JPH0972836A - Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis - Google Patents
Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysisInfo
- Publication number
- JPH0972836A JPH0972836A JP7248620A JP24862095A JPH0972836A JP H0972836 A JPH0972836 A JP H0972836A JP 7248620 A JP7248620 A JP 7248620A JP 24862095 A JP24862095 A JP 24862095A JP H0972836 A JPH0972836 A JP H0972836A
- Authority
- JP
- Japan
- Prior art keywords
- analyzed
- holding member
- decomposition liquid
- analysis
- liquid holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコンウエハ等
の被分析材の表面を、分解液で溶解する手法を用いて全
反射蛍光X線分析に供する試料を調製する方法及びその
ために使用する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample to be subjected to total reflection X-ray fluorescence analysis by a method of dissolving the surface of a material to be analyzed such as a silicon wafer with a decomposition solution, and an apparatus used therefor. Regarding
【0002】[0002]
【従来の技術】様々の技術分野において、被分析材の表
面の成分を高精度に分析することが必要となっており、
電子材料の分野においても、微量不純物が当該電子材料
の特性に大きな影響を与えるので、感度の高い分析技術
が望まれている。より具体的には、例えば、シリコンウ
エハの表面酸化膜中の極微量不純物を知ることは、酸化
膜耐圧特性等について重要であるため、その高感度分析
が必要となっている。2. Description of the Related Art In various technical fields, it is necessary to analyze the surface components of a material to be analyzed with high precision.
Also in the field of electronic materials, trace impurities have a great influence on the characteristics of the electronic materials, and therefore highly sensitive analysis techniques are desired. More specifically, for example, since it is important to know the trace amount of impurities in the surface oxide film of a silicon wafer with respect to oxide film withstand voltage characteristics and the like, high-sensitivity analysis thereof is required.
【0003】従来より、シリコンウエハの表面酸化膜中
の極微量不純物の検出方法としては、シリコンそのもの
は侵さないがシリコン酸化物は分解して溶解するフッ化
水素酸を分解液として使用し、この分解液によりシリコ
ンウエハ表面酸化膜を溶解し、これを回収して分析試料
とし、そこに含まれていた金属を原子吸光光度計、IC
P質量分析計等を使用して分析する方法が知られてい
る。そして、このような分解液を使用する分析試料の調
製方法に関する技術として、フッ化水素蒸気によりシリ
コンウエハ表面を溶解する技術(特開昭60−1406
20号公報)、フッ化水素蒸気をシリコン酸化膜上に吹
き付ける方法(特開昭62−209335号公報)、フ
ッ化水素蒸気による分解後、超純水で溶解回収する方法
(特開平1−98944号公報)、被分析材(シリコン
ウエハ)と棒状の分解液保持部との間にフッ化水素酸を
保持させ、被分析材と分解液保持部とを相対的に動かす
ことにより被分析材表面の不純物を分解液中に捕集する
方法(特開平5−203548号公報)等が知られてい
る。Conventionally, as a method for detecting a trace amount of impurities in the surface oxide film of a silicon wafer, hydrofluoric acid which does not attack silicon itself but decomposes and dissolves silicon oxide is used as a decomposition liquid. The oxide film on the surface of the silicon wafer is dissolved by the decomposing solution, and this is recovered as an analytical sample, and the metal contained therein is analyzed by an atomic absorption spectrophotometer, IC.
A method of analyzing using a P mass spectrometer or the like is known. Then, as a technique relating to a method for preparing an analytical sample using such a decomposition solution, a technique of dissolving the surface of a silicon wafer by hydrogen fluoride vapor (Japanese Patent Laid-Open No. 60-1406).
No. 20), a method of spraying hydrogen fluoride vapor onto a silicon oxide film (JP-A-62-209335), a method of dissolving and recovering with ultrapure water after decomposition with hydrogen fluoride vapor (JP-A-1-98944). Gazette), the hydrofluoric acid is held between the material to be analyzed (silicon wafer) and the rod-shaped decomposition liquid holding portion, and the material to be analyzed and the decomposition liquid holding portion are moved relatively to each other. There is known a method (Japanese Patent Laid-Open No. 5-203548) for collecting such impurities in the decomposition liquid.
【0004】一方、近年、被分析材の表面分析を高感度
に行う方法として、全反射蛍光X線分析法が知られてい
る。全反射蛍光X線分析法では、被分析材に全反射条件
で励起X線を照射し、それにより発せられた蛍光X線を
被分析材の上方で受光し、半導体検出器で検出するもの
である。この方法によると検出するX線に含まれる励起
X線の散乱量を大きく低減させることができるので、シ
グナル対バックグラウドの比を大きく改善できることか
ら、高感度の分析が可能となる。また、全反射条件で被
分析材に入射する励起X線は、被分析材の表面のみを励
起し、したがって得られる蛍光X線は被分析材の表面の
みから発せられたものとなる。このため、全反射蛍光X
線分析法によれば、被分析材の表面分析が可能となる。
さらに、この方法によれば、被分析材の表面の1ポイン
ト(通常、約1cm2 程度の領域)ごとに分析を行うの
で、この分析領域を被分析材の全面に走査することによ
り汚染元素のマッピングを行うことも可能となる。On the other hand, in recent years, a total reflection fluorescent X-ray analysis method has been known as a method for highly sensitively analyzing the surface of the material to be analyzed. In the total reflection X-ray fluorescence analysis method, the material to be analyzed is irradiated with excited X-rays under the condition of total reflection, and the fluorescent X-rays emitted thereby are received above the material to be analyzed and detected by a semiconductor detector. is there. According to this method, the amount of excitation X-rays contained in the detected X-rays can be greatly reduced, and therefore the signal-to-background ratio can be greatly improved, which enables highly sensitive analysis. Further, the excited X-rays that are incident on the material to be analyzed under the condition of total reflection excite only the surface of the material to be analyzed, and thus the obtained fluorescent X-rays are emitted from only the surface of the material to be analyzed. Therefore, the total reflection fluorescence X
The line analysis method enables surface analysis of the material to be analyzed.
Furthermore, according to this method, the analysis is performed for each point (usually, an area of about 1 cm 2 ) on the surface of the material to be analyzed, so that the analysis area is scanned over the entire surface of the material to be analyzed for contamination elements. It is also possible to perform mapping.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、全反射
蛍光X線分析法でシリコンウエハの表面分析を行う場
合、汚染元素の分析感度が1010atm/cm2 程度で
あるため、1ポイントあたり500〜1000秒程度の
分析時間が必要となり、このために6インチのシリコン
ウエハの全面を分析するには一昼夜以上の長い分析時間
が必要となるという問題があった。However, when the surface analysis of a silicon wafer is performed by the total reflection fluorescent X-ray analysis method, the analysis sensitivity of contaminant elements is about 10 10 atm / cm 2 , and thus 500 to 1 point / point. An analysis time of about 1000 seconds is required, which causes a problem that a long analysis time of one day or more is required to analyze the entire surface of a 6-inch silicon wafer.
