JP2004333364A - Total reflection x-ray fluorescence analysis method and analysis apparatus - Google Patents

Total reflection x-ray fluorescence analysis method and analysis apparatus Download PDF

Info

Publication number
JP2004333364A
JP2004333364A JP2003131573A JP2003131573A JP2004333364A JP 2004333364 A JP2004333364 A JP 2004333364A JP 2003131573 A JP2003131573 A JP 2003131573A JP 2003131573 A JP2003131573 A JP 2003131573A JP 2004333364 A JP2004333364 A JP 2004333364A
Authority
JP
Japan
Prior art keywords
sample
scattered light
ray
trace
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131573A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hata
良文 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003131573A priority Critical patent/JP2004333364A/en
Publication of JP2004333364A publication Critical patent/JP2004333364A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a vapor-phase cracking total reflection X-ray fluorescence analysis method which can measure accurately and quantitatively. <P>SOLUTION: An analysis apparatus is provided with a sample stage 3 for holding and moving a sample 4 having a dry trace including a minute impure material, an X-ray source 1 for irradiating the surface of the sample held on the sample stage 3 with a primary X-ray beam 2 at a minute incident angle, an X-ray fluorescence detector 6 for measuring the intensity of X-ray fluorescence 5 generated from the surface of the sample irradiated with the primary X-ray beam 2 and analyzing trace impure materials, a laser light source 8 for emitting a laser light 7 to the surface of the sample at the same incident location of the primary X-ray beam 2 and a scattered light detector 10 for detecting a scattered light 9 as the laser light 7 scattered on the surface of the sample and measuring intensity of the scattered laser light 7. The shape of the dry trace, based on the intensity of the scattered light measured by the scattered light detector 10 is evaluated and analyzes the trace impure materials in the dry trace, indicating a predetermined shape by the X-ray fluorescence detector 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、半導体ウエハ表面の微量不純物を分析する高感度の全反射蛍光X線分析方法および分析装置に関するものである。
【0002】
【従来の技術】
近年の半導体デバイスの微細化に従い、半導体ウエハ表面の微量不純物の分析が非常に重要になっている。これは、ごく微量の金属不純物であってもゲート酸化膜の耐圧を低下させるなど、トランジスタの電気特性を変動させるためである。従って、半導体デバイスの電気特性を向上するには、ウエハ表面の不純物を出来る限り低減する必要がある。そのため、ウエハ表面の不純物量を、高感度かつ正確に分析する必要がある。
【0003】
高感度なウエハ表面の組成分析法として、ウエハ表面の微量不純物を濃縮・回収したのちに全反射蛍光X線分析装置で測定する方法がある(例えば特許文献1および特許文献2)。この分析方法は気相分解−全反射蛍光X線分析法と呼ばれている。
【0004】
この気相分解−全反射蛍光X線分析法は、▲1▼ウエハ表面の薄い酸化膜または自然酸化膜をフッ酸蒸気中で気相分解する工程、▲2▼気相分解された酸化膜を回収液によって回収する工程、▲3▼回収液を乾燥する工程、▲4▼回収液を乾燥した痕を全反射蛍光X線分析で測定する工程、からなる。このように気相分解−全反射蛍光X線分析法はウエハ全面の汚染物を一箇所に集めて測定するので、高感度に分析することが可能である。
【0005】
【特許文献1】
特開2000−9615号公報
【特許文献2】
特開2001−201442号公報
【0006】
【発明が解決しようとする課題】
しかし上記のような気相分解−全反射蛍光X線分析法では、以下に示すように、乾燥痕の形状が測定精度に影響するという問題がある。
【0007】
一般的に全反射蛍光X線分析では、特開平6−207889および特開平8−327566に記載されているように、測定対象部の形状によって定量分析値が変化することが知られている。特に、気相分解−全反射蛍光X線分析法においては、ウエハ表面の汚染物を回収した後に乾燥しているため、回収・乾燥条件などによって乾燥痕の形状が変化して、定量分析値が変化する問題がある。
【0008】
したがって、この発明の目的は、上記課題に鑑みて、より高精度の定量測定が可能な気相分解−全反射蛍光X線分析法を可能とする全反射X線分析方法および分析装置を提供することである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、この発明の請求項1記載の全反射X線分析方法は、試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記乾燥痕にレーザ光を入射して前記乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、前記測定された散乱光強度から前記乾燥痕の形状を評価する工程と、所定の形状を示す乾燥痕に対して前記全反射蛍光X線分析で前記微量不純物を分析する工程とを含む。
【0010】
このように、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、測定された散乱光強度から乾燥痕の形状を評価する工程と、所定の形状を示す乾燥痕に対して全反射蛍光X線分析で微量不純物を分析する工程とを含むので、レーザ光の散乱光強度から気相分解の乾燥痕の形状を評価、判断した後、全反射X線分析で測定することで、ウエハ表面の不純物量を高い精度で定量分析できる。
【0011】
請求項2記載の全反射X線分析方法は、請求項1記載の全反射X線分析方法において、所定の形状を示す乾燥痕は、この乾燥痕によるレーザ光の散乱光強度が予め設定した規定値の範囲内にある乾燥痕である。このように、所定の形状を示す乾燥痕は、この乾燥痕によるレーザ光の散乱光強度が予め設定した規定値の範囲内にある乾燥痕であるので、気相分解−全反射X線分析法による安定した高感度での分析が可能となる。
【0012】
請求項3記載の全反射X線分析方法は、試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記乾燥痕にレーザ光を入射して前記乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、前記試料表面に存在する少なくとも一つ以上の前記乾燥痕に対して測定された前記散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる位置において前記全反射蛍光X線分析で前記微量不純物を分析する工程とを含む。
【0013】
このように、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、試料表面に存在する少なくとも一つ以上の乾燥痕に対して測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる位置において全反射蛍光X線分析で微量不純物を分析する工程とを含むので、気相分解による乾燥痕をレーザ光の散乱光強度で評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕の中心が散乱光強度が最大である点であることが判断でき、この座標位置で全反射X線分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【0014】
請求項4記載の全反射X線分析方法は、試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記気相分解の際に前記乾燥痕の前記試料表面における座標を記憶する工程と、前記座標の周辺にレーザ光を走査し、散乱されるレーザ光の散乱光強度を測定する工程と、前記散乱光強度が最大となる位置において前記微量不純物を分析する工程とを含む。
【0015】
このように、気相分解の際に乾燥痕の試料表面における座標を記憶する工程と、座標の周辺にレーザ光を走査し、散乱されるレーザ光の散乱光強度を測定する工程と、散乱光強度が最大となる位置において微量不純物を分析する工程とを含むので、気相分解による乾燥痕をレーザ光の散乱光強度で評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕によるレーザ光の散乱光強度を測定しつつ記憶された座標位置の周辺を走査して、散乱光強度が最大となる座標位置を求め、その座標位置でもって分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【0016】
請求項5記載の全反射X線分析装置は、微量不純物を含む乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記散乱光検出器で測定された散乱光強度から前記乾燥痕の形状を評価し、所定の形状を乾燥痕に対して、前記蛍光X線検出器によって前記微量不純物を分析するようにした。
【0017】
このように、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、散乱光検出器で測定された散乱光強度から乾燥痕の形状を評価し、所定の形状を乾燥痕に対して、蛍光X線検出器によって微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解の乾燥痕の形状を評価、判断した後、全反射X線分析で測定することで、ウエハ表面の不純物量を高い精度で定量分析できる。
【0018】
