JPH0971821A - Heat treatment of welded joint of maraging steel - Google Patents

Heat treatment of welded joint of maraging steel

Info

Publication number
JPH0971821A
JPH0971821A JP7247068A JP24706895A JPH0971821A JP H0971821 A JPH0971821 A JP H0971821A JP 7247068 A JP7247068 A JP 7247068A JP 24706895 A JP24706895 A JP 24706895A JP H0971821 A JPH0971821 A JP H0971821A
Authority
JP
Japan
Prior art keywords
heat treatment
welded joint
maraging steel
welded
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7247068A
Other languages
Japanese (ja)
Inventor
Risuke Nayama
理介 名山
Masahiko Toyoda
真彦 豊田
Giichi Takaoka
義一 高岡
Shigeyuki Aoki
繁幸 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7247068A priority Critical patent/JPH0971821A/en
Publication of JPH0971821A publication Critical patent/JPH0971821A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the fracture toughness of a welded joint part by subjecting the part near the welded joint of a welded structure consisting of maraging steel to a heat treatment to heat the part to a specific high temp. then to cool the part, then subjecting this part to an aging treatment. SOLUTION: The part near the welded joint part 2 of the welded structure 1 consisting of the 18% Ni type maraging steel is irradiated with a high-density energy beam 3 from an electron gun 4 and is subjected to the heat treatment to locally heat up and hold this part to and at a temp. range from an austenitization temp. of 500 to 800 deg.C to a m. p. of 1500 deg.C, by which the elements, such as Mo and Ti, solidified and segregated at the grain boundaries of weld zones are diffused and the segregation thereof is prevented. Next, the part near the welded joint part is subjected to an aging heat treatment of once cooling this part then holding the part for one to two hours at 400 to 600 deg.C and to a soln. heat treatment in a temp. range of the austenitization temp. to 900 deg.C. The fracture toughness of the welded joint part 3 is improved and the reliability of the welded structure formed by using the maraging steel is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は時効硬化鋼であるマ
ルエージング鋼溶接継手の熱処理方法に関し、特にマル
エージング鋼を用いた全ての溶接構造物、特にロケット
チャンバの製作に有利に適用しうる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a maraging steel welded joint which is an age-hardening steel, and particularly to a method which can be advantageously applied to the production of all welded structures using maraging steel, especially rocket chambers. Regarding

【0002】[0002]

【従来の技術】従来、マルエージング鋼を用いて製作さ
れるロケットチャンバは1次溶体化熱処理(890℃×
0.5時間)を施した材料を、電子ビーム溶接で円筒形
状に組み立てた後、チャンバ全体を炉中に入れて、2次
溶体化熱処理(820℃×3時間)、時効熱処理(53
0℃×10時間)を実施する施工法をとっていた。
2. Description of the Related Art Conventionally, rocket chambers made of maraging steel have been subjected to a primary solution heat treatment (890 ° C. ×
(0.5 hours), the material was assembled into a cylindrical shape by electron beam welding, then the entire chamber was put into a furnace, and a second solution heat treatment (820 ° C. × 3 hours) and an aging heat treatment (53
The construction method was to carry out 0 ° C. × 10 hours).

【0003】[0003]

【発明が解決しようとする課題】従来の施工方法では、
溶接継手の破壊靱性は母材の破壊靱性より低い値となっ
ていた。この原因は種々調査の結果、溶接金属部の凝固
偏析による微小な低靱性部の存在に起因するものと判明
した。一方、母材製造時には凝固速度が溶接部より遙か
に遅いため、更に大きな凝固偏析が生じているが、オー
ステナイト化温度を超える1000℃以上の高温で長時
間の拡散熱処理を実施して偏析を解消しており、良好な
破壊靱性を得ている。このことから溶接施工後もチャン
バ全体を拡散熱処理を施工することにより偏析を解消
し、溶接継手部の靱性を母材と同等に改善する方法が考
えられるが、ロケットチャンバは薄肉構造(例えば、直
径約2500mmに対して、板厚約7mm)であるた
め、チャンバ全体の高温での拡散熱処理を行うと大きな
変形が生じるため、実際には施工不可能であった。
In the conventional construction method,
The fracture toughness of the welded joint was lower than the fracture toughness of the base metal. As a result of various investigations, the cause was found to be due to the presence of minute low toughness portions due to solidification segregation of the weld metal. On the other hand, when the base metal is manufactured, the solidification rate is much slower than that of the welded part, so that a larger solidification segregation occurs. It has been resolved and good fracture toughness is obtained. From this, it is possible to eliminate the segregation by performing diffusion heat treatment on the entire chamber even after welding, and improve the toughness of the welded joint part to the same level as the base metal, but the rocket chamber has a thin wall structure (for example, diameter). Since the plate thickness is about 7 mm with respect to about 2500 mm), a large deformation occurs when the diffusion heat treatment of the entire chamber is performed at a high temperature, so that it is practically impossible.