【0006】これに対しては、原子吸光光度計やICP
質量分析計等を用いてシリコンウエハの表面分析をする
場合と同様に、シリコンウエハの表面をフッ化水素酸で
溶解し、汚染元素をフッ化水素酸溶液に捕集した後、全
反射蛍光X線分析法に供することが考えられる。これに
より汚染元素のマッピングは不可能となるが、分析時間
の短縮が期待される。For this, an atomic absorption spectrophotometer or an ICP
As in the case of surface analysis of a silicon wafer using a mass spectrometer or the like, the surface of the silicon wafer is dissolved with hydrofluoric acid, and the contaminant elements are collected in a hydrofluoric acid solution, and then total reflection fluorescence X It is possible to use it for line analysis. This makes it impossible to map contaminant elements, but it is expected to shorten the analysis time.
【0007】しかし、全反射蛍光X線分析法では分析試
料を溶液状態ではなくウエハ状態とすることが必要とな
るため、シリコンウエハの表面をフッ化水素酸で溶解し
た後、そのフッ化水素酸溶解溶液をシリコンウエハ上で
乾燥させなければならず、さらに、液滴の飛散を防止す
るために静的な乾燥が必要となるので、この乾燥には長
時間が必要になるという問題が生じる。例えば、ドラフ
ト内での自然乾燥という条件でフッ化水素酸溶液を乾燥
させる場合、12〜24時間程度が必要となる。However, in the total reflection X-ray fluorescence analysis method, it is necessary to put the analysis sample in a wafer state rather than a solution state. Therefore, after dissolving the surface of the silicon wafer with hydrofluoric acid, the hydrofluoric acid Since the dissolved solution must be dried on the silicon wafer, and static drying is necessary to prevent the droplets from scattering, there arises a problem that this drying requires a long time. For example, when the hydrofluoric acid solution is dried under the condition of naturally drying in the draft, it takes about 12 to 24 hours.
【0008】また、シリコンウエハの表面をフッ化水素
酸で溶解し、そのフッ化水素酸溶液をウエハ上で乾燥さ
せたものを全反射蛍光X線分析法で分析する場合、半導
体検出器の検出領域内にその乾燥物が位置するように、
フッ化水素酸溶液は直径10mm以下の範囲に乾燥さ
せ、かつその乾燥位置の座標が認識できるようにする必
要がある。In addition, when the surface of a silicon wafer is dissolved with hydrofluoric acid and the hydrofluoric acid solution is dried on the wafer and analyzed by total reflection fluorescent X-ray analysis, detection by a semiconductor detector is performed. So that the dry matter is located in the area,
It is necessary to dry the hydrofluoric acid solution within a range of a diameter of 10 mm or less so that the coordinates of the drying position can be recognized.
【0009】しかしながら、従来のシリコンウエハ表面
をフッ化水素酸で溶解させる方法では、フッ化水素酸溶
液をシリコンウエハ上で、このように狭い領域にかつそ
の座標を認識できるようにしつつ乾燥させることはでき
ない。特に、シリコンウエハ表面の酸化膜が、自然酸化
膜の膜厚(通常2〜3nm)以上に厚い場合には、シリ
コンウエハ表面が親水性となり、フッ化水素酸溶液が凝
集しにくくなるため、一層狭い領域に乾燥させることが
困難となる。However, in the conventional method of dissolving the surface of the silicon wafer with hydrofluoric acid, the hydrofluoric acid solution is dried on the silicon wafer in such a narrow area and while making its coordinates recognizable. I can't. In particular, when the oxide film on the surface of the silicon wafer is thicker than the film thickness of the natural oxide film (usually 2 to 3 nm), the surface of the silicon wafer becomes hydrophilic and the hydrofluoric acid solution is less likely to aggregate. Difficult to dry in a small area.
【0010】したがって、全反射蛍光X線分析法を用い
てシリコンウエハの表面汚染元素を分析するために、従
来のシリコンウエハの表面をフッ化水素酸で溶解する手
法を利用する場合には、シリコンウエハの表面をフッ化
水素酸で溶解する装置と、その溶液を全反射蛍光X線分
析法で分析できるように、狭い範囲にかつ所定の分析ポ
イントの位置に乾燥させる装置との2つの装置を別個に
設けることが必要となる。しかし、分析試料の調製のた
めに、このように2つの装置を使用することは分析操作
が繁雑となり、また、新たな不純物の混入のおそれも生
じるので好ましくない。Therefore, when the conventional method of dissolving the surface of a silicon wafer with hydrofluoric acid is used to analyze the surface contaminant element of the silicon wafer by using the total reflection X-ray fluorescence analysis method, silicon is used. There are two devices: a device that dissolves the surface of the wafer with hydrofluoric acid, and a device that dries the solution within a narrow range and at a predetermined analysis point so that the solution can be analyzed by total reflection X-ray fluorescence analysis. It is necessary to provide it separately. However, it is not preferable to use such two devices for the preparation of the analysis sample because the analysis operation becomes complicated and new impurities may be mixed.
【0011】本発明は以上のような従来技術の課題を解
決しようとするものであり、シリコンウエハ等の被分析
材の表面を分解液で溶解する手法を用いて、全反射蛍光
X線分析に供する試料を簡便に調製できるようにするこ
とを目的とする。The present invention is intended to solve the problems of the prior art as described above, and is used for total reflection X-ray fluorescence analysis by a method of dissolving the surface of the material to be analyzed such as a silicon wafer with a decomposition liquid. The purpose is to make it easy to prepare a sample to be provided.
【0012】[0012]
【課題を解決するための手段】本発明者は、シリコンウ
エハ等の被分析材と分解液保持部との間にフッ化水素酸
等の分解液を保持させ、被分析材と分解液保持部とを相
対的に動かすことにより被分析材表面の不純物を分解液
中に捕集する場合に、分解液保持部を被分析材上の任意
の座標で停止させてその停止位置に分解液を凝集させ、
その位置で分解液の凝集液滴を乾燥させることにより、
凝集液滴の乾燥部位を測定ポイントとしてその被分析材
を全反射蛍光X線分析に供することができ、これにより
上記の目的が達成できることを見出し、本発明を完成さ
せるに至った。The inventor of the present invention holds a decomposition liquid such as hydrofluoric acid between a material to be analyzed such as a silicon wafer and a decomposition liquid holding portion, and When the impurities on the surface of the material to be analyzed are collected in the decomposition liquid by moving the and relative to each other, stop the decomposition liquid holding part at arbitrary coordinates on the analysis material and aggregate the decomposition liquid at the stop position. Let
By drying the aggregated droplets of the decomposition liquid at that position,
The inventors have found that the material to be analyzed can be subjected to total reflection X-ray fluorescence analysis by using the dried portion of the aggregated droplets as a measurement point, and thereby the above-mentioned object can be achieved, and completed the present invention.
