Measure the discharge capacity of the 1st time and the discharge capacity of the 10th time and
The initial activity was determined by (first discharge capacity / 10th discharge capacity × 100%). If the initial activity is 95% or more, it can be evaluated as passing.

【0042】自己放電特性 (保存後容量) 作製したNi−水素電池を用いて上記と同じ条件下で繰り
返し充電・放電を10回行った後、80 mA/g で3時間充電
し、次いで50℃で10日間放置した後、160 mA/gで端子電
圧0.9 Vまで放電した時の容量を測定し、上記の繰り返
し充電・放電を10回行った後の放電容量との比 (保存後
放電容量/10回目の放電容量×100 %)によって保存後
の放電容量を求めた。この値が85%以上であれば合格と
評価できる。
Self-Discharge Characteristics (Capacity after Storage) Using the manufactured Ni-hydrogen battery, the battery was repeatedly charged and discharged 10 times under the same conditions as above, then charged at 80 mA / g for 3 hours, and then at 50 ° C. After 10 days of storage at 160 mA / g, the capacity when discharged to a terminal voltage of 0.9 V was measured and the ratio to the discharge capacity after 10 times of the above repeated charging / discharging (discharge capacity after storage / The discharge capacity after storage was determined by the 10th discharge capacity × 100%). If this value is 85% or more, it can be evaluated as a pass.

【0043】[0043]

【表2】 [Table 2]

【0044】表2からわかるように、使用した酸溶液が
有機溶媒を含有しないか、有機溶媒の含有量が40%未満
である比較例 (試験No. 38〜49) では、初期活性度と保
存後の放電容量がいずれも合格水準に達しなかった。こ
れに対し、40%以上の有機溶媒を含む酸溶液で処理した
本発明例 (試験No.1〜37) では、いずれの場合も活性度
は95%以上、保存後の放電容量は85%以上と合格であ
り、有機溶媒添加の効果は明らかである。なお、有機溶
媒を添加すると、保存後容量だけでなく初期活性度も向
上するのは、合金粉末表面に形成されるNi水酸化物が、
酸化物ほどではないが、電池反応を阻害するためである
と考えられる。また、有機溶媒の含有量が多いほど良好
な結果が得られており、今回試験した量よりさらに多量
の有機溶媒を含有させると (例、水を全く含有させない
で溶媒を全て有機溶媒にする) 、より一層の効果が得ら
れるものと考えられる。
As can be seen from Table 2, in the comparative examples (Test Nos. 38 to 49) in which the acid solution used contained no organic solvent or contained less than 40% of organic solvent, the initial activity and storage None of the later discharge capacities reached the acceptable level. On the other hand, in the present invention examples (Test No. 1 to 37) treated with an acid solution containing 40% or more of an organic solvent, the activity was 95% or more and the discharge capacity after storage was 85% or more in any case. And the effect of adding an organic solvent is clear. When an organic solvent is added, not only the capacity after storage but also the initial activity is improved because the Ni hydroxide formed on the surface of the alloy powder,
It is thought that this is because it inhibits the battery reaction, though not as much as the oxide. Also, the better the content of the organic solvent, the better the results obtained, and if a larger amount of the organic solvent than the amount tested this time is included (e.g., water is not included at all, all the solvents are organic solvents). It is considered that further effects can be obtained.

【0045】[0045]

【発明の効果】本発明方法により、電池を作製する前
に、水素吸蔵合金を有機溶媒を含有する酸溶液で浸漬処
理することにより、電池を構成した場合の水素吸蔵合金
の初期活性化特性の向上と、自己放電の抑制による長期
保存性の向上とを達成することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, before producing a battery, the hydrogen storage alloy is immersed in an acid solution containing an organic solvent so that the initial activation characteristics of the hydrogen storage alloy in the case of constructing the battery are improved. It is possible to achieve improvement and long-term storage stability by suppressing self-discharge.

フロントページの続き (72)発明者 竹下 幸輝 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内Front page continuation (72) Inventor Kouki Takeshita 4-53-3 Kitahama, Chuo-ku, Osaka Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Niを含有する水素吸蔵合金を、重量比率
で40%以上の有機溶媒を含む非酸化性酸溶液に浸漬する
ことを特徴とする、電池用水素吸蔵合金の処理方法。
1. A method for treating a hydrogen storage alloy for a battery, comprising immersing a hydrogen storage alloy containing Ni in a non-oxidizing acid solution containing an organic solvent in a weight ratio of 40% or more.
JP07225483A 1995-09-01 1995-09-01 Method of treating hydrogen storage alloy for batteries Expired - Fee Related JP3136960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07225483A JP3136960B2 (en) 1995-09-01 1995-09-01 Method of treating hydrogen storage alloy for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07225483A JP3136960B2 (en) 1995-09-01 1995-09-01 Method of treating hydrogen storage alloy for batteries

Publications (2)

Publication Number Publication Date
JPH0973898A true JPH0973898A (en) 1997-03-18
JP3136960B2 JP3136960B2 (en) 2001-02-19

Family

ID=16830039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07225483A Expired - Fee Related JP3136960B2 (en) 1995-09-01 1995-09-01 Method of treating hydrogen storage alloy for batteries

Country Status (1)

Country Link
JP (1) JP3136960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576367B1 (en) 1998-06-26 2003-06-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576367B1 (en) 1998-06-26 2003-06-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof
US7078126B2 (en) 1998-06-26 2006-07-18 Sanyo Electric Co., Ltd. Method for production of hydrogen storage alloy for use in alkaline storage batteries

Also Published As

Publication number Publication date
JP3136960B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JP2978094B2 (en) Surface treatment method of hydrogen storage alloy powder and alkaline secondary battery obtained by applying the method
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0641663A (en) Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3136961B2 (en) Method of treating hydrogen storage alloy for batteries
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP3432870B2 (en) Method for producing metal hydride electrode
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JPH09129226A (en) Treating method for hydrogen storage alloy for battery
JP3454615B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JP3136963B2 (en) Method of treating hydrogen storage alloy for batteries
JP3189361B2 (en) Alkaline storage battery
JPH0992276A (en) Manufacture of hydrogen storage alloy powder for battery
JPH08333603A (en) Hydrogen storage alloy particle and its production
JP3530327B2 (en) Method for producing hydrogen storage alloy electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001107

LAPS Cancellation because of no payment of annual fees