請求項6記載の全反射X線分析装置は、請求項5記載の全反射蛍光X線分析装置において、所定の形状を示す乾燥痕が、この乾燥痕によるレーザ光の散乱強度が予め設定した規定値の範囲内にある乾燥痕であるとき、前記蛍光X線検出器によって前記微量不純物を分析する。このように、所定の形状を示す乾燥痕が、この乾燥痕によるレーザ光の散乱強度が予め設定した規定値の範囲内にある乾燥痕であるとき、蛍光X線検出器によって微量不純物を分析するので、気相分解−全反射X線分析法による安定した高感度での分析が可能となる。
【0019】
請求項7記載の全反射X線分析装置は、微量不純物を含む乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記試料表面に存在する少なくとも一つ以上の前記乾燥痕に対して前記散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる前記試料ステージ位置において前記蛍光X線検出器によって前記微量不純物を分析するようにした。
【0020】
このように、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、少なくとも一つ以上の乾燥痕に対して散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において蛍光X線検出器によって微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解による乾燥痕を評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕の中心が散乱光強度が最大である点であることが判断でき、この座標位置で全反射X線分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【0021】
請求項8記載の全反射X線分析装置は、微量不純物を含む乾燥痕を有する試料を作成するとともに前記乾燥痕の前記試料表面における座標を記憶する気相分解を行う気相分解装置と、前記乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記記憶された座標の周辺に対して前記散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる前記試料ステージ位置において前記微量不純物を分析するようにした。
【0022】
このように、微量不純物を含む乾燥痕を有する試料を作成するとともに乾燥痕の試料表面における座標を記憶する気相分解を行う気相分解装置と、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、記憶された座標の周辺に対して散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解による乾燥痕を評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕によるレーザ光の散乱光強度を測定しつつ記憶された座標位置の周辺を走査して、散乱光強度が最大となる座標位置を求め、その座標位置でもって分析が可能する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【0023】
【発明の実施の形態】
この発明の第1の実施の形態を図1〜図3に基づいて説明する。図1はこの発明の第1の実施形態の全反射X線分析装置の説明図である。
【0024】
図1に示すように、この全反射X線分析装置は、微量不純物を含む乾燥痕を有する試料(Siウエハ)4を保持および移動できる試料ステージ3と、試料ステージ3上に保持された試料表面に対して微小な入射角で1次X線2を照射するX線源1と、1次X線2が照射された試料表面から発生する蛍光X線5の強度を測定し微量不純物を分析する蛍光X線検出器6と、1次X線2の入射位置と同じ試料表面部分にレーザ光7を入射するレーザ光源8と、レーザ光7が試料表面で散乱された散乱光9を検出しレーザ光7の散乱光強度を測定する散乱光検出器10とを備え、散乱光検出器10で測定された散乱光強度から乾燥痕の形状を評価し、所定の形状を乾燥痕に対して、蛍光X線検出器6によって微量不純物を分析するようにした。
【0025】
このように、本実施形態の全反射蛍光X線装置では、従来の全反射蛍光X線も有しているX線分析の機能以外に、乾燥痕の形状を評価するためのレーザ光7と散乱光検出器10を有している。
【0026】
まずX線分析機能について説明する。全反射蛍光X線装置はX線源1からの1次X線2を試料ステージ3に保持されているSiウエハ4に低角度で入射する。一般的なSiウエハ表面の汚染評価では、1次X線の入射角度は約0.5度である。1次X線2によってSiウエハ4表面で励起された蛍光X線5を蛍光X線検出器6で検出して、ウエハ表面の組成を高感度で分析している。
【0027】
また、X線分析の機能以外に上記のように、乾燥痕の形状を評価するためのレーザ光7を発生するレーザ光源8と、試料表面で散乱された散乱光9を検出する散乱光検出器10が備えられている。
【0028】
本実施形態の全反射蛍光X線分析装置では、気相分解法で得られた乾燥痕の形状をレーザ光源8からのレーザ光7が乾燥痕で散乱された散乱光9を検出器10で検出し、散乱光9の強度から乾燥痕の形状を評価した後に、全反射蛍光X線分析を実施する。
【0029】
すなわち、試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して溶解液を試料表面の全面に走査する工程と、溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法において、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、測定された散乱光強度から乾燥痕の形状を評価する工程と、所定の形状を示す乾燥痕に対して全反射蛍光X線分析で微量不純物を分析する工程とを含む。
【0030】
図2は、回収および乾燥条件が異なる乾燥痕によるレーザ光の散乱強度の違いを示している。図2に示すように回収・乾燥条件の違いによって、レーザ光の散乱光強度が変化しているのが分かる。図2において、回収・乾燥条件A〜Dは、回収液量、乾燥時間の違いによって回収痕(乾燥痕)の大きさが変化しており、散乱光強度が高いことから条件Aの回収痕が一番大きい。
【0031】
図3は図2の回収痕に不純物として含まれているFeについて、全反射蛍光X線で分析した結果である。同一の工程のウエハについての回収痕であるので、不純物として含まれるFeの量は同一と考えられる。図3において、回収・乾燥条件B,C,Dでは同様な検出強度であるが、条件AおよびEでは検出強度が変化している。これは、条件Aでは回収痕が大きく、条件Eでは回収痕が小さいため、全反射蛍光X線強度に違いが生じたと考えられる。よって本実施形態で示した工程のSiウエハでは、散乱光強度が100〜150の間にある場合は、気相分解−全反射蛍光X線分析法で正しい分析結果が得られていると判断できる。
【0032】
以上のように本実施形態によれば、気相分解−全反射蛍光X線分析法における乾燥痕をレーザ光で評価でき、その評価結果後に全反射蛍光X線での測定を実施するので、安定した高感度での全反射蛍光X線分析が可能となる。
【0033】
また、レーザ光の散乱強度で乾燥痕の形状を評価して、その散乱強度が予め設定した規定値の範囲内にある場合のみ全反射蛍光X線装置で分析することで、気相分解−全反射蛍光X線分析法による安定した高感度での分析が可能となる。
【0034】
この発明の第2の実施の形態を図4に基づいて説明する。図4はこの発明の第2の実施形態においてレーザの散乱光強度分布から全反射蛍光X線分析する座標を求める説明図である。なお、全反射X線分析装置の説明において図1を参照する。
【0035】
この全反射X線分析装置は、第1の実施形態と同様に試料ステージ3と、X線源1と、蛍光X線検出器6と、レーザ光源8と、散乱光検出器10とを備えている。また、試料表面に存在する少なくとも一つ以上の乾燥痕に対して散乱光検出器10で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において蛍光X線検出器6によって微量不純物を分析するようにした。
【0036】
上記全反射蛍光X線分析装置によって乾燥痕を分析する際のウエハの座標位置を求める方法について説明する。
【0037】
すなわち、乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法において、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、試料表面に存在する少なくとも一つ以上の乾燥痕に対して測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる位置において全反射蛍光X線分析で微量不純物を分析する工程とを含む。
【0038】
図4は試料ステージを走査して乾燥痕による散乱光強度の分布を測定した結果である。原点(0,0)は回収液を滴下した座標であるが、図4では座標(−2,−4)で散乱光強度が最大であることが分かる。これより乾燥痕の中心が上記の点であることが判断でき、この座標位置で全反射蛍光X線分析すれば良いことが分かる。
【0039】
本発明の実施形態によれば、気相分解による乾燥痕をレーザ光で評価し、全反射蛍光X線分析で測定する座標位置が正確に知ることができるので、安定した高感度での全反射蛍光X線分析が可能となる。
【0040】
この発明の第3の実施の形態について説明する。なお、全反射X線分析装置の説明において図1を参照する。
【0041】
この全反射X線分析装置は、微量不純物を含む乾燥痕を有する試料を作成するとともに乾燥痕の試料表面における座標を記憶する気相分解を行う気相分解装置とともに、第1の実施形態と同様に試料ステージ3と、X線源1と、蛍光X線検出器6と、レーザ光源8と、散乱光検出器10とを備えている。また、記憶された座標の周辺に対して散乱光検出器10で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において微量不純物を分析するようにした。
【0042】
このように、本発明の実施形態である気相分解−全反射蛍光X線分析装置は、大きく分けて、気相分解装置と、全反射蛍光X線分析装置本体とから構成されている。全反射X線分析装置本体は、試料ステージ3と、X線源1と、蛍光X線検出器6と、レーザ光源8と、散乱光検出器10とからなる。
【0043】
上記全反射蛍光X線分析装置によって乾燥痕を分析する際のウエハの座標位置を求める方法について説明する。
【0044】
すなわち、乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法において、気相分解の際に乾燥痕の試料表面における座標を記憶する工程と、座標の周辺にレーザ光を走査し、散乱されるレーザ光の散乱光強度を測定する工程と、散乱光強度が最大となる位置において微量不純物を分析する工程とを含む。
【0045】
この場合、気相分解装置においては、半導体ウエハ表面の薄膜または自然酸化膜をフッ酸気相中で分解した後、前記分解物を回収するための溶解液をウエハ表面に滴下し、上記液滴を上記気相分解処理した半導体ウエハ表面の全面に走査した後に上記液滴を半導体ウエハ表面で乾燥させ、この乾燥痕のウエハにおける座標を記憶する。
【0046】
次にウエハを全反射蛍光X線装置本体へ移す。気相分解装置によって作成された乾燥痕によるレーザ光の散乱光強度を測定しつつ気相分解装置で記憶された座標位置の周辺を走査して、散乱光強度が最大となる座標位置を求め、その座標位置でもって全反射蛍光X線装置で分析することが可能となっている。
【0047】
本発明の実施形態によれば、気相分解による乾燥痕をレーザ光で評価し、全反射蛍光X線分析で測定する座標位置が正確に知ることができるので、安定した高感度での全反射蛍光X線分析が可能となる。
【0048】
【発明の効果】