【0013】即ち、本発明は、被分析材と分解液保持部
材とを間隙を持たせて対向させると共にその間隙に被分
析材の表面を溶解させることのできる分解液を保持さ
せ、該分解液保持部材と被分析材とを被分析材の平面方
向に相対運動させることにより被分析材の表面成分を分
解液に溶解させ、該分解液を保持した分解液保持部材を
被分析材上の任意の座標で停止させて引上げることによ
り分解液を被分析材上に凝集状態で残存させ、次いでそ
の分解液を乾燥させることにより全反射蛍光X線分析に
供する試料を調製することを特徴とする全反射蛍光X線
分析用試料調製方法を提供する。That is, according to the present invention, the material to be analyzed and the decomposition liquid holding member are opposed to each other with a gap, and the decomposition liquid capable of dissolving the surface of the material to be analyzed is held in the gap, and the decomposition liquid is held. The holding member and the material to be analyzed are relatively moved in the plane direction of the material to be analyzed to dissolve the surface components of the material to be analyzed into a decomposition liquid, and a decomposition liquid holding member holding the decomposition liquid is optionally provided on the material to be analyzed. The sample is prepared for use in total reflection fluorescent X-ray analysis by stopping and pulling up the solution at the coordinates to allow the solution to remain in an aggregated state on the material to be analyzed, and then drying the solution. A sample preparation method for total internal reflection X-ray fluorescence analysis is provided.
【0014】また、本発明は、このような方法を実施す
る装置として、被分析材を載置するための被分析材載置
台、被分析材載置台に載置した被分析材上にその被分析
材の表面を溶解させることのできる分解液を保持させる
分解液保持部材、被分析材載置台に載置した被分析材と
分解液保持部材とをその被分析材の平面方向に相対運動
させる平面方向移動手段、被分析材上の任意の座標で分
解液保持部材を停止させる分解液保持部材停止手段、被
分析材載置台に載置した被分析材の上方へ分解液保持部
材を引上げ、その被分析材上に分解液を凝集状態で残存
させる保持部材引上手段、及び被分析材載置台に載置し
た被分析材上でその被分析材上に凝集状態で残存してい
る分解液を乾燥させる乾燥手段を有することを特徴とす
る全反射蛍光X線分析用試料調製装置を提供する。Further, the present invention is an apparatus for carrying out such a method, which is an analytical material mounting base for mounting the analytical material, and the analytical material mounted on the analytical material mounting table. A decomposition liquid holding member for holding a decomposition liquid capable of dissolving the surface of the analysis material, and the analysis material and the decomposition liquid holding member mounted on the analysis material mounting table are relatively moved in the plane direction of the analysis material. Planar direction moving means, decomposition liquid holding member stopping means for stopping the decomposition liquid holding member at arbitrary coordinates on the analyzed material, pulling up the decomposition liquid holding member above the analyzed material placed on the analyzed material mounting table, Holding member pulling means for causing the decomposed liquid to remain in the agglomerated state on the analyzed material, and the decomposed liquid remaining on the analyzed material placed on the analyzed material mounting table in the agglomerated state Total reflection fluorescent X-ray having a drying means for drying Providing 析用 sample preparation device.
【0015】本発明の装置を用いて本発明の方法を実施
する場合、まず、被分析材を被分析材載置台に載置し、
被分析材上の所定の位置に分解液を滴下し、その上に分
解液保持部材を配し、被分析材と分解液保持部材との間
隙に分解液を保持させる。あるいは、被分析材上の所定
の位置に分解液保持部材を配し、両者の間隙に分解液を
入れる。次に、平面方向移動手段で被分析材と分解液保
持部材とを被分析材の平面方向に相対運動させ、これに
より被分析材上で保持している分解液を所定の軌跡で移
動させ、次いで分解液保持部材停止手段により被分析材
上の所定の位置で分解液の移動を停止させる。これによ
り、分解液の軌跡上の被分析材の表面成分が分解液に溶
解し、その分解液中に捕集されることとなる。次に、分
解液を被分析材上に保持させていた分解液保持部材を分
解液保持部材引上手段により被分析材の上方へ引き上げ
る。すると、その被分析材上には分解液が凝集状態で残
存する。本発明においては、この凝集状態の分解液をそ
の場で乾燥手段により乾燥する。したがって、このよう
にして得られる被分析材は、その分解液の凝集・乾燥部
位に、被分析材の表面成分の溶解物が捕集されているも
のとなる。本発明において、この分解液の凝集・乾燥部
位は、被分析材上の所定の位置に設定できる。したがっ
て、この部位を分析ポイントとして、被分析材を全反射
蛍光X線分析で分析することが可能となる。When the method of the present invention is carried out using the apparatus of the present invention, first, the material to be analyzed is placed on the material mounting table for the material to be analyzed,
The decomposition liquid is dropped at a predetermined position on the material to be analyzed, a decomposition liquid holding member is arranged thereon, and the decomposition liquid is held in a gap between the material to be analyzed and the decomposition liquid holding member. Alternatively, a decomposing liquid holding member is arranged at a predetermined position on the material to be analyzed, and the decomposing liquid is put in a gap between the two. Next, the analysis-direction material and the decomposition liquid holding member are relatively moved in the plane direction of the analysis material by the plane direction moving means, thereby moving the decomposition solution held on the analysis material along a predetermined locus, Next, the decomposition liquid holding member stopping means stops the movement of the decomposition liquid at a predetermined position on the material to be analyzed. As a result, the surface component of the material to be analyzed on the trajectory of the decomposition liquid is dissolved in the decomposition liquid and is collected in the decomposition liquid. Next, the decomposition liquid holding member holding the decomposition liquid on the material to be analyzed is pulled up above the material to be analyzed by the decomposition liquid holding member pulling means. Then, the decomposed liquid remains in an aggregated state on the analyzed material. In the present invention, the decomposed liquid in the agglomerated state is dried in situ by a drying means. Therefore, the material to be analyzed thus obtained is such that the dissolved substance of the surface component of the material to be analyzed is collected at the aggregation / drying site of the decomposition liquid. In the present invention, the aggregation / drying site of this decomposition liquid can be set at a predetermined position on the material to be analyzed. Therefore, it becomes possible to analyze the material to be analyzed by total reflection fluorescent X-ray analysis using this portion as an analysis point.
【0016】また、この凝集・乾燥部位では、当初の被
分析材の表面よりも、分解液に溶解する表面成分が濃縮
されていることとなる。したがって、分解液で表面成分
を溶解させることなく、被分析材の表面を直接全反射蛍
光X線分析で分析する場合に比して、分析に要する時間
を極めて短時間に短縮することが可能となる。例えば、
従来、一昼夜要していたシリコンウエハ全面の表面分析
を1.5時間程度で行うことが可能となる。Further, at this aggregation / drying site, the surface components dissolved in the decomposition liquid are concentrated more than the original surface of the material to be analyzed. Therefore, the time required for the analysis can be shortened to an extremely short time as compared with the case where the surface of the material to be analyzed is directly analyzed by total reflection X-ray fluorescence analysis without dissolving the surface components in the decomposition liquid. Become. For example,
The surface analysis of the entire surface of the silicon wafer, which has conventionally been required all day and night, can be performed in about 1.5 hours.