【0004】本発明は上記技術水準に鑑み、溶接継手部
の破壊靱性を向上する熱処理方法を提供しようとするも
のである。
In view of the above technical level, the present invention is to provide a heat treatment method for improving the fracture toughness of a welded joint.

【0005】[0005]

【課題を解決するための手段】本発明は(1)溶接施工
後、時効熱処理によって所定の強度を得るマルエージン
グ鋼材料の溶接継手において、溶接施工後、時効熱処理
前に、溶接継手部近傍のみを局所的にオーステナイト化
温度以上融点以下の温度に昇温、保持したのち冷却した
上で時効熱処理を行い、結果的にマルテンサイト基地に
析出物の析出している組織とすることを特徴とするマル
エージング鋼溶接継手の熱処理方法、(2)高密度エネ
ルギビームを溶接継手部に照射することにより、溶接継
手部近傍のみを局所的にオーステナイト化温度以上融点
以下の温度に昇温、保持することを特徴とする上記
(1)記載のマルエージング鋼溶接継手の熱処理方法及
び(3)上記(1)または(2)のマルエージング鋼溶
接継手の熱処理後、時効熱処理あるいは溶体化熱処理+
時効熱処理を施工することを特徴とするマルエージング
鋼材料を使用した溶接構造物の製造方法である。
Means for Solving the Problems The present invention (1) In a welded joint of a maraging steel material which obtains a predetermined strength by aging heat treatment after welding, only in the vicinity of the welded joint after welding and before aging heat treatment Is locally heated to a temperature not lower than the austenitizing temperature and not higher than the melting point, and is then held and cooled before aging heat treatment, resulting in a structure in which precipitates are precipitated in the martensite base. Method for heat treatment of maraging steel welded joint, (2) By irradiating the welded joint with a high-density energy beam, only the vicinity of the welded joint is locally heated to a temperature above the austenitizing temperature and below the melting point and held. (1) The heat treatment method for the maraging steel welded joint according to (1) above, and (3) the heat treatment for the maraging steel welded joint according to (1) or (2) above, Heat treatment or solution heat treatment +
A method for manufacturing a welded structure using a maraging steel material, characterized by performing an aging heat treatment.

【0006】本発明において対象とするマルエージング
鋼の一般的な成分組成は特定することができないが、I
nco社の標準マルエージング鋼の3種類の成分組成を
代表例として下記表1に示す。
The general composition of the maraging steel targeted in the present invention cannot be specified.
Table 1 below shows the typical composition of the three types of standard maraging steel manufactured by Nco.

【0007】[0007]

【表1】 <0.03%C、<0.20%Mn+Si、<0.01
0%P、<0.010%S その他添加元素(0.00
3%B、0.02%Zr、0.05%Ca)
[Table 1] <0.03% C, <0.20% Mn + Si, <0.01
0% P, <0.010% S Other additive elements (0.00
3% B, 0.02% Zr, 0.05% Ca)

【0008】[0008]

【発明の実施の形態】溶接継手部近傍のみを局所的にオ
ーステナイト化温度以上融点以下(マルエージング鋼の
成分によって異なるが、一般的にオーステナイト化温度
は500〜800℃、融点は1500℃前後)の高温に
昇温・保持することにより、溶接部の粒界に凝固偏析し
ている元素(チタン、モリブデン等)が拡散し偏析が解
消され、時効熱処理後の溶接継手部は母材と同等の破壊
靱性となる。なお、マルエージング鋼等の時効硬化鋼で
は、室温に冷却後の溶接継手部の組織は他の母材部と同
様のマルテンサイト組織となる。また、溶接継手部近傍
のみを局所的に昇温するため、溶接構造物の一般部は通
常の強度を保持するため構造物全体としては大きな変形
を生じない。
BEST MODE FOR CARRYING OUT THE INVENTION Only in the vicinity of a welded joint is locally austenitizing temperature or more and melting point or less (although the austenitizing temperature is 500 to 800 ° C and the melting point is around 1500 ° C, depending on the composition of the maraging steel). By increasing the temperature and holding at a high temperature, the elements that solidify and segregate (titanium, molybdenum, etc.) in the grain boundaries of the welded part diffuse and the segregation is eliminated, and the welded joint part after aging heat treatment is equivalent to the base metal Fracture toughness. In addition, in age-hardening steel such as maraging steel, the structure of the welded joint after cooling to room temperature has the same martensite structure as that of the other base metal parts. Further, since the temperature is locally raised only in the vicinity of the welded joint portion, the general portion of the welded structure maintains normal strength, so that the entire structure does not significantly deform.