この発明の請求項1記載の全反射X線分析方法によれば、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、測定された散乱光強度から乾燥痕の形状を評価する工程と、所定の形状を示す乾燥痕に対して全反射蛍光X線分析で微量不純物を分析する工程とを含むので、レーザ光の散乱光強度から気相分解の乾燥痕の形状を評価、判断した後、全反射X線分析で測定することで、ウエハ表面の不純物量を高い精度で定量分析できる。これによって、半導体デバイス製造工程における適切な汚染評価が可能となり、安定した半導体デバイスの生産ができる効果がある。
【0049】
請求項2では、所定の形状を示す乾燥痕は、この乾燥痕によるレーザ光の散乱光強度が予め設定した規定値の範囲内にある乾燥痕であるので、気相分解−全反射X線分析法による安定した高感度での分析が可能となる。
【0050】
この発明の請求項3記載の全反射X線分析方法によれば、乾燥痕にレーザ光を入射して乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、試料表面に存在する少なくとも一つ以上の乾燥痕に対して測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる位置において全反射蛍光X線分析で微量不純物を分析する工程とを含むので、気相分解による乾燥痕をレーザ光の散乱光強度で評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕の中心が散乱光強度が最大である点であることが判断でき、この座標位置で全反射X線分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できるので、請求項1と同様に安定した半導体デバイスの生産ができる効果がある。
【0051】
この発明の請求項4記載の全反射X線分析方法によれば、気相分解の際に乾燥痕の試料表面における座標を記憶する工程と、座標の周辺にレーザ光を走査し、散乱されるレーザ光の散乱光強度を測定する工程と、散乱光強度が最大となる位置において微量不純物を分析する工程とを含むので、気相分解による乾燥痕をレーザ光の散乱光強度で評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕によるレーザ光の散乱光強度を測定しつつ記憶された座標位置の周辺を走査して、散乱光強度が最大となる座標位置を求め、その座標位置でもって分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できるので、請求項1と同様に安定した半導体デバイスの生産ができる効果がある。
【0052】
この発明の請求項5記載の全反射X線分析装置によれば、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、散乱光検出器で測定された散乱光強度から乾燥痕の形状を評価し、所定の形状を乾燥痕に対して、蛍光X線検出器によって微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解の乾燥痕の形状を評価、判断した後、全反射X線分析で測定することで、ウエハ表面の不純物量を高い精度で定量分析できる。
【0053】
請求項6では、所定の形状を示す乾燥痕が、この乾燥痕によるレーザ光の散乱強度が予め設定した規定値の範囲内にある乾燥痕であるとき、蛍光X線検出器によって微量不純物を分析するので、気相分解−全反射X線分析法による安定した高感度での分析が可能となる。
【0054】
この発明の請求項7記載の全反射X線分析装置によれば、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、少なくとも一つ以上の乾燥痕に対して散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において蛍光X線検出器によって微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解による乾燥痕を評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕の中心が散乱光強度が最大である点であることが判断でき、この座標位置で全反射X線分析する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【0055】
この発明の請求項8記載の全反射X線分析装置によれば、微量不純物を含む乾燥痕を有する試料を作成するとともに乾燥痕の試料表面における座標を記憶する気相分解を行う気相分解装置と、試料ステージと、X線源と、蛍光X線検出器と、レーザ光源と、散乱光検出器とを備え、記憶された座標の周辺に対して散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、散乱光強度が最大となる試料ステージ位置において微量不純物を分析するようにしたので、レーザ光源からのレーザ光が乾燥痕で散乱された散乱光を散乱光検出器で検出し、その散乱光強度から気相分解による乾燥痕を評価し、全反射X線分析で測定する座標位置を正確に知ることができる。この際、乾燥痕によるレーザ光の散乱光強度を測定しつつ記憶された座標位置の周辺を走査して、散乱光強度が最大となる座標位置を求め、その座標位置でもって分析が可能する。これにより、安定した高感度での全反射X線分析が可能となり、ウエハ表面の不純物量を高い精度で定量分析できる。
【図面の簡単な説明】
【図1】この発明の実施形態の全反射蛍光X線分析装置の説明図である。
【図2】この発明の第1の実施形態において回収・乾燥条件の違いによる散乱光強度の変化を示すグラフである。
【図3】この発明の第1の実施形態において回収・乾燥条件の違いによる全反射蛍光X線強度の変化を示すグラフである。
【図4】この発明の第2の実施形態においてレーザの散乱光強度分布から全反射蛍光X線分析する座標を求める説明図である。
【符号の説明】
1 X線源
2 1次X線
3 試料ステージ
4 Siウエハ
5 蛍光X線
6 X線検出器
7 レーザ光
8 レーザ光源
9 散乱光
10 散乱光検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a highly sensitive total reflection X-ray fluorescence analysis method and analyzer for analyzing trace impurities on a semiconductor wafer surface.
[0002]
[Prior art]
With the recent miniaturization of semiconductor devices, analysis of trace impurities on the surface of a semiconductor wafer has become very important. This is because even a very small amount of metal impurities causes the electrical characteristics of the transistor to fluctuate, such as lowering the breakdown voltage of the gate oxide film. Therefore, in order to improve the electrical characteristics of the semiconductor device, it is necessary to reduce impurities on the wafer surface as much as possible. Therefore, it is necessary to analyze the amount of impurities on the wafer surface with high sensitivity and accuracy.
[0003]
As a highly sensitive composition analysis method of a wafer surface, there is a method of concentrating and recovering a small amount of impurities on the wafer surface, and then measuring the concentration with a total reflection X-ray fluorescence analyzer (for example, Patent Documents 1 and 2). This analysis method is called gas phase decomposition-total reflection X-ray fluorescence analysis.
[0004]
This gas phase decomposition-total reflection X-ray fluorescence analysis method comprises: (1) a step of gas phase decomposition of a thin oxide film or a natural oxide film on a wafer surface in hydrofluoric acid vapor; The method comprises the steps of: (3) drying the recovered liquid; and (4) measuring the trace of the dried recovered liquid by total reflection X-ray fluorescence analysis. As described above, in the gas phase decomposition-total reflection X-ray fluorescence spectrometry, contaminants on the entire surface of the wafer are collected and measured at one place, so that the analysis can be performed with high sensitivity.
[0005]
[Patent Document 1]
JP-A-2000-9615
[Patent Document 2]
JP 2001-201442 A
[0006]
[Problems to be solved by the invention]
However, in the above-described gas phase decomposition-total reflection X-ray fluorescence spectrometry, there is a problem that the shape of the dry trace affects the measurement accuracy as described below.
[0007]
Generally, in the total reflection X-ray fluorescence analysis, as described in JP-A-6-207889 and JP-A-8-327566, it is known that the quantitative analysis value changes depending on the shape of the measurement target portion. In particular, in the gas phase decomposition-total reflection X-ray fluorescence spectrometry, since the contaminants on the wafer surface are recovered and then dried, the shape of the drying mark changes depending on the recovery and drying conditions, and the quantitative analysis value is reduced. There are changing issues.
