JPH10339691A - Method for measuring surface impurities - Google Patents

Method for measuring surface impurities

Info

Publication number
JPH10339691A
JPH10339691A JP9151422A JP15142297A JPH10339691A JP H10339691 A JPH10339691 A JP H10339691A JP 9151422 A JP9151422 A JP 9151422A JP 15142297 A JP15142297 A JP 15142297A JP H10339691 A JPH10339691 A JP H10339691A
Authority
JP
Japan
Prior art keywords
measured
vapor
ultrapure water
sample
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9151422A
Other languages
Japanese (ja)
Inventor
Kaoru Mizuno
薫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9151422A priority Critical patent/JPH10339691A/en
Publication of JPH10339691A publication Critical patent/JPH10339691A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extract contamination up to an arbitrary depth from the surface of an object while preventing contamination due to operation or a jig by dripping ultrapure water onto the surface of the object exposed to vapor of dissolution liquid thereby covering the entire surface with ultrapure water. SOLUTION: After being exposed to vapor of dissolution liquid, an object 1 is held horizontally while directing the surface upward and ultrapure water 6 is dripped thereon thus covering the entire surface with ultrapure water. If the surface of the object 1 is planar, the ultrapure water is settled o the surface through surface tension. When the liquid is sampled by means of a messpipette, the liquid droplet on the surface can be sample by substantially 100% regardless of hydrophobicity or hydrophilicity. When a sample stage 5 having a rotary mechanism is employed, the dissolution liquid touches only the object 1 and the messpipette 7 and contamination due to operation or a jig can be prevented. Furthermore, impurities can be extracted up to an arbitrary depth in a film while controlling the etching amount of the object 1 when HF and HNO3 or H2 O2 are employed as the dissolution liquid and the exposing time is varied respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、材料表面、特に半
導体ウェハ表面から任意の深さまでエッチングする技
術、および表面の不純物を抽出して、定性、定量する測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for etching a material surface, particularly a semiconductor wafer from a surface to an arbitrary depth, and a measuring method for extracting, qualitatively and quantitatively, impurities on the surface.

【0002】[0002]

【従来の技術】近年、半導体の集積化が進むにつれて、
その製造プロセスに要求される清浄度が厳しくなってい
る。特に、Fe,Ni,Cr等の重金属はSiのバンド
ギャップの中に準位を形成し、半導体の特性に大きな影
響を与え、Na,K等のアルカリ金属は半導体表面でイ
オンキャリアとして存在し、電気的リークを引き起こす
とされており、半導体素子の電気的特性を劣化させない
ためにはこれらの金属汚染を抑制することが重要であ
る。従って、ウェハ表面の汚染を正確に定性および定量
する技術が必要になる。
2. Description of the Related Art In recent years, as the integration of semiconductors progresses,
The degree of cleanliness required for the manufacturing process has become severe. In particular, heavy metals such as Fe, Ni, and Cr form levels in the band gap of Si and greatly affect the characteristics of the semiconductor. Alkali metals such as Na and K exist as ion carriers on the semiconductor surface. It is said that electrical leakage is caused, and it is important to suppress such metal contamination in order not to deteriorate the electrical characteristics of the semiconductor element. Therefore, a technique for accurately qualifying and quantifying wafer surface contamination is required.

【0003】従来このような目的でウェハ表面の分析を
行うために汚染を抽出するサンプリング方法(特開平2
−28533号等)は、疎水性の表面に対しては、ウェ
ハ上に溶解液を滴下して、ウェハを種々の方向に傾けた
り、回転運動を加えながらウェハ表面を一様に走査し、
ウェハ全体から汚染を回収する方法等が用いられた。ま
た、親水性の表面に対しては、予め表面をフッ酸蒸気に
曝露することにより表面に形成された酸化膜を溶解し
て、表面を疎水性にしたのち、溶解液を滴下して上記と
同様の操作を行い、汚染を回収する方法等がとられてき
た。しかしながら、従来の方法では、表面からのエッチ
ング量を制御することが困難で、表面から任意の深さま
で汚染の抽出を行うことができない。
Conventionally, a sampling method for extracting contamination in order to analyze a wafer surface for such a purpose (Japanese Patent Laid-Open No.
No. -28533), a solution is dropped on a wafer with respect to a hydrophobic surface, and the wafer is uniformly scanned while tilting the wafer in various directions or applying a rotating motion.
A method of collecting contamination from the whole wafer was used. For hydrophilic surfaces, an oxide film formed on the surface is dissolved in advance by exposing the surface to hydrofluoric acid vapor, and the surface is rendered hydrophobic. A method of collecting contamination by performing the same operation has been adopted. However, with the conventional method, it is difficult to control the amount of etching from the surface, and it is not possible to extract contamination to an arbitrary depth from the surface.