【0017】さらに、被分析材上における分解液の軌跡
を適宜制御し、その軌跡ごとの凝集・乾燥部位を分析ポ
イントとすることにより、被分析材の表面成分のマッピ
ングを行うことも可能となる。Furthermore, it is possible to map the surface components of the material to be analyzed by appropriately controlling the path of the decomposed liquid on the material to be analyzed and using the aggregation / drying site for each path as the analysis point. .
【0018】[0018]
【発明の実施の形態】以下、本発明を図面に基づいて具
体的に説明する。なお、各図中、同一符号は同一又は同
等の構成要素を表している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. In each drawing, the same reference numerals represent the same or equivalent constituent elements.
【0019】図1は、シリコンウエハ表面の各種薄膜
(自然酸化膜を含む)及びウエハ表面層中の極微量不純
物の分析を行うための本発明の装置1の基本構成図であ
る。同図の装置1は、被分析材としてシリコンウエハを
載置するための被分析材載置台2、分解液保持部材3、
被分析材載置台2上に載置したシリコンウエハに対して
分解液保持部材3を図中矢印Aのシリコンウエハの平面
方向(略直径方向)に運動させる平面方向移動手段4、
シリコンウエハの任意の座標で分解液を保持した分解液
保持部材3を停止させる分解液保持部材停止手段として
機能する位置検出部5(5-1、5-2)、分解液保持部材
3をシリコンウエハの上方へ引き上げる分解液保持部材
引上手段として機能する空圧シリンダー6、及び被分析
材載置台2に載置したシリコンウエハ上に凝集している
分解液を乾燥させる乾燥手段(図示せず)から基本的に
構成されている。FIG. 1 is a basic configuration diagram of an apparatus 1 of the present invention for analyzing various thin films (including a natural oxide film) on the surface of a silicon wafer and trace amounts of impurities in the wafer surface layer. The apparatus 1 shown in FIG. 1 includes an analyte mounting base 2 for mounting a silicon wafer as an analyte, a decomposition liquid holding member 3,
A plane direction moving means 4 for moving the decomposition liquid holding member 3 with respect to the silicon wafer placed on the analyzed material placing table 2 in the plane direction (generally diametrical direction) of the silicon wafer indicated by an arrow A in the figure,
The position detecting unit 5 (5-1, 5-2) functioning as a decomposing liquid holding member stopping means for stopping the decomposing liquid holding member 3 holding the decomposing liquid at arbitrary coordinates of the silicon wafer, and the decomposing liquid holding member 3 are made of silicon. A pneumatic cylinder 6 that functions as a means for pulling up the decomposition liquid holding member above the wafer, and a drying means (not shown) for drying the decomposition liquid condensed on the silicon wafer mounted on the analyte mounting base 2. ) Is basically composed of.
【0020】ここで、被分析材載置台2は、シリコンウ
エハを固定できるように構成する。このためには、被分
析材載置台2にバキュームチャックを設けてもよいが、
シリコンウエハには通常オリフラが形成されていること
から、図2に示すように、被分析材載置台2は、オリフ
ラの形成されているシリコンウエハと係合する形状とす
ることが好ましい。これにより、被分析材載置台2と被
分析材との位置関係を常に同一とすることができる。Here, the analyte mounting base 2 is constructed so that a silicon wafer can be fixed. For this purpose, a vacuum chuck may be provided on the analyte mounting table 2,
Since an orientation flat is usually formed on a silicon wafer, as shown in FIG. 2, the analyte mounting base 2 is preferably shaped to engage with the silicon wafer on which the orientation flat is formed. As a result, the positional relationship between the analyzed material mounting table 2 and the analyzed material can always be the same.
【0021】また、被分析材載置台2は、その下方に設
けられている駆動手段7により図中矢印Bのように回転
する。これにより、被分析材載置台2に載置したシリコ
ンウエハ上で、そのシリコンウエハと分解液保持部材3
との間に保持させた分解液をシリコンウエハの周方向に
移動させることが可能となる。Further, the material mounting base 2 is rotated by the driving means 7 provided therebelow as indicated by an arrow B in the figure. As a result, on the silicon wafer placed on the analyte mounting base 2, the silicon wafer and the decomposition liquid holding member 3
It is possible to move the decomposed liquid held between and in the circumferential direction of the silicon wafer.
【0022】分解液保持部材3は、被分析材載置台2に
載置したシリコンウエハと、この分解液保持部材3との
間に、フッ化水素酸、あるいはフッ化水素酸と硝酸との
混酸等のシリコンウエハの分解液の液滴を保持させるも
のである。この場合、分解液の液滴量としては、50〜
100μl程度とすることが好ましい。したがって、分
解液保持部材3は、分解液の保持時にこのような液滴量
を保持できるように、被分析材載置台2に載置したシリ
コンウエハとの間に、約0.5〜3mm程度の間隔があ
くように設けることが好ましい。The decomposing liquid holding member 3 is a silicon wafer placed on the analyte mounting base 2 and the decomposing liquid holding member 3, and hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid. It holds the droplets of the decomposition liquid of the silicon wafer. In this case, the droplet amount of the decomposition liquid is 50 to
It is preferably about 100 μl. Therefore, the decomposition liquid holding member 3 is about 0.5 to 3 mm between the decomposition liquid holding member 3 and the silicon wafer mounted on the analyzed material mounting base 2 so as to hold such a droplet amount when holding the decomposition liquid. It is preferable to provide them so that there is an interval.
【0023】分解液保持部材3の形状は、この分解液保
持部材3と、被分析材載置台2に載置したシリコンウエ
ハとの間に分解液を保持しつつ、その分解液をシリコン
ウエハ上で移動させられるものである限り特に制限はな
いが、図3に示したように、分解液保持部材3のシリコ
ンウエハSに対向する底面の中央部に微小突起3aを設
けることが好ましい。これにより、分解液保持部材3を
シリコンウエハSの上方へ引き上げた際に、シリコンウ
エハS上で凝集して残存する分解液Lの液滴の中心が、
その液滴の表面張力により、液滴の大小によらず、微小
突起3aの位置にくるようになる。したがって、位置検
出部5の作用とあいまってシリコンウエハ上の所定の位
置に正確に分解液の凝集液滴を残存させることが可能と
なる。The shape of the decomposition liquid holding member 3 is such that the decomposition liquid is held between the decomposition liquid holding member 3 and the silicon wafer placed on the analyte mounting base 2, and the decomposition liquid is held on the silicon wafer. Although it is not particularly limited as long as it can be moved by, the fine protrusion 3a is preferably provided at the central portion of the bottom surface of the decomposition liquid holding member 3 facing the silicon wafer S, as shown in FIG. Thereby, when the decomposition liquid holding member 3 is pulled up above the silicon wafer S, the center of the droplets of the decomposition liquid L that are aggregated and remain on the silicon wafer S are
Due to the surface tension of the droplet, it comes to the position of the minute protrusion 3a regardless of the size of the droplet. Therefore, in combination with the action of the position detection unit 5, it becomes possible to accurately leave the aggregated droplets of the decomposition liquid at a predetermined position on the silicon wafer.