[0008]
Therefore, an object of the present invention is to provide a total reflection X-ray analysis method and an analyzer capable of performing gas phase decomposition-total reflection X-ray fluorescence analysis capable of more accurate quantitative measurement in view of the above-mentioned problems. That is.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a total reflection X-ray analysis method according to claim 1 of the present invention comprises a step of decomposing a thin film or a natural oxide film containing trace impurities formed on the surface of a sample in a fluorine gas phase; A step of dropping a solution for recovering a decomposition product generated by decomposition in the fluorine gas phase onto a sample surface and scanning the solution over the entire surface of the sample, and applying the solution on the sample surface; Forming a dry mark by drying at a total reflection X-ray fluorescence analysis of the dry mark, wherein a laser beam is incident on the dry mark and the drying is performed. Measuring the intensity of the scattered light of the laser light scattered from the trace, evaluating the shape of the dry trace from the measured scattered light intensity, and performing the total reflection fluorescence on the dry trace having a predetermined shape. Analyzing the trace impurities by X-ray analysis Including the.
[0010]
As described above, the step of measuring the scattered light intensity of the laser light scattered from the drying mark by injecting the laser light into the drying mark, the step of evaluating the shape of the drying mark from the measured scattered light intensity, Analyzing the traces of the traces of the dried traces showing the shape by total reflection X-ray fluorescence analysis, so that the shape of the traces of the vapor phase decomposition is evaluated and determined from the intensity of the scattered light of the laser beam, and then the total reflection is performed. By measuring by X-ray analysis, the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0011]
In the total reflection X-ray analysis method according to the second aspect, in the total reflection X-ray analysis method according to the first aspect, the dry trace having a predetermined shape is defined by the intensity of the scattered light of the laser beam by the dry trace set in advance. Dry marks within the range of values. As described above, since the dry trace having a predetermined shape is a dry trace in which the intensity of the scattered light of the laser beam by the dry trace is within a predetermined range, a gas phase decomposition-total reflection X-ray analysis method is used. Enables stable and highly sensitive analysis.
[0012]
The total reflection X-ray analysis method according to claim 3 is obtained by decomposing a thin film containing trace impurities or a natural oxide film formed on the surface of the sample in a fluorine gas phase, and decomposing the thin film in the fluorine gas phase. A step of scanning the solution over the entire surface of the sample by dropping a solution for recovering the decomposed product onto the sample surface, and a step of drying the solution on the sample surface to form a dry mark. A total reflection X-ray fluorescence analysis method for measuring the dry traces by total internal reflection X-ray fluorescence analysis, wherein the intensity of the laser light scattered from the dry traces by irradiating a laser beam to the dry traces And measuring the intensity distribution of the scattered light from the scattered light intensity measured for at least one or more of the dry traces present on the sample surface, and at a position where the scattered light intensity is maximized. The total reflection X-ray fluorescence analysis And a step of analyzing the impurities.
[0013]
As described above, the step of measuring the scattered light intensity of the laser light scattered from the drying mark by irradiating the laser light on the drying mark, and the scattering measured on at least one or more drying marks existing on the sample surface. Determining the intensity distribution of the scattered light from the light intensity, and analyzing the trace impurities by total reflection X-ray fluorescence analysis at the position where the scattered light intensity is maximized. The coordinate position measured by the intensity and measured by the total reflection X-ray analysis can be accurately known. At this time, it can be determined that the center of the dry trace is the point where the scattered light intensity is maximum, and the total reflection X-ray analysis is performed at this coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0014]
The total reflection X-ray analysis method according to claim 4 is obtained by decomposing a thin film containing trace impurities or a natural oxide film formed on the sample surface in a fluorine gas phase, and decomposing the thin film or the natural oxide film in the fluorine gas phase. A step of scanning the solution over the entire surface of the sample by dropping a solution for recovering the decomposed product onto the sample surface, and a step of drying the solution on the sample surface to form a dry mark. A total reflection X-ray fluorescence analysis method for measuring the dry marks by total reflection X-ray fluorescence analysis, wherein the step of storing the coordinates of the dry marks on the sample surface during the gas phase decomposition, Scanning a laser beam around the coordinates to measure the scattered light intensity of the scattered laser light; and analyzing the trace impurity at a position where the scattered light intensity is maximized.
[0015]
Thus, the step of storing the coordinates of the dry traces on the sample surface during the gas phase decomposition, the step of scanning the periphery of the coordinates with laser light and measuring the scattered light intensity of the scattered laser light, Includes the step of analyzing trace impurities at the position where the intensity is maximum, so that the dry traces due to gas phase decomposition are evaluated by the scattered light intensity of laser light, and the coordinate position measured by total reflection X-ray analysis is accurately known. Can be. At this time, the periphery of the stored coordinate position is scanned while measuring the intensity of the scattered light of the laser beam due to the drying marks, a coordinate position where the scattered light intensity is maximized is determined, and the analysis is performed using the coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0016]
The total reflection X-ray analyzer according to claim 5, wherein the sample stage capable of holding and moving a sample having a dry mark containing a trace amount of impurities, and a small incident angle with respect to the surface of the sample held on the sample stage. An X-ray source for irradiating primary X-rays, a fluorescent X-ray detector for measuring the intensity of fluorescent X-rays generated from the sample surface irradiated with the primary X-rays, and analyzing the trace impurities; A laser light source for injecting laser light into the same sample surface portion as the next X-ray incident position, and scattered light for detecting scattered light in which the laser light is scattered on the sample surface and measuring scattered light intensity of the laser light A detector, and evaluates the shape of the dry mark from the scattered light intensity measured by the scattered light detector, and analyzes the trace impurities by the fluorescent X-ray detector for the predetermined shape of the dry mark. I did it.
[0017]
Thus, the sample stage, the X-ray source, the fluorescent X-ray detector, the laser light source, and the scattered light detector are provided, and the shape of the dry mark is evaluated from the scattered light intensity measured by the scattered light detector. The X-ray fluorescence detector was used to analyze trace impurities in the predetermined shape using the X-ray fluorescence detector, so that the laser light from the laser light source was detected by the scattered light detector. Then, after evaluating and judging the shape of the dry trace of the gas phase decomposition from the intensity of the scattered light, and measuring the shape by total reflection X-ray analysis, the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0018]
A total reflection X-ray analyzer according to a sixth aspect is the total reflection X-ray fluorescence analyzer according to the fifth aspect, wherein a dry mark having a predetermined shape has a predetermined scattering intensity of laser light due to the dry mark. When the dry trace is within the range of the value, the trace impurity is analyzed by the X-ray fluorescence detector. As described above, when the dry trace having a predetermined shape is a dry trace in which the scattering intensity of the laser light by the dry trace is within a predetermined range, a trace impurity is analyzed by the fluorescent X-ray detector. Therefore, stable and highly sensitive analysis by gas phase decomposition-total reflection X-ray analysis becomes possible.
[0019]
The total reflection X-ray analysis apparatus according to claim 7, wherein the sample stage capable of holding and moving a sample having a dry trace containing a trace amount of impurities, and a small incident angle with respect to the sample surface held on the sample stage. An X-ray source for irradiating primary X-rays, a fluorescent X-ray detector for measuring the intensity of fluorescent X-rays generated from the sample surface irradiated with the primary X-rays, and analyzing the trace impurities; A laser light source for injecting laser light into the same sample surface portion as the next X-ray incident position, and scattered light for detecting scattered light in which the laser light is scattered on the sample surface and measuring scattered light intensity of the laser light With a detector, the intensity distribution of scattered light is determined from the scattered light intensity measured by the scattered light detector for at least one or more of the dry traces present on the sample surface, and the scattered light intensity is maximized. Said sample stage It was to analyze the trace impurities by the fluorescent X-ray detector in the location.
[0020]
As described above, the sample stage, the X-ray source, the fluorescent X-ray detector, the laser light source, and the scattered light detector were provided, and at least one or more dry traces were measured by the scattered light detector. The intensity distribution of the scattered light is obtained from the scattered light intensity, and trace impurities are analyzed by the fluorescent X-ray detector at the sample stage position where the scattered light intensity is maximum, so that the laser light from the laser light source is scattered by drying marks. The scattered light detected is detected by a scattered light detector, and a dry trace due to gas phase decomposition is evaluated based on the scattered light intensity, so that a coordinate position measured by total reflection X-ray analysis can be accurately known. At this time, it can be determined that the center of the dry trace is the point where the scattered light intensity is maximum, and the total reflection X-ray analysis is performed at this coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0021]
A total-reflection X-ray analyzer according to claim 8, wherein a gas-phase decomposition apparatus that prepares a sample having a dry mark containing a trace impurity and performs a gas-phase decomposition that stores coordinates of the dry mark on the sample surface; A sample stage capable of holding and moving a sample having a dry mark, an X-ray source that irradiates a primary X-ray at a small incident angle to the sample surface held on the sample stage, and the primary X-ray A fluorescent X-ray detector for measuring the intensity of fluorescent X-rays generated from the sample surface irradiated with the X-rays and analyzing the trace impurities, and irradiating a laser beam to the sample surface portion at the same incident position as the primary X-rays A laser light source, and a scattered light detector that detects scattered light in which the laser light is scattered on the sample surface and measures the scattered light intensity of the laser light. Measured with scattered light detector It has been determined the intensity distribution of the scattered light from the scattered light intensity, and to analyze the trace impurities in the sample stage position where the scattered light intensity is maximized.