【0004】また、酸蒸気曝露だけでは溶解できないよ
うな厚い酸化膜全体から汚染を抽出するような場合は、
従来は図5のようなテフロンなどの容器や治具を用いて
超高純度のHF+HNO3 またはHF+H2 2 を保持
し、ここでウェハ表面被膜を溶解する方法などがとられ
てきたが、この方法では容器や治具からの汚染が問題と
なっていた。
In the case where contamination is extracted from a thick oxide film which cannot be dissolved only by exposure to acid vapor,
Conventionally, a method of holding ultra-high-purity HF + HNO 3 or HF + H 2 O 2 using a container such as Teflon or a jig as shown in FIG. 5 and dissolving the wafer surface coating has been adopted. The method had a problem of contamination from containers and jigs.

【0005】[0005]

【発明が解決しようとする課題】本発明は環境、試薬、
器具、操作などからの汚染を防止しながら被測定物表面
から任意の深さまでエッチングを行い、ここから汚染を
抽出する表面不純物測定方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention relates to an environment, a reagent,
It is an object of the present invention to provide a surface impurity measuring method for performing etching from a surface of an object to be measured to an arbitrary depth while preventing contamination from instruments and operations, and extracting contamination from the surface.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、以下の構成を要旨とする。すなわち、
(1) 被測定物の表面をHF蒸気と、HNO3 蒸気又
はH2 2 蒸気とに個別に連続的に曝露して蒸気を結露
させた後、被測定物表面に超純水を滴下して被測定物表
面全体を覆い、被測定物の表面に結露した液滴を超純水
に溶解させ試料溶液とした後、試料溶液を被測定物表面
から採取して被測定物表面から任意の深さまでの皮膜に
含有される不純物の定性分析と定量分析を行うことを特
徴とする表面不純物測定方法、および、(2) 被測定
物表面に超高純度のHF+HNO3 又はHF+H2 2
を滴下して被測定物表面全体を覆い、被測定物の表面被
膜を溶解して試料溶液とし、試料溶液を採取して試料容
器に入れ、試料容器を吸排気口を有する容器内に入れ、
容器の吸気口から清浄な気体を送り込み、排気口から蒸
気を排気することにより外部からの汚染を防止しながら
該試料溶液の溶媒を除去して濃縮した後、被測定物表面
から任意の深さまでの皮膜に含有される不純物の定性分
析と定量分析を行うことを特徴とする表面不純物測定方
法である。
The present invention has the following features to attain the above object. That is,
(1) After continuously exposing the surface of the device under test to HF vapor and HNO 3 vapor or H 2 O 2 vapor to condense the vapor, ultrapure water is dropped on the surface of the device under test. After covering the entire surface of the object to be measured by dissolving the droplets condensed on the surface of the object to be measured in ultrapure water to form a sample solution, the sample solution is sampled from the surface of the object to be measured, and the sample solution is removed from the surface of the object to be measured. A surface impurity measuring method characterized by performing qualitative analysis and quantitative analysis of impurities contained in a film up to a depth, and (2) ultra-high-purity HF + HNO 3 or HF + H 2 O 2 on the surface of an object to be measured.
To cover the entire surface of the object to be measured, dissolve the surface coating of the object to be measured to form a sample solution, collect the sample solution, put it in a sample container, and put the sample container in a container having a suction and exhaust port,
A clean gas is sent from the inlet of the container, and the vapor is exhausted from the exhaust port to prevent contamination from outside while removing and concentrating the solvent of the sample solution, from the surface of the object to an arbitrary depth. And a qualitative analysis and a quantitative analysis of impurities contained in the film.

【0007】[0007]

【発明の実施の形態】本発明では、クリーンルーム内に
おいて、まず図1に示すように被測定物を、表面溶解液
を加熱して発生させた蒸気に曝露する。蒸気曝露のの
ち、図2に示すように被測定物表面を上にして水平に保
持しながら、定量の超純水を滴下し、表面が超純水で完
全に覆われるようにする。このとき表面張力により滴下
した超純水は被測定物表面が平面であれば表面上に留ま
っている。この液を図3に示すようにピペット等の器具
と清浄な圧搾空気を用いて採取すると、疎水性、親水性
にかかわらず表面の液滴はほぼ100%採取できる。従
来は親水性の表面からは結露した液滴を採取することは
困難で、親水性表面に対してはまず疎水化を図る必要が
あったが、本方法を用いると疎水性、親水性にかかわら
ず、同じ方法で試料を採取できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an object to be measured is first exposed in a clean room to vapor generated by heating a surface solution as shown in FIG. After the steam exposure, a fixed amount of ultrapure water is dropped while keeping the object to be measured horizontal with the surface of the object facing up as shown in FIG. 2 so that the surface is completely covered with the ultrapure water. At this time, the ultrapure water dropped by the surface tension remains on the surface of the measured object if the surface is flat. When this liquid is collected using a device such as a pipette and clean compressed air as shown in FIG. 3, almost 100% of the surface droplets can be collected regardless of hydrophobicity or hydrophilicity. In the past, it was difficult to collect dew droplets from a hydrophilic surface, and it was necessary to first make the hydrophilic surface hydrophobic. Sample can be collected by the same method.