【0024】分解液保持部材3の構成材料としては、フ
ッ化水素酸、あるいはフッ化水素酸と硝酸との混酸等の
酸に耐える耐酸性を有し、撥水性であり、材料純度の高
い点から、ポリ四フッ化エチレンを使用することが好ま
しい。The decomposition liquid holding member 3 is made of a material having acid resistance such as hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid, water repellency, and high material purity. Therefore, it is preferable to use polytetrafluoroethylene.
【0025】図1の装置1において、平面方向移動手段
4は、分解液保持部材3を支えるアーム4a、継手4
b、軸4c及びカム機構4dから構成されている。これ
により分解液保持部材3が図中矢印Aのシリコンウエハ
の平面方向(略直径方向)に運動するようになる。In the apparatus 1 of FIG. 1, the plane direction moving means 4 includes an arm 4a for supporting the decomposed liquid holding member 3 and a joint 4.
b, a shaft 4c, and a cam mechanism 4d. As a result, the decomposition liquid holding member 3 moves in the plane direction (generally the diameter direction) of the silicon wafer indicated by the arrow A in the figure.
【0026】また図1の装置1において、位置検出部5
は、図中矢印A方向の分解液保持部材3の動きを規定す
る検出部5-1と、図中矢印B方向の被分析材載置台2の
回転運動を規定する検出部5-2とからなっている。この
うち、矢印A方向の分解液保持部材3の動きを規定する
検出部5-1は、被分析材上の所定座標で分解液保持部材
3を停止させるものである。この具体的構成としては、
カム機構4dの移動範囲を所定範囲に制限できるように
図中矢印C方向に移動することができるストッパーを設
けることができる。In addition, in the apparatus 1 of FIG. 1, the position detection unit 5
Is a detection unit 5-1 that regulates the movement of the decomposition liquid holding member 3 in the direction of arrow A in the figure, and a detection unit 5-2 that regulates the rotational movement of the analyte mounting table 2 in the direction of arrow B in the diagram. Has become. Of these, the detection unit 5-1 that regulates the movement of the decomposed liquid holding member 3 in the direction of the arrow A stops the decomposed liquid holding member 3 at predetermined coordinates on the material to be analyzed. As for this concrete configuration,
A stopper that can move in the direction of arrow C in the drawing can be provided so that the moving range of the cam mechanism 4d can be limited to a predetermined range.
【0027】一方、矢印B方向の被分析材載置台2の回
転運動を規定する検出部5-2は、例えば、被分析材載置
台2の裏面2bの周縁部に所定間隔で取り付けた反射板
と、被分析材載置台の裏面2bの周縁部に照射し、その
周縁部からの反射光を受光する検出手段から構成し、こ
の検出部5-2からの検出信号が、被分析材載置台2を回
転させる駆動手段7にフィードバックされるようにす
る。On the other hand, the detection unit 5-2 which regulates the rotational movement of the analyte mounting base 2 in the direction of the arrow B is, for example, a reflection plate attached to the peripheral edge of the back surface 2b of the analyte mounting base 2 at a predetermined interval. And a detection means for irradiating the peripheral portion of the back surface 2b of the analyzed material mounting table and receiving the reflected light from the peripheral portion, and the detection signal from the detection section 5-2 is used for the analyzed material mounting table. 2 is fed back to the driving means 7 for rotating.
【0028】このように位置検出部を設けることによ
り、例えば、図4に示したように、被分析材Sの中心点
P1 あるいは半径方向の直線上の固定点P2 〜P6 に分
解液を凝集させることが可能となる。By providing the position detector in this way, for example, as shown in FIG. 4, the decomposed liquid is aggregated at the center point P1 of the material S to be analyzed or at fixed points P2 to P6 on a straight line in the radial direction. It becomes possible.
【0029】またこの場合、各固定点P2 〜P6 に凝集
させる分解液は、当該半径rの所定の中心角θの円弧上
を移動してくるものと設定することができる。例えば、
固定点P2 〜P6 に凝集する分解液は、オリフラと反対
側の中心角θ=180゜の円弧状を移動し、その間のシ
リコンウエハ表面の汚染元素を捕集したものとすること
ができる。Further, in this case, the decomposing liquid to be aggregated at the fixed points P2 to P6 can be set to move on an arc having a predetermined center angle θ of the radius r. For example,
The decomposition liquid that agglomerates at the fixed points P2 to P6 moves in an arc shape having a central angle θ = 180 ° on the side opposite to the orientation flat, and it can be assumed that contaminant elements on the surface of the silicon wafer are collected during that time.
【0030】このようにシリコンウエハ上の多点に分解
液を凝集させ、かつそれらの移動軌跡を適宜制御するこ
とにより、シリコンウエハ上の汚染元素の分布を、従来
の全反射蛍光X線分析法におけるマッピングに準じて分
析することが可能となる。By thus aggregating the decomposed solution at multiple points on the silicon wafer and controlling the movement loci thereof appropriately, the distribution of contaminant elements on the silicon wafer can be determined by the conventional total reflection X-ray fluorescence analysis method. It becomes possible to analyze according to the mapping in.
【0031】図1の装置1において、分解液保持部材引
上手段として設けられている空圧シリンダー6は、分解
液保持部材3の垂直方向の位置を制御すると共に、その
垂直方向の移動速度を制御する。空圧シリンダー6とし
ては、例えば、図5の構成のものを使用することができ
る。図5の空圧シリンダーは、上下の内部空間6x、6
yにそれぞれ連通するバルブとして、通常の二方弁8
p、8q、8r、8sの他にニードルバルブ8x、8y
を設けたものである。このニードルバルブ8x、8yの
作用により、空圧シリンダー6の上下動は、例えば0.
5〜1mm/sec程度のゆっくりした速度に制御され
るので、分解液保持部材3の引上げ時にシリコンウエハ
上の分解液がはね散ることを防止できる。よって、シリ
コンウエハ上の所定の位置に分解液を凝集させる際の位
置精度を向上させることが可能となる。In the apparatus 1 shown in FIG. 1, the pneumatic cylinder 6 provided as a means for pulling up the decomposed liquid holding member controls the position of the decomposed liquid holding member 3 in the vertical direction, and the moving speed in the vertical direction. Control. As the pneumatic cylinder 6, for example, the one having the configuration shown in FIG. 5 can be used. The pneumatic cylinder of FIG. 5 has upper and lower internal spaces 6x, 6
An ordinary two-way valve 8 is used as a valve that communicates with y.
Needle valves 8x, 8y in addition to p, 8q, 8r, 8s
Is provided. Due to the action of the needle valves 8x and 8y, the vertical movement of the pneumatic cylinder 6 is, for example, 0.
Since the control is performed at a slow speed of about 5 to 1 mm / sec, it is possible to prevent the decomposition liquid on the silicon wafer from splashing when the decomposition liquid holding member 3 is pulled up. Therefore, it is possible to improve the positional accuracy when the decomposed liquid is aggregated at a predetermined position on the silicon wafer.