[0022]
As described above, a gas phase decomposition apparatus for producing a sample having a dry trace containing a trace amount of impurities and storing the coordinates of the dry trace on the sample surface, a sample stage, an X-ray source, and a fluorescent X-ray A detector, a laser light source, and a scattered light detector are provided, and an intensity distribution of the scattered light is obtained from the scattered light intensity measured by the scattered light detector around the stored coordinates, and the scattered light intensity is maximized. Since trace impurities are analyzed at the sample stage position, laser light from the laser light source is scattered by the drying traces, and the scattered light is detected by the scattered light detector. The marks can be evaluated and the coordinate position measured by total reflection X-ray analysis can be accurately known. At this time, by scanning the periphery of the stored coordinate position while measuring the intensity of the scattered light of the laser beam due to the drying mark, a coordinate position where the scattered light intensity is maximum is obtained, and the analysis can be performed using the coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram of a total reflection X-ray analyzer according to the first embodiment of the present invention.
[0024]
As shown in FIG. 1, this total reflection X-ray analyzer includes a sample stage 3 capable of holding and moving a sample (Si wafer) 4 having a dry mark containing a trace amount of impurities, and a sample surface held on the sample stage 3. X-ray source 1 that irradiates primary X-rays 2 at a small incident angle with respect to the sample, and intensity of fluorescent X-rays 5 generated from the surface of the sample irradiated with primary X-rays 2 are measured to analyze trace impurities. A fluorescent X-ray detector 6, a laser light source 8 for irradiating a laser light 7 on the same sample surface portion as the incident position of the primary X-ray 2, and a laser 9 for detecting scattered light 9 where the laser light 7 is scattered on the sample surface. A scattered light detector 10 for measuring the intensity of the scattered light of the light 7, the shape of the dry mark is evaluated from the scattered light intensity measured by the scattered light detector 10, Trace impurities were analyzed by the X-ray detector 6.
[0025]
As described above, in the total reflection X-ray fluorescence apparatus of the present embodiment, in addition to the function of X-ray analysis which also has the conventional total reflection X-ray fluorescence, the laser beam 7 for evaluating the shape of the drying mark and the scattering It has a photodetector 10.
[0026]
First, the X-ray analysis function will be described. The total reflection X-ray fluorescence apparatus makes primary X-rays 2 from an X-ray source 1 incident on a Si wafer 4 held on a sample stage 3 at a low angle. In a general Si wafer surface contamination evaluation, the incident angle of the primary X-ray is about 0.5 degrees. Fluorescent X-rays 5 excited on the surface of the Si wafer 4 by the primary X-rays 2 are detected by a fluorescent X-ray detector 6 to analyze the composition of the wafer surface with high sensitivity.
[0027]
In addition to the function of X-ray analysis, as described above, a laser light source 8 for generating a laser beam 7 for evaluating the shape of a dry mark and a scattered light detector for detecting scattered light 9 scattered on the sample surface 10 are provided.
[0028]
In the total reflection X-ray fluorescence spectrometer of the present embodiment, the shape of the dry mark obtained by the gas phase decomposition method is detected by the detector 10 as the scattered light 9 in which the laser light 7 from the laser light source 8 is scattered by the dry mark. Then, after evaluating the shape of the drying mark from the intensity of the scattered light 9, total reflection X-ray fluorescence analysis is performed.
[0029]
That is, a step of decomposing a thin film containing trace impurities or a natural oxide film formed on the surface of a sample in a fluorine gas phase, and a step of dissolving a solution for collecting a decomposition product generated by decomposition in the fluorine gas phase as a sample The method includes a step of dripping the solution on the surface and scanning the solution over the entire surface of the sample, and a step of drying the solution on the sample surface to form a dry mark, and the dry mark is measured by total reflection X-ray fluorescence analysis In the total reflection X-ray fluorescence analysis method, a step of measuring the scattered light intensity of the laser light scattered from the drying mark by injecting the laser light into the drying mark and evaluating the shape of the drying mark from the measured scattered light intensity And a step of analyzing trace impurities by a total reflection X-ray fluorescence analysis for a dry trace having a predetermined shape.
[0030]
FIG. 2 shows the difference in the scattering intensity of the laser light due to the drying traces under different conditions for recovery and drying. As shown in FIG. 2, it can be seen that the intensity of the scattered light of the laser beam changes depending on the conditions of the collection and drying. In FIG. 2, the recovery / drying conditions A to D are such that the size of the recovery trace (dry trace) changes depending on the amount of the recovered liquid and the drying time. The biggest.
[0031]
FIG. 3 shows the result of analysis of Fe contained as an impurity in the collected trace of FIG. 2 by total reflection X-ray fluorescence. Since the traces are collected from wafers in the same process, the amounts of Fe contained as impurities are considered to be the same. In FIG. 3, the detection intensity is similar under the collection / drying conditions B, C, and D, but the detection intensity changes under the conditions A and E. This is presumably because the collection trace was large under the condition A and small under the condition E, resulting in a difference in the total reflection X-ray fluorescence intensity. Therefore, in the case of the Si wafer in the process described in the present embodiment, when the scattered light intensity is between 100 and 150, it can be determined that a correct analysis result has been obtained by the gas phase decomposition-total reflection X-ray fluorescence analysis. .
[0032]
As described above, according to the present embodiment, dry traces in the gas phase decomposition-total reflection X-ray fluorescence analysis method can be evaluated by laser light, and after the evaluation result, measurement by total reflection X-ray fluorescence is performed. X-ray fluorescence analysis with high sensitivity at high sensitivity.
[0033]
In addition, the shape of the drying mark is evaluated by the scattering intensity of the laser beam, and only when the scattering intensity is within a range of a predetermined value, is analyzed by a total reflection X-ray fluorescence apparatus. Stable and highly sensitive analysis by reflection X-ray fluorescence analysis becomes possible.
[0034]
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is an explanatory diagram for obtaining coordinates for total reflection X-ray fluorescence analysis from the scattered light intensity distribution of the laser in the second embodiment of the present invention. FIG. 1 is referred to in the description of the total reflection X-ray analyzer.
[0035]
This total reflection X-ray analyzer includes a sample stage 3, an X-ray source 1, a fluorescent X-ray detector 6, a laser light source 8, and a scattered light detector 10, as in the first embodiment. I have. The intensity distribution of scattered light is obtained from the scattered light intensity measured by the scattered light detector 10 for at least one or more dry traces present on the sample surface. Trace impurities were analyzed by the X-ray detector 6.
[0036]
A method of determining the coordinate position of a wafer when analyzing a drying mark by the total reflection X-ray fluorescence analyzer will be described.
[0037]
That is, in a total reflection X-ray fluorescence analysis method of measuring the dry trace by total reflection X-ray fluorescence analysis, a step of measuring the scattered light intensity of the laser light scattered from the dry trace by irradiating the dry trace with laser light, Calculate the scattered light intensity distribution from the scattered light intensity measured for at least one or more dry traces on the sample surface, and analyze trace impurities by total reflection X-ray fluorescence analysis at the position where the scattered light intensity is maximum And a step of performing.
[0038]
FIG. 4 shows the result of measuring the distribution of the scattered light intensity due to the drying trace by scanning the sample stage. The origin (0, 0) is the coordinate at which the recovery liquid is dropped, but in FIG. 4, it can be seen that the scattered light intensity is the maximum at the coordinate (-2, -4). From this, it can be determined that the center of the dry mark is the above point, and it is understood that the total reflection X-ray fluorescence analysis should be performed at this coordinate position.