【0008】さらに本発明では超純水を滴下する際、そ
して試料溶液を採取する作業の際、図2に示すような回
転機構を有する試料保持台を使用することにより作業性
が向上し、作業に起因する汚染を避けることができる。
また、溶解液が被測定物とピペット状器具および試料容
器以外のものとは接触せずに試料を採取できることを特
徴とし、ピペット状の器具以外の治具を使わずに回収液
で対象物の表面を完全に覆ったのちにこれを採取するこ
とにより、治具からの汚染を避けることができる。
Further, in the present invention, when dropping ultrapure water and when collecting a sample solution, the workability is improved by using a sample holding table having a rotating mechanism as shown in FIG. Can be avoided.
In addition, it is characterized in that the sample can be collected without the dissolving solution coming into contact with the object to be measured and anything other than the pipette-shaped instrument and the sample container. By collecting the sample after completely covering the surface, contamination from the jig can be avoided.

【0009】次に溶解液の作用について説明する。この
とき対象物がシリコンならばHNO3 またはH2 2
よって表面が酸化され、酸化物がHFによって溶解す
る。また、シリコンの酸化物ならばHFで溶解する。い
ずれの場合にもHNO3 またはH2 2 のみでは表面は
溶解されない。HNO3 のみを溶解液として用いた場合
には被測定物の表面に付着している汚染のみが抽出され
る。それぞれの表面に対するそれぞれの溶解液の作用を
まとめて表1に示す。
Next, the operation of the solution will be described. At this time, if the object is silicon, the surface is oxidized by HNO 3 or H 2 O 2 , and the oxide is dissolved by HF. In the case of silicon oxide, it is dissolved by HF. In any case, HNO 3 or H 2 O 2 alone does not dissolve the surface. When only HNO 3 is used as the solution, only the contamination adhering to the surface of the object to be measured is extracted. Table 1 summarizes the effect of each lysis solution on each surface.

【0010】[0010]

【表1】 [Table 1]

【0011】溶解液としてHNO3 を用いて被測定物表
面に付着した不純物の抽出を行った後、溶解液としてH
Fと、HNO3 またはH2 2 を用いて再度不純物の抽
出を行い、それぞれ別々に不純物の定性と定量を行うこ
とによって被測定物の表面に付着していた不純物と被測
定物の表面皮膜内の不純物とを分離して定性と定量を行
うことができる。
After extracting impurities adhering to the surface of the object to be measured by using HNO 3 as a dissolving solution, H
Impurities are extracted again using F and HNO 3 or H 2 O 2, and qualitative and quantitative determinations of the impurities are separately carried out, whereby impurities adhering to the surface of the object and the surface film of the object are measured. Qualitative and quantitative determinations can be made by separating impurities from the inside.

【0012】本発明によれば溶解液としてHFと、HN
3 またはH2 2 を単独でまたは別々に連続的に用
い、それぞれの曝露時間を変えることによって被測定物
のエッチング量を制御しながら不純物の抽出を行い、被
測定物の表面から任意の深さまでの皮膜内の不純物の定
性と定量を行うことができる。被測定物がシリコン酸化
膜の場合はまずHF蒸気に曝露し次にHNO3 またはH
2 2 蒸気に一定時間曝露する方法において、HF蒸気
に曝露する時間によってエッチング量を制御することが
できる。被測定物がシリコンウェハの場合はHNO3
たはH2 2 蒸気に曝露して表面を酸化したのち、HF
蒸気に曝露して酸化膜を溶解することによりHF蒸気の
曝露時間によってエッチング量を制御することができ
る。
According to the present invention, HF, HN
O 3 or H 2 O 2 is used singly or separately continuously, impurities are extracted while controlling the etching amount of the object by changing the respective exposure times, and arbitrary impurities are extracted from the surface of the object. The qualitative and quantitative determination of impurities in the coating up to the depth can be performed. When the object to be measured is a silicon oxide film, it is first exposed to HF vapor and then HNO 3 or H
In the method of exposing for 2 hours to 2 O 2 vapor, the amount of etching can be controlled by the time of exposing to HF vapor. When the object to be measured is a silicon wafer, the surface is oxidized by exposure to HNO 3 or H 2 O 2 vapor, and then HF is applied.
The amount of etching can be controlled by the exposure time of HF vapor by dissolving the oxide film by exposure to vapor.