【0032】シリコンウエハ上に凝集している分解液を
乾燥させる乾燥手段としては、特に制限はなく、例え
ば、図6に示したように、被分析材載置台2の直下にヒ
ータープレート9を設けることができる。ヒータープレ
ート9としては、例えば、その内部に電熱ヒーターと温
度センサーとを有するものを設けることができる。これ
により、被分析材載置台2に載置したシリコンウエハS
上に凝集した分解液の液滴を迅速に乾燥させることが可
能となる。The drying means for drying the decomposed liquid condensed on the silicon wafer is not particularly limited, and for example, as shown in FIG. 6, a heater plate 9 is provided immediately below the analyte mounting base 2. be able to. As the heater plate 9, for example, one having an electric heater and a temperature sensor inside can be provided. As a result, the silicon wafer S mounted on the analyzed material mounting table 2 is
It is possible to rapidly dry the droplets of the decomposition liquid aggregated on the top.
【0033】乾燥手段としては、この他、被分析材載置
台2を密封チャンバー内に組み込み、そのチャンバー内
を排気する排気手段を設けてもよく、さらにチャンバー
内の分解液の蒸気圧を低減させ、乾燥窒素等で置換する
ガス置換手段を設けてもよい。また、被分析材の上方か
ら被分析材上に凝集している分解液を照射する加熱ラン
プを設けてもよく、分解液をマイクロ波で加熱するマグ
ネトロンを設けてもよい。In addition to the above, as the drying means, an exhaust means for incorporating the analyte mounting base 2 in a sealed chamber and exhausting the inside of the chamber may be provided to further reduce the vapor pressure of the decomposition solution in the chamber. A gas replacement means for replacing with dry nitrogen or the like may be provided. Further, a heating lamp for irradiating the decomposition liquid condensed on the analysis material from above the analysis material may be provided, or a magnetron for heating the decomposition solution by microwave may be provided.
【0034】以上の図1の装置1は、次のように使用す
る。即ち、まず、被分析材載置台2にシリコンウエハS
を載置し、シリコンウエハS上の所定の位置に、そのシ
リコンウエハSと間隙をおいて分解液保持部材3を配
し、その間隙に分解液をマイクロピペット等を用いて供
給する。あるいは、被分析材載置台2にシリコンウエハ
Sを載置した後、シリコンウエハS上の所定の位置にマ
イクロピペット等を用いて分解液を滴下し、その上に分
解液保持部材3を配し、シリコンウエハSと分解液保持
部材3との間隙に分解液を保持させる。次に、その分解
液がシリコンウエハS上で所定の軌跡をとるように分解
液保持部材3を移動させると共に駆動手段7を駆動す
る。そして、シリコンウエハS上の所定の凝集位置で分
解液保持部材3の移動と駆動手段7による駆動を停止さ
せ、分解液保持部材3を引上げ、その位置に分解液を凝
集させて残存させる。その後、乾燥手段で分解液を乾燥
する。このようにして得られたシリコンウエハは、その
分解液の凝集・乾燥領域を分析ポイントとして全反射蛍
光X線分析に供することができる。The apparatus 1 shown in FIG. 1 is used as follows. That is, first, the silicon wafer S is placed on the analyte mounting base 2.
The decomposing liquid holding member 3 is placed at a predetermined position on the silicon wafer S with a gap from the silicon wafer S, and the decomposing liquid is supplied to the gap using a micropipette or the like. Alternatively, after placing the silicon wafer S on the analyzed material placing table 2, the decomposing solution is dropped at a predetermined position on the silicon wafer S by using a micropipette or the like, and the decomposing solution holding member 3 is arranged thereon. The decomposition liquid is held in the gap between the silicon wafer S and the decomposition liquid holding member 3. Next, the decomposing liquid holding member 3 is moved so that the decomposing liquid takes a predetermined locus on the silicon wafer S, and the driving means 7 is driven. Then, the movement of the decomposition liquid holding member 3 and the driving by the driving means 7 are stopped at a predetermined aggregation position on the silicon wafer S, the decomposition liquid holding member 3 is pulled up, and the decomposition liquid is aggregated and left at that position. Then, the decomposition liquid is dried by a drying means. The silicon wafer thus obtained can be subjected to total reflection fluorescent X-ray analysis with the aggregation / drying region of the decomposed liquid as an analysis point.
【0035】本発明の装置は、図1の装置に示した装置
1の他に種々の態様をとることができる。例えば、図7
に示したように、被分析材載置台2の周縁部に液溜部1
0を設け、さらに被分析材載置台2に載置したシリコン
ウエハSを密封する蓋11を設けることができる。この
液溜部10にフッ酸等を入れ、シリコンウエハSを被分
析材載置台2に載置し、蓋11で密封し、必要に応じて
ヒータープレート9で加熱すると、フッ酸等の蒸気によ
りシリコンウエハSの表面酸化膜を気相分解することが
可能となる。したがって、シリコンウエハSの表面酸化
膜が厚いために分解液を一点に凝集させることが困難な
場合でも、予め表面酸化膜を気相分解をしておくことに
より分解液を一点に凝集させることが可能となり、本発
明の方法を適用することが可能となる。The apparatus of the present invention can take various modes other than the apparatus 1 shown in the apparatus of FIG. For example, FIG.
As shown in FIG.
0, and a lid 11 for sealing the silicon wafer S placed on the analyte mounting base 2 can be provided. Hydrofluoric acid or the like is put into the liquid reservoir 10, the silicon wafer S is placed on the analyte mounting base 2, sealed with the lid 11, and heated by the heater plate 9 if necessary, by vapor of hydrofluoric acid or the like. The surface oxide film of the silicon wafer S can be decomposed in the vapor phase. Therefore, even if it is difficult to agglomerate the decomposing solution at one point because the surface oxide film of the silicon wafer S is thick, it is possible to agglomerate the decomposing solution at a point by vapor-decomposing the surface oxide film in advance. It becomes possible and the method of the present invention can be applied.
【0036】また、分解液保持部材とシリコンウエハと
の間に分解液を保持し、その分解液の液滴をシリコンウ
エハ表面で移動させ、分解液内に汚染元素を捕集してい
る間に、分解液保持部材がシリコンウエハの平面に対し
て垂直方向に移動するようにしてもよい。これにより、
分解液の液滴をシリコンウエハ表面で移動させている間
に分解液に気泡が発生しても、その気泡を除去すること
ができ、分解液のシリコンウエハ表面に対する溶解作用
を常時安定的に保持することが可能となる。Further, while holding the decomposition liquid between the decomposition liquid holding member and the silicon wafer, the droplets of the decomposition liquid are moved on the surface of the silicon wafer to collect the pollutant element in the decomposition liquid. The decomposition solution holding member may move in the direction perpendicular to the plane of the silicon wafer. This allows
Even if bubbles are generated in the decomposition liquid while moving the droplets of the decomposition liquid on the surface of the silicon wafer, the bubbles can be removed, and the dissolution action of the decomposition liquid on the surface of the silicon wafer is constantly maintained. It becomes possible to do.