[0039]
According to the embodiment of the present invention, the dry trace due to the gas phase decomposition is evaluated by the laser beam, and the coordinate position measured by the total reflection X-ray fluorescence analysis can be accurately known. X-ray fluorescence analysis becomes possible.
[0040]
A third embodiment of the present invention will be described. FIG. 1 is referred to in the description of the total reflection X-ray analyzer.
[0041]
This total reflection X-ray analyzer is similar to that of the first embodiment, together with a gas phase decomposition apparatus for preparing a sample having a dry trace containing a trace impurity and performing a gas phase decomposition for storing the coordinates of the dry trace on the sample surface. 1, a sample stage 3, an X-ray source 1, a fluorescent X-ray detector 6, a laser light source 8, and a scattered light detector 10. Further, the intensity distribution of scattered light is obtained from the scattered light intensity measured by the scattered light detector 10 around the stored coordinates, and trace impurities are analyzed at the sample stage position where the scattered light intensity is maximized. did.
[0042]
As described above, the gas-phase decomposition / total reflection X-ray fluorescence spectrometer according to the embodiment of the present invention is roughly divided into a gas-phase decomposition apparatus and a total reflection X-ray fluorescence X-ray analyzer main body. The total reflection X-ray analyzer main body includes a sample stage 3, an X-ray source 1, a fluorescent X-ray detector 6, a laser light source 8, and a scattered light detector 10.
[0043]
A method of determining the coordinate position of a wafer when analyzing a drying mark by the total reflection X-ray fluorescence analyzer will be described.
[0044]
That is, in a total reflection X-ray fluorescence analysis method for measuring dry marks by total reflection X-ray fluorescence analysis, a step of storing the coordinates of the dry marks on the sample surface at the time of gas phase decomposition, and scanning a laser beam around the coordinates. And measuring a scattered light intensity of the scattered laser light, and analyzing a trace impurity at a position where the scattered light intensity is maximized.
[0045]
In this case, in the gas phase decomposition apparatus, after decomposing a thin film or a natural oxide film on the semiconductor wafer surface in a hydrofluoric acid gas phase, a dissolving solution for collecting the decomposed product is dropped on the wafer surface, Is scanned over the entire surface of the semiconductor wafer that has undergone the gas phase decomposition process, and then the droplets are dried on the semiconductor wafer surface, and the coordinates of the dry trace on the wafer are stored.
[0046]
Next, the wafer is transferred to the total reflection X-ray fluorescence apparatus main body. Scanning the periphery of the coordinate position stored in the gas phase decomposition device while measuring the scattered light intensity of the laser light due to the drying mark created by the gas phase decomposition device, to find the coordinate position where the scattered light intensity is maximum, With the coordinate position, it is possible to analyze with a total reflection fluorescent X-ray apparatus.
[0047]
According to the embodiment of the present invention, the dry trace due to the gas phase decomposition is evaluated by the laser beam, and the coordinate position measured by the total reflection X-ray fluorescence analysis can be accurately known. X-ray fluorescence analysis becomes possible.
[0048]
【The invention's effect】
According to the total reflection X-ray analysis method according to claim 1 of the present invention, a step of irradiating a laser beam on a dry mark and measuring a scattered light intensity of the laser light scattered from the dry mark, Since the method includes a step of evaluating the shape of the drying mark from the intensity and a step of analyzing trace impurities by total reflection X-ray fluorescence analysis for the drying mark having a predetermined shape, the gas phase decomposition is performed based on the intensity of the scattered light of the laser light. After evaluating and judging the shape of the dry trace, the amount of impurities on the wafer surface can be quantitatively analyzed with high precision by measuring the total trace X-ray analysis. As a result, it is possible to perform appropriate contamination evaluation in the semiconductor device manufacturing process, and it is possible to produce a stable semiconductor device.
[0049]
According to the second aspect, the dry trace having a predetermined shape is a dry trace in which the intensity of the scattered light of the laser beam due to the dry trace is within a predetermined range, so that the gas phase decomposition-total reflection X-ray analysis is performed. The method enables stable and highly sensitive analysis.
[0050]
According to the total reflection X-ray analysis method according to the third aspect of the present invention, the step of measuring the intensity of the scattered light of the laser light scattered from the dry trace by injecting the laser light into the dry trace, Determining the intensity distribution of the scattered light from the scattered light intensity measured for at least one or more dry traces, and analyzing trace impurities by total reflection X-ray fluorescence analysis at the position where the scattered light intensity is maximized. Therefore, it is possible to evaluate the dry trace due to the gas phase decomposition based on the intensity of the scattered light of the laser beam, and to accurately know the coordinate position measured by the total reflection X-ray analysis. At this time, it can be determined that the center of the dry trace is the point where the scattered light intensity is maximum, and the total reflection X-ray analysis is performed at this coordinate position. As a result, stable total reflection X-ray analysis can be performed with high sensitivity, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0051]
According to the total reflection X-ray analysis method according to the fourth aspect of the present invention, the step of storing the coordinates of the dry traces on the sample surface during the gas phase decomposition, and scanning the periphery of the coordinates with the laser beam to be scattered. Since the method includes a step of measuring the scattered light intensity of the laser light and a step of analyzing a trace impurity at a position where the scattered light intensity is maximized, a dry trace due to gas phase decomposition is evaluated by the scattered light intensity of the laser light, The coordinate position measured by reflection X-ray analysis can be accurately known. At this time, the periphery of the stored coordinate position is scanned while measuring the intensity of the scattered light of the laser beam due to the drying marks, a coordinate position where the scattered light intensity is maximized is determined, and the analysis is performed using the coordinate position. As a result, stable total reflection X-ray analysis can be performed with high sensitivity, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0052]
According to a total reflection X-ray analyzer according to a fifth aspect of the present invention, the apparatus comprises a sample stage, an X-ray source, a fluorescent X-ray detector, a laser light source, and a scattered light detector. The shape of the drying mark was evaluated from the intensity of the scattered light measured in the above, and trace impurities were analyzed by a fluorescent X-ray detector for the predetermined shape of the drying mark, so that the laser light from the laser light source was dried. The scattered light scattered by the trace is detected by a scattered light detector, and the shape of the dry trace of the gas phase decomposition is evaluated and judged from the scattered light intensity. Impurities can be quantitatively analyzed with high accuracy.
[0053]
According to the sixth aspect, when the dry trace having a predetermined shape is a dry trace in which the scattering intensity of the laser beam by the dry trace falls within a predetermined range, a trace impurity is analyzed by a fluorescent X-ray detector. Therefore, stable and highly sensitive analysis by gas phase decomposition-total reflection X-ray analysis can be performed.
[0054]
According to the total reflection X-ray analyzer according to claim 7 of the present invention, the apparatus comprises a sample stage, an X-ray source, a fluorescent X-ray detector, a laser light source, and a scattered light detector, and at least one or more Calculate the intensity distribution of scattered light from the scattered light intensity measured by the scattered light detector for the dry trace, and analyze the trace impurities by the fluorescent X-ray detector at the sample stage position where the scattered light intensity is maximum. As a result, the laser light from the laser light source is scattered by the drying marks, and the scattered light is detected by the scattered light detector. The drying marks due to gas phase decomposition are evaluated based on the scattered light intensity, and measured by total reflection X-ray analysis. The coordinate position can be accurately known. At this time, it can be determined that the center of the dry trace is the point where the scattered light intensity is the maximum, and the total reflection X-ray analysis is performed at this coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[0055]
According to the total reflection X-ray analyzer according to claim 8 of the present invention, a gas phase decomposition apparatus for preparing a sample having a dry trace containing a trace impurity and performing a gas phase decomposition for storing the coordinates of the dry trace on the sample surface. , A sample stage, an X-ray source, a fluorescent X-ray detector, a laser light source, and a scattered light detector, and the scattered light intensity measured by the scattered light detector around the stored coordinates. Scattered light intensity distribution is obtained from the sample stage, and trace impurities are analyzed at the sample stage position where the scattered light intensity becomes maximum. , The dry trace due to gas phase decomposition is evaluated from the scattered light intensity, and the coordinate position measured by total reflection X-ray analysis can be accurately known. At this time, by scanning the periphery of the stored coordinate position while measuring the intensity of the scattered light of the laser beam due to the drying mark, a coordinate position where the scattered light intensity is maximum is obtained, and the analysis can be performed using the coordinate position. Thus, stable and highly sensitive total reflection X-ray analysis can be performed, and the amount of impurities on the wafer surface can be quantitatively analyzed with high accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a total reflection X-ray fluorescence spectrometer according to an embodiment of the present invention.