【0013】次に、酸蒸気曝露だけでは溶解できないよ
うな厚い酸化膜から汚染を抽出する場合は、従来はテフ
ロンなどの容器や治具を用いて超高純度のHF+HNO
3 またはHF+H2 2 を保持し、ここでウェハ表面被
膜を溶解する方法などがとられ、容器や治具からの汚染
が問題となっていた。本発明では超高純度のHF+HN
3 またはHF+H2 2 の一定量をウェハ表面に滴下
し被測定物の表面を覆い表面被膜を溶解してこれを試料
溶液とし、試料溶液中に被測定物の表面汚染を抽出する
ことによってテフロンなどの容器や治具からの汚染を防
止することができる。さらに採取した試料溶液を入れた
試料容器を吸排気口を有する容器内に入れ、容器の吸気
口から清浄な気体を送り込み、排気口から蒸気を排気す
ることにより外部からの汚染を防止しながら該試料溶液
の溶媒を除去して濃縮することができる。ここで、試料
溶液の濃縮を行う際に使用する容器としては、ガラス製
の容器が適している。
Next, when extracting contamination from a thick oxide film which cannot be dissolved only by exposure to an acid vapor, conventionally, a container or a jig such as Teflon is used to extract ultra-high purity HF + HNO.
3 or HF + H 2 O 2 is held, and a method of dissolving the film on the surface of the wafer is adopted here, and there has been a problem of contamination from containers and jigs. In the present invention, ultra-high purity HF + HN
A certain amount of O 3 or HF + H 2 O 2 is dropped on the surface of the wafer to cover the surface of the object to be measured and dissolve the surface coating, and this is used as a sample solution. By extracting the surface contamination of the object to be measured into the sample solution, Contamination from a container such as Teflon or a jig can be prevented. Further, the sample container containing the collected sample solution is placed in a container having an intake / exhaust port, a clean gas is fed from the intake port of the container, and the vapor is exhausted from the exhaust port to prevent contamination from the outside. The solvent of the sample solution can be removed and concentrated. Here, as a container used when concentrating the sample solution, a glass container is suitable.

【0014】試料溶液を例えば直接黒鉛炉に滴下し不純
物を原子化させて原子吸光装置で分析する場合や、微少
試料用ネブライザー(MCN:micro concentric nebul
izer)を使用してセクター型で高分解能の誘導結合プラ
ズマ質量分析装置(ICP−MS)で分析する場合に
は、試料量は50〜100マイクロリットル程度で十分
なため、濃縮した試料をそのまま測定することができ
る。また、微少試料用ネブライザー(MCN:micro co
ncentric nebulizer)を使用せずにセクター型で高分解
能の誘導結合プラズマ質量分析装置(ICP−MS)で
測定する場合には、濃縮した試料を超純水で希釈して測
定することにより、酸のマトリクス効果を避けることが
できる。ここで言うマトリクス効果とは、バックグラウ
ンドレベルが上昇することである。
For example, when a sample solution is dropped directly into a graphite furnace to atomize impurities and analyzed by an atomic absorption apparatus, or a nebulizer for a micro sample (MCN: micro concentric nebule).
When analyzing with a sector type high-resolution inductively coupled plasma mass spectrometer (ICP-MS) using a sampler, a sample volume of about 50 to 100 microliters is sufficient. can do. In addition, a nebulizer for micro samples (MCN: micro co
When measuring with a sector-type, high-resolution inductively coupled plasma mass spectrometer (ICP-MS) without using an ncentric nebulizer, the concentrated sample is diluted with ultrapure water and measured, so that the acid Matrix effects can be avoided. Here, the matrix effect means that the background level increases.

【0015】[0015]

【実施例】【Example】

[実施例1]層間絶縁膜の一種であるTEOS膜をプラ
ズマCVD装置でシリコンウェハ上に成膜した試料1を
図1に示すように真空ピンセット2で表面を下に向けて
保持し、ヒーターを有したテフロン製の容器3の中で加
熱された第一の溶解液4(フッ酸)の蒸気に表2に示し
た時間曝露する。
Example 1 A sample 1 in which a TEOS film, which is a kind of an interlayer insulating film, was formed on a silicon wafer by a plasma CVD apparatus was held with vacuum tweezers 2 with the surface facing down as shown in FIG. It is exposed to the vapor of the first solution 4 (hydrofluoric acid) heated in the Teflon container 3 for the time shown in Table 2.

【0016】この直後、試料を真空ピンセットで表面を
下に向けて保持したまま、テフロン製の容器の中で加熱
された第二の溶解液(硝酸)の蒸気に30秒間曝露す
る。こののち、図2に示すような回転機構を有するテフ
ロン製の試料保持台5の上にウェハを表面を上に向けて
水平に保持し、ここに10mlの超純水6をマイクロピ
ペット7で滴下して表面を完全に覆った。
Immediately after this, the sample is exposed to the vapor of the second dissolving solution (nitric acid) heated in a Teflon container for 30 seconds while the sample is held with vacuum tweezers face down. Thereafter, the wafer is horizontally held with its surface facing upward on a Teflon sample holder 5 having a rotation mechanism as shown in FIG. 2, and 10 ml of ultrapure water 6 is dropped by a micropipette 7 here. To completely cover the surface.