【0037】被分析材はシリコンウエハに限らない。分
解液の種類を変えることにより種々の被分析材を、全反
射蛍光X線分析用試料として調製することができる。The material to be analyzed is not limited to the silicon wafer. Various analytes can be prepared as samples for total reflection fluorescent X-ray analysis by changing the type of decomposition solution.
【0038】[0038]
実施例 上記、図1の装置1を使用して、シリコンウエハ(5イ
ンチ)を全反射蛍光X線分析用試料に調製し、その表面
分析を行った。この場合、分解液としてはフッ化水素酸
と過酸化水素との混酸を100μl使用し、それを図8
のようにシリコンウエハ上を移動させ、その軌跡上のシ
リコンウエハの表面成分を捕集し、シリコンウエハ載置
台直下のヒーターで加熱(170℃、90min)する
ことにより乾燥させた。Example A silicon wafer (5 inches) was prepared as a sample for total reflection fluorescent X-ray analysis using the apparatus 1 shown in FIG. 1 and surface analysis was performed. In this case, 100 μl of a mixed acid of hydrofluoric acid and hydrogen peroxide was used as the decomposition liquid, and
As described above, the surface component of the silicon wafer on the locus was collected, and the surface component of the silicon wafer was collected and dried by heating (170 ° C., 90 min) with a heater just below the silicon wafer mounting table to dry.
【0039】全反射蛍光X線分析の測定条件は以下のよ
うに設定した。The measurement conditions for the total reflection X-ray fluorescence analysis were set as follows.
【0040】X線源:電圧30KV,電流200mA,
ターゲット タングステン 測定時間:500sec X線視射角:0.12度 この結果を図9に示す。X-ray source: voltage 30 KV, current 200 mA,
Target Tungsten Measurement time: 500 sec X-ray glancing angle: 0.12 degrees This result is shown in FIG.
【0041】比較例 分解液でシリコンウエハの表面成分を捕集することな
く、直接シリコンウエハを分析試料とする以外は上記実
施例と同様にして全反射蛍光X線分析を行った。この結
果を図10に示す。Comparative Example A total reflection X-ray fluorescence analysis was carried out in the same manner as in the above example except that a silicon wafer was directly used as an analysis sample without collecting surface components of the silicon wafer with a decomposition solution. The result is shown in FIG.
【0042】これら実施例及び比較例の分析結果を対比
することにより、実施例ではシリコンウエハ表面の不純
物元素が大きなピークとなって現れていることから、本
発明の方法により分析精度及び分析効率を向上させられ
ることがわかる。By comparing the analysis results of these Examples and Comparative Examples, the impurity elements on the surface of the silicon wafer appear as large peaks in the Examples, so that the method of the present invention improves the analysis accuracy and analysis efficiency. It turns out that it can be improved.
【0043】[0043]
【発明の効果】本発明によれば、シリコンウエハ等の被
分析材料の表面を分解液で溶解する手法を用いて全反射
蛍光X線分析に供する試料を簡便に調製することが可能
となる。また、本発明により調製した試料を使用するこ
とにより、全反射蛍光X線分析でシリコンウエハ等の被
分析材料の表面分析を行う場合の分析効率を大きく向上
させることが可能となる。According to the present invention, it is possible to easily prepare a sample to be subjected to total reflection X-ray fluorescence analysis by using a method of dissolving the surface of a material to be analyzed such as a silicon wafer with a decomposition liquid. Further, by using the sample prepared according to the present invention, it is possible to greatly improve the analysis efficiency when the surface analysis of the material to be analyzed such as the silicon wafer is performed by the total reflection X-ray fluorescence analysis.
【図1】本発明の装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus of the present invention.
【図2】被分析材載置台の斜視図である。FIG. 2 is a perspective view of an analyte mounting table.
【図3】分解液保持部材の断面説明図である。FIG. 3 is a cross-sectional explanatory view of a decomposition liquid holding member.
【図4】被分析材上の分解液の軌跡及び凝集・乾燥位置
の説明図である。FIG. 4 is an explanatory diagram of a trajectory of a decomposition liquid on a material to be analyzed and an aggregation / drying position.
【図5】空圧シリンダーの説明図である。FIG. 5 is an explanatory diagram of a pneumatic cylinder.
【図6】被分析材載置台の直下に設けたヒータープレー
トの説明図である。FIG. 6 is an explanatory diagram of a heater plate provided immediately below an analysis material mounting table.
【図7】被分析材載置台の他の態様の断面図である。FIG. 7 is a cross-sectional view of another aspect of the analyte mounting base.
【図8】実施例における、被分析材上の分解液の軌跡及
び凝集・乾燥位置の説明図である。FIG. 8 is an explanatory diagram of the trajectory of the decomposition liquid on the material to be analyzed and the aggregation / drying position in the example.
【図9】実施例の全反射蛍光X線分析のチャートであ
る。FIG. 9 is a chart of total reflection X-ray fluorescence analysis of an example.
【図10】比較例の全反射蛍光X線分析のチャートであ
る。FIG. 10 is a chart of a total reflection X-ray fluorescence analysis of a comparative example.
1 全反射蛍光X線分析用試料調製装置 2 被分析材載置台 3 分解液保持部材 4 平面方向移動手段 5、5-1、5-2 位置検出部 6 空圧シリンダー 9 ヒータープレート 10 液溜部 11 蓋 S 被分析材 1 Sample preparation device for total reflection X-ray fluorescence analysis 2 Analytical material mounting table 3 Decomposition liquid holding member 4 Plane direction moving means 5, 5-1 and 5-2 Position detection unit 6 Pneumatic cylinder 9 Heater plate 10 Liquid reservoir 11 Lid S Analyte
フロントページの続き (72)発明者 榎本 昌久 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内Front page continuation (72) Inventor Masahisa Enomoto 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation
Claims (8)
たせて対向させると共にその間隙に被分析材の表面を溶
解させることのできる分解液を保持させ、該分解液保持
部材と被分析材とを被分析材の平面方向に相対運動させ
ることにより被分析材の表面成分を分解液に溶解させ、
該分解液を保持した分解液保持部材を被分析材上の任意
の座標で停止させて引上げることにより分解液を被分析
材上に凝集状態で残存させ、次いでその分解液を乾燥さ
せることにより全反射蛍光X線分析に供する試料を調製
することを特徴とする全反射蛍光X線分析用試料調製方
法。1. A material to be analyzed and a decomposition liquid holding member are opposed to each other with a gap, and a decomposition liquid capable of dissolving the surface of the material to be analyzed is held in the gap, and the decomposition liquid holding member and the member to be decomposed. Dissolve the surface component of the analysis material in the decomposition liquid by relatively moving the analysis material in the plane direction of the analysis material,
By stopping the decomposition liquid holding member holding the decomposition liquid at any coordinate on the material to be analyzed and pulling it up, the decomposition liquid remains in the aggregated state on the material to be analyzed, and then the decomposition liquid is dried. A method for preparing a sample for total reflection fluorescent X-ray analysis, which comprises preparing a sample for total reflection X-ray fluorescence analysis.