FIG. 2 is a graph showing a change in scattered light intensity due to a difference in recovery and drying conditions in the first embodiment of the present invention.
FIG. 3 is a graph showing a change in total reflection X-ray fluorescence intensity due to a difference in recovery and drying conditions in the first embodiment of the present invention.
FIG. 4 is an explanatory diagram for obtaining coordinates for total reflection X-ray fluorescence analysis from a laser scattered light intensity distribution in a second embodiment of the present invention.
[Explanation of symbols]
1 X-ray source
2 Primary X-ray
3 Sample stage
4 Si wafer
5 X-ray fluorescence
6 X-ray detector
7 Laser light
8 Laser light source
9 scattered light
10 Scattered light detector

Claims (8)

試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記乾燥痕にレーザ光を入射して前記乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、前記測定された散乱光強度から前記乾燥痕の形状を評価する工程と、所定の形状を示す乾燥痕に対して前記全反射蛍光X線分析で前記微量不純物を分析する工程とを含むことを特徴とする全反射蛍光X線分析方法。A step of decomposing a thin film containing trace impurities or a natural oxide film formed on the sample surface in a fluorine gas phase, and dissolving a solution for recovering a decomposition product generated by decomposing in the fluorine gas phase with the sample surface; Scanning the solution over the entire surface of the sample by dropping the solution over the entire surface of the sample, and drying the solution over the surface of the sample to form a dry mark. A total reflection X-ray fluorescence analysis method for measuring the intensity of scattered light of the laser light scattered from the dry mark by irradiating the dry light with the laser light, and the measured scattered light intensity A step of evaluating the shape of the dry mark from the step of: and a step of analyzing the trace impurities by the total internal reflection X-ray fluorescence analysis on the dry mark having a predetermined shape. Analysis method. 所定の形状を示す乾燥痕は、この乾燥痕によるレーザ光の散乱光強度が予め設定した規定値の範囲内にある乾燥痕である請求項1記載の全反射蛍光X線分析方法。2. The method according to claim 1, wherein the dry trace having a predetermined shape is a dry trace in which the intensity of the scattered light of the laser beam due to the dry trace is within a predetermined range. 試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記乾燥痕にレーザ光を入射して前記乾燥痕から散乱されるレーザ光の散乱光強度を測定する工程と、前記試料表面に存在する少なくとも一つ以上の前記乾燥痕に対して測定された前記散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる位置において前記全反射蛍光X線分析で前記微量不純物を分析する工程とを含むことを特徴とする全反射蛍光X線分析方法。A step of decomposing a thin film containing trace impurities or a natural oxide film formed on the sample surface in a fluorine gas phase, and dissolving a solution for recovering a decomposition product generated by decomposing in the fluorine gas phase with the sample surface; Scanning the solution over the entire surface of the sample by dropping the solution over the entire surface of the sample, and drying the solution over the surface of the sample to form a dry mark. A total reflection X-ray fluorescence X-ray analysis method of measuring the intensity of the scattered light of the laser light scattered from the dry trace by irradiating the dry trace with a laser beam, at least present on the sample surface Obtain the intensity distribution of the scattered light from the scattered light intensity measured for one or more of the drying traces, and analyze the trace impurities by the total reflection X-ray fluorescence analysis at a position where the scattered light intensity is maximized. Process and Total reflection X-ray fluorescence analysis method according to symptoms. 試料表面に形成された微量不純物を含む薄膜または自然酸化膜をフッ素気相中で分解する工程と、前記フッ素気相中で分解することで生じた分解物を回収するための溶解液を試料表面に滴下して前記溶解液を前記試料表面の全面に走査する工程と、前記溶解液を試料表面上で乾燥させて乾燥痕を形成する工程とを含み、前記乾燥痕を全反射蛍光X線分析で測定する全反射蛍光X線分析方法であって、前記気相分解の際に乾燥痕の前記試料表面における座標を記憶する工程と、前記座標の周辺にレーザ光を走査し、散乱されるレーザ光の散乱光強度を測定する工程と、前記散乱光強度が最大となる位置において前記微量不純物を分析する工程とを含むことを特徴とする全反射蛍光X線分析方法。A step of decomposing a thin film containing trace impurities or a natural oxide film formed on the sample surface in a fluorine gas phase, and dissolving a solution for recovering a decomposition product generated by decomposing in the fluorine gas phase with the sample surface; Scanning the solution over the entire surface of the sample by dropping the solution over the entire surface of the sample, and drying the solution over the surface of the sample to form a dry mark. A total reflection X-ray fluorescence analysis method for measuring by means of: a step of storing coordinates of a dry trace on the sample surface during the gas phase decomposition, and scanning a laser beam around the coordinates to scatter the laser beam. A total reflection X-ray fluorescence analysis method, comprising: measuring a scattered light intensity of light; and analyzing the trace impurity at a position where the scattered light intensity is maximized. 微量不純物を含む乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記散乱光検出器で測定された散乱光強度から前記乾燥痕の形状を評価し、所定の形状を乾燥痕に対して、前記蛍光X線検出器によって前記微量不純物を分析するようにしたことを特徴とする全反射蛍光X線分析装置。A sample stage capable of holding and moving a sample having a dry mark containing trace impurities, an X-ray source for irradiating a primary X-ray at a small incident angle to the sample surface held on the sample stage, A fluorescent X-ray detector that measures the intensity of fluorescent X-rays generated from the sample surface irradiated with primary X-rays and analyzes the trace impurities, and the sample surface portion that is the same as the primary X-ray incident position; A laser light source for injecting laser light, and a scattered light detector for detecting the scattered light in which the laser light is scattered on the sample surface and measuring the scattered light intensity of the laser light, and measuring with the scattered light detector The shape of the dry trace is evaluated from the scattered light intensity obtained, and the trace impurity is analyzed for the dry trace in a predetermined shape by the fluorescent X-ray detector. Line analyzer. 所定の形状を示す乾燥痕が、この乾燥痕によるレーザ光の散乱強度が予め設定した規定値の範囲内にある乾燥痕であるとき、前記蛍光X線検出器によって前記微量不純物を分析する請求項5記載の全反射蛍光X線分析装置。When the dry trace having a predetermined shape is a dry trace in which the scattering intensity of the laser beam by the dry trace falls within a predetermined range, a trace impurity is analyzed by the fluorescent X-ray detector. 6. The total reflection X-ray fluorescence spectrometer according to 5. 微量不純物を含む乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記試料表面に存在する少なくとも一つ以上の前記乾燥痕に対して前記散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる前記試料ステージ位置において前記蛍光X線検出器によって前記微量不純物を分析するようにしたことを特徴とする全反射蛍光X線分析装置。A sample stage capable of holding and moving a sample having a dry mark containing trace impurities, an X-ray source for irradiating a primary X-ray at a small incident angle to the sample surface held on the sample stage, A fluorescent X-ray detector that measures the intensity of fluorescent X-rays generated from the sample surface irradiated with primary X-rays and analyzes the trace impurities, and the sample surface portion that is the same as the primary X-ray incident position; A laser light source that emits laser light, and a scattered light detector that detects scattered light in which the laser light is scattered on the sample surface and measures the scattered light intensity of the laser light, at least which is present on the sample surface. Obtain the intensity distribution of scattered light from the scattered light intensity measured by the scattered light detector for one or more of the dry traces, and at the sample stage position where the scattered light intensity is maximized, the fluorescent X-ray detector By Total reflection fluorescent X-ray analysis apparatus is characterized in that so as to analyze the trace impurities. 微量不純物を含む乾燥痕を有する試料を作成するとともに前記乾燥痕の前記試料表面における座標を記憶する気相分解を行う気相分解装置と、前記乾燥痕を有する試料を保持および移動できる試料ステージと、前記試料ステージ上に保持された前記試料表面に対して微小な入射角で1次X線を照射するX線源と、前記1次X線が照射された前記試料表面から発生する蛍光X線の強度を測定し前記微量不純物を分析する蛍光X線検出器と、前記1次X線の入射位置と同じ前記試料表面部分にレーザ光を入射するレーザ光源と、前記レーザ光が前記試料表面で散乱された散乱光を検出し前記レーザ光の散乱光強度を測定する散乱光検出器とを備え、前記記憶された座標の周辺に対して前記散乱光検出器で測定された散乱光強度から散乱光の強度分布を求め、前記散乱光強度が最大となる前記試料ステージ位置において前記微量不純物を分析するようにしたことを特徴とする全反射蛍光X線分析装置。A gas phase decomposition apparatus for preparing a sample having a dry mark containing a trace impurity and performing a gas phase decomposition for storing the coordinates of the dry mark on the sample surface, and a sample stage capable of holding and moving the sample having the dry mark An X-ray source for irradiating the sample surface held on the sample stage with primary X-rays at a small incident angle, and a fluorescent X-ray generated from the sample surface irradiated with the primary X-rays A fluorescent X-ray detector for measuring the intensity of the sample and analyzing the trace impurities, a laser light source for irradiating laser light to the same sample surface portion as the primary X-ray incidence position, and the laser light A scattered light detector that detects scattered scattered light and measures the scattered light intensity of the laser light, and scatters light from the scattered light intensity measured by the scattered light detector around the stored coordinates. Light intensity The calculated, total reflection X-ray fluorescence spectrometer for the scattered light intensity is characterized in that so as to analyze the trace impurities in the sample stage position to be a maximum.