【0017】こののち図3に示すような清浄な圧搾空気
を供給するエアガン8を適宜使用し、保持台を適宜回転
しながら再びマイクロピペット9によって表面を覆った
試料溶液10を採取した。酸の蒸気に曝露する前と一連
の操作の後とで、重量変化を測定し、フッ酸の蒸気に曝
露する時間との関係を調べた。この結果を表2に示す。
Thereafter, an air gun 8 for supplying clean compressed air as shown in FIG. 3 was appropriately used, and the sample solution 10 whose surface was covered with the micropipette 9 again was collected while appropriately rotating the holding table. The weight change was measured before the exposure to the acid vapor and after the series of operations, and the relationship between the exposure to the hydrofluoric acid vapor and the time was examined. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】このようにフッ酸蒸気曝露時間を制御する
ことによりエッチング量を制御することができる。さら
に、これらの試料溶液についてICP−MSでそれぞれ
Caの濃度を測定したところ、フッ酸蒸気曝露時間が5
秒のものは測定可能であったが、10秒、30秒のもの
については被測定物から溶出したSiOの質量ピークが
妨害となって、質量数44のCaのピークは測定不可能
であった。以上よりフッ酸の曝露時間は5秒が最適で、
10秒、30秒では長すぎることがわかった。本実施例
は請求項1に対応する。
As described above, the amount of etching can be controlled by controlling the hydrofluoric acid vapor exposure time. Further, when the Ca concentration of each of these sample solutions was measured by ICP-MS, the hydrofluoric acid vapor exposure time was 5 hours.
Seconds were measurable, but for 10 seconds and 30 seconds, the mass peak of SiO eluted from the measured object hindered, and the Ca peak of mass number 44 could not be measured. . From the above, the exposure time of hydrofluoric acid is optimally 5 seconds,
It turned out that 10 seconds and 30 seconds were too long. This embodiment corresponds to claim 1.

【0020】[実施例2]層間絶縁膜の一種であるTE
OS膜をプラズマCVD装置でシリコンウェハ上に成膜
したのち、CMPプロセスで研磨し、洗浄した試料1を
図1に示すような真空ピンセット2で表面を下に向けて
保持し、ヒーターを有するテフロン製の容器3の中で加
熱された溶解液4(硝酸)の蒸気に30秒間曝露する。
次いで、図2に示すような回転機構を有するテフロン製
の試料保持台5の上にウェハを表面を上に向けて水平に
保持し、ここに10mlの超純水6をマイクロピペット
7で滴下して表面を完全に覆った。
[Embodiment 2] TE which is a kind of interlayer insulating film
An OS film is formed on a silicon wafer by a plasma CVD apparatus, polished by a CMP process, and the cleaned sample 1 is held with vacuum tweezers 2 as shown in FIG. Is exposed for 30 seconds to the vapor of the dissolving solution 4 (nitric acid) heated in the container 3 made of acetic acid.
Next, the wafer is held horizontally with its surface facing upward on a Teflon sample holder 5 having a rotating mechanism as shown in FIG. 2, and 10 ml of ultrapure water 6 is dropped with a micropipette 7 here. Completely covered the surface.

【0021】こののち図3に示すような清浄な圧搾空気
を供給するエアガン8を適宜使用し、保持台を適宜回転
しながら再びマイクロピペットによって表面を覆った試
料溶液10を採取して一回目の不純物抽出液とした。
Thereafter, an air gun 8 for supplying clean compressed air as shown in FIG. 3 is appropriately used, and the sample solution 10 whose surface is covered by a micropipette is again collected while rotating the holding table appropriately, and the first time. An impurity extract was used.

【0022】次に、該シリコンウェハ試料をそのまま用
いて別のテフロン製の容器の中で前記と同様に加熱され
たフッ酸の蒸気に7秒間曝露し、続けて前記硝酸蒸気に
30秒間曝露したのち前記と同様な超純水の滴下と採取
作業を繰り返し、二回目の不純物抽出液とした。これら
一回目と二回目の不純物抽出液に対してそれぞれICP
−MSでNa,Al,K,Ca,Feのそれぞれの濃度
を測定した。この結果を一回目と二回目で比較して表3
に示す。
Next, the silicon wafer sample was directly used and exposed to a heated hydrofluoric acid vapor in another Teflon container for 7 seconds, followed by exposure to the nitric acid vapor for 30 seconds. Thereafter, the same operation of dropping and collecting ultrapure water as described above was repeated to obtain a second impurity extract. ICP was applied to these first and second impurity extracts, respectively.
Each concentration of Na, Al, K, Ca, and Fe was measured by -MS. The results were compared between the first time and the second time.
Shown in

【0023】[0023]

【表3】 [Table 3]