【0009】本発明の加熱手段としては、電子ビーム、
レーザビーム等の高密度エネルギビームを溶接継手部に
照射することにより、母材一般部を昇温することなく溶
接継手近傍のみをオーステナイト温度以上に昇温保持す
ることができる。
As the heating means of the present invention, an electron beam,
By irradiating the welded joint with a high-density energy beam such as a laser beam, only the vicinity of the welded joint can be heated to the austenite temperature or higher without heating the general base material.

【0010】本発明の好ましい実施態様として、上記の
熱処理後、時効熱処理あるいは溶体化熱処理+時効熱処
理を施工する。時効熱処理としては、目的の機械的性質
に合わせて選定されるもので、一般的に保持温度:40
0〜600℃、保持時間:1〜20時間程度である。ま
た、溶体化熱処理としては一般的に製品の変形が許容さ
れる限界の温度であるオーステナイト化温度以上900
℃以下であり、好ましくは790〜850℃、更に好ま
しくは800〜840℃である。
As a preferred embodiment of the present invention, after the above heat treatment, aging heat treatment or solution heat treatment + aging heat treatment is applied. The aging heat treatment is selected according to the desired mechanical properties, and generally the holding temperature: 40
0 to 600 ° C., holding time: about 1 to 20 hours. In addition, as a solution heat treatment, generally, the austenitization temperature, which is the limit temperature at which product deformation is allowed, is 900 or more.
C. or lower, preferably 790 to 850.degree. C., more preferably 800 to 840.degree.

【0011】[0011]

【実施例】以下本発明の具体的な実施例をあげ、本発明
の効果を明らかにする。
EXAMPLES The effects of the present invention will be clarified by giving concrete examples of the present invention.

【0012】(実施例1)本発明の一実施例を図1によ
って説明する。オーステナイト化温度:740℃、融
点:約1500℃のマルエージング鋼(重量%で、C:
0.004、Si:0.05、P:0.003、S:
0.001、Ni:18.2、Co:10.2、Mo:
5.00、Al:0.09、Ti:0.52、B:0.
0007、Cr:0.11、Zr:<0.001)で円
筒容器を製作する場合のものであり、ロケットのチャン
バ1の長手溶接継手2である電子ビーム溶接継手部を、
真空チャンバ(図示省略)内において電子銃4からの電
子ビーム3の照射により局部的に昇温している状況を示
す。当然、周溶接継手にも同様に本発明を適用すること
ができる。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG. Austenitizing temperature: 740 ° C, melting point: about 1500 ° C maraging steel (% by weight, C:
0.004, Si: 0.05, P: 0.003, S:
0.001, Ni: 18.2, Co: 10.2, Mo:
5.00, Al: 0.09, Ti: 0.52, B: 0.
0007, Cr: 0.11, Zr: <0.001) in the case of manufacturing a cylindrical container, the electron beam welded joint portion which is the longitudinal welded joint 2 of the chamber 1 of the rocket,
A situation in which the temperature is locally raised by irradiation of the electron beam 3 from the electron gun 4 in a vacuum chamber (not shown) is shown. Of course, the present invention can be similarly applied to the circumferentially welded joint.

【0013】本実施例では、ロケットチャンバの板厚は
7.5mmで、本発明の熱処理のための電子ビーム照射
条件は下記表2に示すとおりのものである。
In this embodiment, the rocket chamber has a plate thickness of 7.5 mm, and the electron beam irradiation conditions for the heat treatment of the present invention are as shown in Table 2 below.

【0014】[0014]

【表2】 [Table 2]

【0015】上記のような条件で溶接継手部を局部的に
昇温し本発明の熱処理を施工し、電子ビーム照射面の反
対面で温度履歴を計測したところ、最高到達温度が約1
250℃、1200℃以上に保持された時間が約80秒
であった。また、100mm×30mmの小さい範囲を
移動しながら照射し昇温する方法であるため他の部分は
温度が上がらず、熱処理後も大きな変形は生じなかっ
た。
When the heat treatment of the present invention was carried out by locally raising the temperature of the welded joint under the above conditions and measuring the temperature history on the surface opposite to the electron beam irradiation surface, the maximum temperature reached was about 1.
The time at which the temperature was kept at 250 ° C, 1200 ° C or higher was about 80 seconds. Further, since the temperature is raised by irradiating while moving in a small area of 100 mm × 30 mm, the temperature of other parts does not rise, and no large deformation occurs even after the heat treatment.