JP2003131573A 2003-05-09 2003-05-09 Total reflection x-ray fluorescence analysis method and analysis apparatus Pending JP2004333364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131573A JP2004333364A (en) 2003-05-09 2003-05-09 Total reflection x-ray fluorescence analysis method and analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131573A JP2004333364A (en) 2003-05-09 2003-05-09 Total reflection x-ray fluorescence analysis method and analysis apparatus

Publications (1)

Publication Number Publication Date
JP2004333364A true JP2004333364A (en) 2004-11-25

Family

ID=33506707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131573A Pending JP2004333364A (en) 2003-05-09 2003-05-09 Total reflection x-ray fluorescence analysis method and analysis apparatus

Country Status (1)

Country Link
JP (1) JP2004333364A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122144A (en) * 2006-11-09 2008-05-29 Rigaku Industrial Co Specimen drip substrate for total-reflection fluorescence x-ray analysis, total reflection fluorescent x-ray analyzer, and total reflection fluorescent x-ray analysis method
CN103076352A (en) * 2012-12-28 2013-05-01 中国科学院高能物理研究所 Method for obtaining high-quality X-ray absorption spectrum of thin film sample
CN103454298A (en) * 2013-08-15 2013-12-18 浙江工业大学 Microbeam X-ray fluorescence analytical method
CN103454299A (en) * 2013-08-15 2013-12-18 浙江工业大学 Portable microbeam X-ray fluorescence spectrophotometer
CN104764762A (en) * 2014-01-02 2015-07-08 广州市怡文环境科技股份有限公司 Chemical sample preparation method used for determining content of arsenic in soil and waste water
CN104764633A (en) * 2014-01-02 2015-07-08 广州市怡文环境科技股份有限公司 Chemical sample preparation method used for determining content of heavy metal in soil and waste water
CN105466738A (en) * 2014-08-26 2016-04-06 广州市怡文环境科技股份有限公司 Chemical sample preparation method for testing trace quantity of elemental chromium in soil and sewage
WO2018163848A1 (en) * 2017-03-07 2018-09-13 株式会社リガク Sample collection device, sample collection method, and fluorescent x-ray analysis device employing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122144A (en) * 2006-11-09 2008-05-29 Rigaku Industrial Co Specimen drip substrate for total-reflection fluorescence x-ray analysis, total reflection fluorescent x-ray analyzer, and total reflection fluorescent x-ray analysis method
JP4537367B2 (en) * 2006-11-09 2010-09-01 株式会社リガク Sample reflection substrate for total reflection X-ray fluorescence analysis, total reflection X-ray fluorescence analyzer, and total reflection X-ray fluorescence analysis method
CN103076352A (en) * 2012-12-28 2013-05-01 中国科学院高能物理研究所 Method for obtaining high-quality X-ray absorption spectrum of thin film sample
CN103454298A (en) * 2013-08-15 2013-12-18 浙江工业大学 Microbeam X-ray fluorescence analytical method
CN103454299A (en) * 2013-08-15 2013-12-18 浙江工业大学 Portable microbeam X-ray fluorescence spectrophotometer
CN104764633A (en) * 2014-01-02 2015-07-08 广州市怡文环境科技股份有限公司 Chemical sample preparation method used for determining content of heavy metal in soil and waste water
CN104764762A (en) * 2014-01-02 2015-07-08 广州市怡文环境科技股份有限公司 Chemical sample preparation method used for determining content of arsenic in soil and waste water
CN104764762B (en) * 2014-01-02 2020-07-03 广州市怡文环境科技股份有限公司 Chemical sample preparation method for testing content of arsenic element in soil and sewage
CN105466738A (en) * 2014-08-26 2016-04-06 广州市怡文环境科技股份有限公司 Chemical sample preparation method for testing trace quantity of elemental chromium in soil and sewage
WO2018163848A1 (en) * 2017-03-07 2018-09-13 株式会社リガク Sample collection device, sample collection method, and fluorescent x-ray analysis device employing same
CN108885186A (en) * 2017-03-07 2018-11-23 株式会社理学 Sample recyclable device, sample recovery method and the fluorescent x-ray analyzer using them
KR101921726B1 (en) 2017-03-07 2019-02-13 가부시키가이샤 리가쿠 Sample collection device, sample collection method, and fluorescent X-ray analysis device using them
CN108885186B (en) * 2017-03-07 2019-11-12 株式会社理学 Sample recyclable device, sample recovery method and the fluorescent x-ray analyzer using them
US10989677B2 (en) 2017-03-07 2021-04-27 Rigaku Corporation Sample collecting device, sample collecting method, and fluorescent x-ray analysis apparatus using the same

Similar Documents

Publication Publication Date Title
CN1377460A (en) Method and apparatus for characterization of microelectronic feature quality
JP2007051934A (en) Mass axis calibration method in time-of-flight secondary ion mass analysis method
KR100233312B1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
US7358491B2 (en) Method and apparatus for the depth-resolved characterization of a layer of a carrier
JP2004333364A (en) Total reflection x-ray fluorescence analysis method and analysis apparatus
US6573497B1 (en) Calibration of CD-SEM by e-beam induced current measurement
US6573498B1 (en) Electric measurement of reference sample in a CD-SEM and method for calibration
US7900526B2 (en) Defect classification utilizing data from a non-vibrating contact potential difference sensor
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JP5712778B2 (en) Method for measuring film thickness of SOI layer of SOI wafer
JP2003045928A (en) METHOD FOR EVALUATING Cu CONTAMINATION IN SEMICONDUCTOR SILICON WAFER
KR100955434B1 (en) Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum
Hellin et al. Validation of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers
JP2928688B2 (en) Pollution element analysis method and device
Seah et al. Surface and interface characterization
JP2008089325A (en) Geological age measuring method by electron probe microanalyzer
EP3822622B1 (en) X-ray analysis system, x-ray analysis device, and vapor phase decomposition device
JP2004233279A (en) Evaluation method of semiconductor wafer and manufacturing method of semiconductor device
Wang et al. Analytical techniques for trace elemental analyses on wafer surfaces for monitoring and controlling contamination
Mori et al. A method of locating dried residue on a semiconductor wafer in vapor phase decomposition-total-reflection X-ray fluorescence spectrometry by monitoring scattered X-rays
Mori et al. Detection of unknown localized contamination on silicon wafer surface by sweeping-total reflection X-ray fluorescence analysis
US5528648A (en) Method and apparatus for analyzing contaminative element concentrations
JP3612245B2 (en) Method for analyzing impurity concentration of substrate
Funahashi et al. Enhanced analysis of particles and vapor phase decomposition droplets by total-reflection X-ray fluorescence
JP2002340794A (en) Method for measuring infrared absorption of semiconductor wafer