【0024】一方、不純物抽出操作の前後で試料の重量
を測定し、該操作によるエッチング量を求めたところ、
一回目の不純物抽出操作ではエッチング量は0mgで、
二回目の操作では1.5mgであった。従って、一回目
の不純物抽出および定量操作では被測定物の表面に付着
した不純物が、二回目の操作では、被測定物の表面から
約38nmの深さまでの不純物が定量されたことにな
り、それぞれを分離定量することができ、表面にはN
a,Al,Kの不純物が付着しているが、表面被膜内部
は汚染されていないことがわかった。
On the other hand, the weight of the sample was measured before and after the impurity extraction operation, and the amount of etching by the operation was determined.
In the first impurity extraction operation, the etching amount was 0 mg,
In the second operation, it was 1.5 mg. Accordingly, in the first impurity extraction and quantification operation, the impurities attached to the surface of the object to be measured were determined, and in the second operation, the impurities to a depth of about 38 nm from the surface of the object to be measured were quantified. Can be separated and quantified, and N
It was found that impurities of a, Al and K were attached, but the inside of the surface coating was not contaminated.

【0025】一方、比較例として前記と同様の被測定物
に対して、一回目の不純物抽出操作は前記と同様に行っ
た後、二回目の抽出操作において、被測定物をフッ酸の
蒸気に30秒間曝露した後、硝酸蒸気に30秒間曝露し
て抽出操作を行ったところ、エッチング量が6.5mg
であり、ICP−MSで質量数44Caのピークを測定
しようとしたところ、TEOS膜がエッチングされて溶
出したSiOのピークの妨害を受けて質量数44のCa
のピークは測定できなかった。本実施例は請求項1に対
応する。
On the other hand, as a comparative example, the first impurity extraction operation was performed on the same object as described above in the same manner as described above, and then the object was converted into hydrofluoric acid vapor in the second extraction operation. After the exposure for 30 seconds, the extraction operation was performed by exposing to a nitric acid vapor for 30 seconds, and the etching amount was 6.5 mg.
When the peak of mass number 44Ca was measured by ICP-MS, the TEOS film was etched and eluted and interfered with the peak of SiO.
Could not be measured. This embodiment corresponds to claim 1.

【0026】[実施例3]プラズマCVDで4000オ
ングストロームの厚さの酸化膜を成膜したシリコンウェ
ハを図2に示すような回転機構を有する試料保持台5の
上に表面を上に向けて水平に保持して、清浄なピペット
状の器具7を用いて表面に超高純度のフッ酸0.5ml
と硝酸4.5mlの混酸を滴下し、図3に示すような清
浄な圧搾空気を供給するエアガン8を適宜使用しながら
滴下した液によってウェハ表面を完全に覆って10分間
放置したところ、酸化膜が完全に溶解した。
Example 3 A silicon wafer on which an oxide film having a thickness of 4000 angstroms was formed by plasma CVD was placed horizontally on a sample holder 5 having a rotating mechanism as shown in FIG. And use a clean pipette-like instrument 7 to apply 0.5 ml of ultra-high-purity hydrofluoric acid to the surface.
Then, a mixed acid of 4.5 ml of nitric acid and nitric acid was dropped, and the surface of the wafer was completely covered with the dropped liquid while appropriately using an air gun 8 for supplying clean compressed air as shown in FIG. Completely dissolved.

【0027】次いで、エアガン8を適宜使用し、試料保
持台5を適宜回転しながらピペット状の器具9を用いて
溶解液10を採取してこれを試料溶液とし、石英製のビ
ーカーに該試料溶液を入れて、このビーカーを図4に示
すような吸気口11と排気口12と蓋13をもつ耐熱ガ
ラス容器14にいれ、このガラス容器を赤外線ホットプ
レート15上にのせ、コンプレッサー16でフィルター
17を通して清浄な空気を吸気口から送り込むことによ
り、外部からの微粒子の侵入を防ぎながら蒸発乾固を行
った。該ビーカー18の中に超純水10mlと超高純度
の硝酸30マイクロリットルを添加して、該ビーカーの
中に残留するウェハから採取した汚染金属を溶解して、
これをICP−MSで測定した。
Next, while using the air gun 8 as appropriate and rotating the sample holder 5 appropriately, a dissolving solution 10 is collected using a pipette-like instrument 9 to obtain a sample solution, which is placed in a quartz beaker. And put the beaker in a heat-resistant glass container 14 having an inlet 11, an outlet 12, and a lid 13 as shown in FIG. 4, place the glass container on an infrared hot plate 15, and pass through a filter 17 with a compressor 16. By sending clean air from the air inlet, evaporation to dryness was performed while preventing intrusion of fine particles from the outside. 10 ml of ultrapure water and 30 microliters of ultrapure nitric acid were added to the beaker 18 to dissolve contaminant metals collected from wafers remaining in the beaker,
This was measured by ICP-MS.