液をヒーターにより加熱乾燥する請求項1記載の全反射
蛍光X線分析用試料調製方法。2. The method for preparing a sample for total reflection fluorescent X-ray analysis according to claim 1, wherein the decomposition liquid left in the aggregated state on the material to be analyzed is dried by heating with a heater.
する面の中央部に突起を有するものを使用する請求項1
又は2記載の全反射蛍光X線分析用試料調製方法。3. The decomposed liquid holding member having a projection at the center of the surface facing the material to be analyzed is used.
Or the method for preparing a sample for total reflection fluorescent X-ray analysis according to item 2.
ーにより行う請求項1〜3のいずれかに記載の全反射蛍
光X線分析用試料調製方法。4. The method for preparing a sample for total internal reflection fluorescent X-ray analysis according to claim 1, wherein the decomposition liquid holding member is pulled up by a pneumatic cylinder.
光X線分析用試料調製装置であって、被分析材を載置す
るための被分析材載置台、被分析材載置台に載置した被
分析材上にその被分析材の表面を溶解させることのでき
る分解液を保持させる分解液保持部材、被分析材載置台
に載置した被分析材と分解液保持部材とをその被分析材
の平面方向に相対運動させる平面方向移動手段、被分析
材上の任意の座標で分解液保持部材を停止させる分解液
保持部材停止手段、被分析材載置台に載置した被分析材
の上方へ分解液保持部材を引上げ、その被分析材上に分
解液を凝集状態で残存させる分解液保持部材引上手段、
及び被分析材載置台に載置した被分析材上でその被分析
材上に凝集状態で残存している分解液を乾燥させる乾燥
手段を有することを特徴とする装置。5. A sample preparation apparatus for total internal reflection fluorescent X-ray analysis for carrying out the method according to claim 1, wherein the analysis material mounting table for mounting the analysis material and the analysis material mounting table are mounted. The decomposed liquid holding member for holding the decomposed liquid capable of dissolving the surface of the analyzed material on the placed analyzed material, the analyzed material and the decomposed liquid holding member mounted on the analyzed material mounting table Plane direction moving means for relative movement in the plane direction of the analytical material, decomposing liquid holding member stopping means for stopping the decomposing liquid holding member at arbitrary coordinates on the analyzed material, and of the analyzed material placed on the analyzed material mounting table A decomposition liquid holding member pulling means for pulling up the decomposition liquid holding member upward and leaving the decomposition liquid in an aggregated state on the material to be analyzed,
And a drying means for drying the decomposition liquid remaining in an agglomerated state on the analyzed material placed on the analyzed material placing table.
にヒータープレートを有する請求項5記載の装置。6. The apparatus according to claim 5, wherein a heater plate is provided as a drying means immediately below the analyte mounting base.
面の中央部に突起を有する請求項5又は6記載の装置。7. The apparatus according to claim 5, wherein the decomposition liquid holding member has a protrusion at the center of the surface facing the material to be analyzed.
リンダーを有する請求項5〜7のいずれかに記載の装
置。8. The apparatus according to claim 5, further comprising a pneumatic cylinder as the means for pulling up the decomposition liquid holding member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7248620A JPH0972836A (en) | 1995-09-01 | 1995-09-01 | Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7248620A JPH0972836A (en) | 1995-09-01 | 1995-09-01 | Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0972836A true JPH0972836A (en) | 1997-03-18 |
Family
ID=17180828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7248620A Pending JPH0972836A (en) | 1995-09-01 | 1995-09-01 | Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0972836A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6937691B2 (en) | 2001-09-06 | 2005-08-30 | Rigaku Industrial Corporation | X-ray fluorescence spectrometric system and a program for use therein |
JP2009092448A (en) * | 2007-10-05 | 2009-04-30 | Rigaku Corp | Fluorescent x-ray analysis system, and program used for its system |
JP2009294091A (en) * | 2008-06-05 | 2009-12-17 | Sumco Corp | Analyzing method of contaminant in silicon wafer |
US9250221B2 (en) | 2013-09-03 | 2016-02-02 | Kabushiki Kaisha Toshiba | Standard sample and method of preparing same |
-
1995
- 1995-09-01 JP JP7248620A patent/JPH0972836A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6937691B2 (en) | 2001-09-06 | 2005-08-30 | Rigaku Industrial Corporation | X-ray fluorescence spectrometric system and a program for use therein |
DE10241164B4 (en) * | 2001-09-06 | 2007-09-13 | Rigaku Industrial Corp., Takatsuki | X-ray fluorescence spectrometer system |
JP2009092448A (en) * | 2007-10-05 | 2009-04-30 | Rigaku Corp | Fluorescent x-ray analysis system, and program used for its system |
JP2009294091A (en) * | 2008-06-05 | 2009-12-17 | Sumco Corp | Analyzing method of contaminant in silicon wafer |
US9250221B2 (en) | 2013-09-03 | 2016-02-02 | Kabushiki Kaisha Toshiba | Standard sample and method of preparing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3059144B2 (en) | Impurity measurement method | |
Pahlke et al. | Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF ‘state-of-the-art’ | |
JPH07229864A (en) | Method for treating surface of object to be measured for performing total reflection fluorescent x-ray analysis | |
JP3179175B2 (en) | Analysis pretreatment method | |
Penka et al. | Application of total reflection X-ray fluorescence in semiconductor surface analysis | |
JP2004028787A (en) | Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer | |
JPH0972836A (en) | Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis | |
JP2613513B2 (en) | X-ray fluorescence analysis method | |
JP2000232138A (en) | Semiconductor device, marking device and defect inspection apparatus therefor | |
Fabry et al. | Novel methods of TXRF analysis for silicon wafer surface inspection | |
JP3784696B2 (en) | Semiconductor wafer surface impurity recovery method and recovery apparatus | |
JP3690484B2 (en) | Method for analyzing metal impurities on silicon substrate surface | |
JP2630249B2 (en) | Total reflection X-ray fluorescence analyzer | |
JP2004333364A (en) | Total reflection x-ray fluorescence analysis method and analysis apparatus | |
JP2002022684A (en) | Substrate for fluorescence x-ray analysis and standard sample for fluorescence x-ray analysis | |
JPH09229860A (en) | Method and apparatus for evaluating concentration of oxygen in semiconductor silicon crystal | |
JP3627918B2 (en) | Semiconductor substrate surface evaluation analyzer and jig used therefor | |
JPH10339691A (en) | Method for measuring surface impurities | |
JP2004069502A (en) | Impurity recovery method and impurity recovery device for local trace chemical analysis | |
JPH07176580A (en) | Method and apparatus for analysis of impurities on wafer surface | |
JP3298089B2 (en) | Analysis sample preparation method and analysis sample preparation device | |
JPH11145230A (en) | Analysis of polycrystalline silicon film | |
JPH11190730A (en) | Method for analyzing metallic impurity at surface of and inside of semiconductor substrate | |
JP3441333B2 (en) | Impurity concentration device and impurity analysis method | |
Shimazaki et al. | Chemical analysis of silicon wafer surface contamination |