【0028】また、比較例として従来の方法で図5に示
すようなテフロン製の治具19の中に溶解液20(超高
純度の硝酸+フッ酸)を入れ、試料21表面の酸化膜を
溶解し、上記と同様の方法で調整して定量した。これら
の結果を表4に示す。表からわかるように、従来の方法
に比べて本発明の方法で測定した方が操作による汚染の
影響が少ないことがわかる。本実施例は請求項2に対応
する。
As a comparative example, a solution 20 (ultra-high-purity nitric acid + hydrofluoric acid) was placed in a Teflon jig 19 as shown in FIG. It was dissolved, adjusted in the same manner as above, and quantified. Table 4 shows the results. As can be seen from the table, the influence of contamination due to the operation is smaller when measured by the method of the present invention than by the conventional method. This embodiment corresponds to claim 2.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【発明の効果】本発明により、被測定物の表面から任意
の深さまでの汚染を抽出して定性、定量することができ
る。また、蒸気だけでは分解されないような厚い被膜の
汚染を抽出して定性、定量することができる。
According to the present invention, it is possible to extract and qualitatively and quantitatively determine the contamination from the surface of the object to be measured to an arbitrary depth. Further, it is possible to extract and qualitatively and quantitatively contaminate a thick film that cannot be decomposed by steam alone.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)被測定物を溶解液の蒸気に曝露する工程
を示す概略図。 (b)同図被測定物の表面を示す図面。
FIG. 1A is a schematic view showing a step of exposing an object to be measured to vapor of a solution. (B) Drawing showing the surface of the measured object.

【図2】被測定物の表面を回収液で覆い、該被測定物表
面の不純物を回収液中に取り込んで試料溶液を作製する
工程を示す概略図。
FIG. 2 is a schematic view showing a step of covering a surface of an object to be measured with a recovery liquid and incorporating impurities on the surface of the object into the recovery liquid to prepare a sample solution.

【図3】試料溶液を採取する工程を示す概略図。FIG. 3 is a schematic view showing a step of collecting a sample solution.

【図4】試料溶液の溶媒を除去する工程を示す概略図。FIG. 4 is a schematic view showing a step of removing a solvent from a sample solution.

【図5】(a)従来用いられていたテフロン製治具を示
す斜視図。 (b)同図の断面図。
FIG. 5 (a) is a perspective view showing a Teflon jig conventionally used. (B) Sectional drawing of the same figure.

【符号の説明】 1,21:被測定物 2:真空ピンセット 3:ヒーターを有するテフロン容器 4,20:溶解液 5:回転機構を有する試料保持台 6:超純水 7,9:メスピペット 8:エアガン 10:表面を覆った試料溶液 11:吸気口 12:排気口 13:蓋 14:耐熱ガラス製容器 15:赤外線ホットプレート 16:コンプレッサー 17:フィルター 18:石英製ビーカー 19:テフロン治具[Description of Signs] 1,21: DUT 2: Vacuum tweezers 3: Teflon container with heater 4,20: Dissolution solution 5: Sample holder with rotating mechanism 6: Ultrapure water 7,9: Female pipette 8 : Air gun 10: Sample solution covering the surface 11: Intake port 12: Exhaust port 13: Lid 14: Heat resistant glass container 15: Infrared hot plate 16: Compressor 17: Filter 18: Quartz beaker 19: Teflon jig

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の表面をHF蒸気と、HNO3
蒸気又はH2 2 蒸気とに個別に連続的に曝露して蒸気
を結露させた後、被測定物表面に超純水を滴下して被測
定物表面全体を覆い、被測定物の表面に結露した液滴を
超純水に溶解させ試料溶液とした後、試料溶液を被測定
物表面から採取して被測定物表面から任意の深さまでの
皮膜に含有される不純物の定性分析と定量分析を行うこ
とを特徴とする表面不純物測定方法。
1. The surface of an object to be measured is made of HF vapor and HNO 3
After being individually and continuously exposed to vapor or H 2 O 2 vapor to condense the vapor, ultrapure water is dropped onto the surface of the object to be measured to cover the entire surface of the object to be measured, and After dew condensation is dissolved in ultrapure water to make a sample solution, the sample solution is collected from the surface of the object to be measured, and qualitative and quantitative analysis of impurities contained in the film from the surface of the object to an arbitrary depth A method for measuring surface impurities.
【請求項2】 被測定物表面に超高純度のHF+HNO
3 又はHF+H2 2 を滴下して被測定物表面全体を覆
い、被測定物の表面被膜を溶解して試料溶液とし、試料
溶液を採取して試料容器に入れ、試料容器を吸排気口を
有する容器内に入れ、容器の吸気口から清浄な気体を送
り込み、排気口から蒸気を排気することにより外部から
の汚染を防止しながら該試料溶液の溶媒を除去して濃縮
した後、被測定物表面から任意の深さまでの皮膜に含有
される不純物の定性分析と定量分析を行うことを特徴と
する表面不純物測定方法。
2. An ultra-high-purity HF + HNO is formed on the surface of an object to be measured.
3 or HF + H 2 O 2 is dropped to cover the entire surface of the object to be measured, the surface coating of the object to be measured is dissolved to make a sample solution, the sample solution is collected and put into a sample container, and the sample container is suctioned and exhausted. After removing the solvent from the sample solution and concentrating it while preventing the contamination from the outside by putting clean gas into the container and sending out the vapor from the inlet of the container and exhausting the vapor from the exhaust port, the DUT A method for measuring surface impurities, comprising performing qualitative analysis and quantitative analysis of impurities contained in a film from a surface to an arbitrary depth.
JP9151422A 1997-06-09 1997-06-09 Method for measuring surface impurities Withdrawn JPH10339691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9151422A JPH10339691A (en) 1997-06-09 1997-06-09 Method for measuring surface impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9151422A JPH10339691A (en) 1997-06-09 1997-06-09 Method for measuring surface impurities

Publications (1)

Publication Number Publication Date
JPH10339691A true JPH10339691A (en) 1998-12-22

Family

ID=15518282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9151422A Withdrawn JPH10339691A (en) 1997-06-09 1997-06-09 Method for measuring surface impurities

Country Status (1)

Country Link
JP (1) JPH10339691A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194362A (en) * 2000-01-11 2001-07-19 Fuji Film Microdevices Co Ltd Method and apparatus for extracting impurities in semi conductor substrate
DE102004041410B4 (en) * 2003-08-28 2009-07-30 Nec Electronics Corp., Kawasaki Method for preparing an analysis sample, method for analyzing substances on the surface of semiconductor substrates, and apparatus for preparing an analysis sample
JP2010203891A (en) * 2009-03-03 2010-09-16 Toppan Printing Co Ltd Depth direction analysis method
JP2012069855A (en) * 2010-09-27 2012-04-05 Sumco Corp Etching method of silicon wafer surface layer part and metal pollution analytical method of silicon wafer
CN115684328A (en) * 2022-09-28 2023-02-03 上海富乐德智能科技发展有限公司 Method for testing trace element pollution on surface of strong-hydrophobicity soft membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194362A (en) * 2000-01-11 2001-07-19 Fuji Film Microdevices Co Ltd Method and apparatus for extracting impurities in semi conductor substrate
JP4514267B2 (en) * 2000-01-11 2010-07-28 富士フイルム株式会社 Impurity extraction method and impurity extraction apparatus for semiconductor substrate
DE102004041410B4 (en) * 2003-08-28 2009-07-30 Nec Electronics Corp., Kawasaki Method for preparing an analysis sample, method for analyzing substances on the surface of semiconductor substrates, and apparatus for preparing an analysis sample
JP2010203891A (en) * 2009-03-03 2010-09-16 Toppan Printing Co Ltd Depth direction analysis method
JP2012069855A (en) * 2010-09-27 2012-04-05 Sumco Corp Etching method of silicon wafer surface layer part and metal pollution analytical method of silicon wafer
CN115684328A (en) * 2022-09-28 2023-02-03 上海富乐德智能科技发展有限公司 Method for testing trace element pollution on surface of strong-hydrophobicity soft membrane

Similar Documents

Publication Publication Date Title
KR100263512B1 (en) Method of impurity analysis in silicon wafer
KR101868775B1 (en) Silicon substrate analyzing device
JP3179175B2 (en) Analysis pretreatment method
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JPH10339691A (en) Method for measuring surface impurities
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JPH10332554A (en) Method for measuring surface impurities
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP4755746B2 (en) Method for measuring impurities on semiconductor wafer surface and impurity recovery apparatus therefor
WO1992021954A1 (en) Method of evaluating segregation at solid-liquid interface and segregation apparatus therefor
JP4073138B2 (en) Method for analyzing metals contained in quartz
JP2002296269A (en) Device and method for evaluating water quality for sample water
JP2003142542A (en) Collection method and apparatus for impurity on semiconductor wafer surface
JP2950310B2 (en) Method for analyzing metal impurities on semiconductor substrate surface and substrate
JP3171633B2 (en) Analysis and quantification of nonvolatile impurities in ultrapure water
JP2004109072A (en) Analysis method for metal impurity in solution
JPH07159293A (en) Method and apparatus for analyzing surface
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP2000266650A (en) Method for analyzing surface-layer impurity of polysilicon, and sample-treating container for etching polysilicon
JP3243302B2 (en) Wafer analysis instrument
EP1542006B1 (en) Impurity measuring method for GE substrates
JPH10111226A (en) Solvent removing and concentrating method for solution sample for analysis of ultramicroimpurity component and quantitative method for impurity
JP2000332072A (en) Surface analysis method of semiconductor substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907