【0016】上記の本発明熱処理を施した後、マルエー
ジング鋼本来の強度を確保するために、チャンバ全体
に、820℃で3時間保持の溶体化熱処理及び520℃
で10時間保持の時効熱処理を与えた。
After the above-mentioned heat treatment of the present invention, in order to secure the original strength of the maraging steel, the whole chamber is subjected to solution heat treatment at 820 ° C. for 3 hours and 520 ° C.
Then, the aging heat treatment was performed for 10 hours.

【0017】実施例1に示した本発明の熱処理方法を適
用した溶接継手の機械的性質と、本発明の熱処理を適用
しない従来の方法による溶接継手の機械的性質を計測し
た結果を比較して表3と表4に示す。なお、従来法の溶
接継手は、本発明熱処理を受けていないこと以外は、材
料組成その他の熱履歴、溶接条件とも全て実施例と同一
である。継手の機械的性質の内、継手引張試験結果を表
3に示す。本発明による熱処理を受けない従来法による
継手の引張強さは平均196.5kgf/mm2 となっ
ているが、本発明の熱処理を受けた継手では、引張強さ
は従来法の継手とほぼ同等であるが、0.2%耐力が高
く、また、破断伸びも大きくなっており、性能が改善さ
れていることがわかる。さらに、継手の破壊靱性試験結
果を表4に示すが、本発明による熱処理を受けない従来
法による継手の破壊靱性は平均164.9kgf/mm
1.5 となっているが、本発明の熱処理を受けた継手では
平均212.7kgf/mm1.5 と、拡散熱処理を受け
ない継手より約30%高い値となっており、大きな改善
効果が見られる。
The results of measuring the mechanical properties of the welded joint to which the heat treatment method of the present invention shown in Example 1 was applied and the mechanical properties of the welded joint by the conventional method to which the heat treatment of the present invention was not applied were compared. It is shown in Table 3 and Table 4. The weld joint of the conventional method has the same material composition and other heat history and welding conditions as in the embodiment except that it is not subjected to the heat treatment of the present invention. Among the mechanical properties of the joint, the joint tensile test results are shown in Table 3. The average tensile strength of the conventional joint not subjected to the heat treatment of the present invention is 196.5 kgf / mm 2 , but the tensile strength of the joint subjected to the heat treatment of the present invention is almost equal to that of the conventional joint. However, the 0.2% proof stress is high and the elongation at break is also large, indicating that the performance is improved. Further, the results of the fracture toughness test of the joint are shown in Table 4. The fracture toughness of the conventional joint which is not subjected to the heat treatment according to the present invention has an average fracture toughness of 164.9 kgf / mm.
Although it is 1.5 , the joint subjected to the heat treatment of the present invention has an average of 212.7 kgf / mm 1.5 , which is about 30% higher than that of the joint not subjected to the diffusion heat treatment, which shows a great improvement effect.

【0018】[0018]

【表3】 * ;G.L.=50mm[Table 3] * ; G. L. = 50 mm

【0019】[0019]

【表4】 [Table 4]

【0020】また、図3には従来法の溶接継手部の断面
マクロ組織を、図2に本発明を適用した溶接継手部の断
面マクロ組織の光学顕微鏡写真(倍率:3倍)を示す
が、本発明の適用により再結晶がすすみ、偏析が拡散に
よって解消されて溶接による凝固組織が消滅しているこ
とが認められる。
Further, FIG. 3 shows a cross-sectional macrostructure of the welded joint of the conventional method, and FIG. 2 shows an optical micrograph (magnification: 3 times) of the cross-sectional macrostructure of the welded joint to which the present invention is applied. It is recognized that the application of the present invention promotes recrystallization, eliminates segregation by diffusion, and eliminates the solidification structure due to welding.

【0021】(実施例2)実施例1と同じ供試材、電子
ビーム照射条件を採用した後、520℃で10時間の時
効処理のみを実施した。その結果、得られた溶接継手の
機械的性質を表5、表6に示す。表5及び表6より、こ
の実施例2の方法によっても実施例1と同様な効果が奏
されることが明らかである。
Example 2 After employing the same test material and electron beam irradiation conditions as in Example 1, only aging treatment was carried out at 520 ° C. for 10 hours. The mechanical properties of the resulting welded joint are shown in Tables 5 and 6. It is clear from Tables 5 and 6 that the same effect as in Example 1 can be obtained by the method of Example 2 as well.

【0022】[0022]

【表5】 * ;G.L.=50mm[Table 5] * ; G. L. = 50 mm

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【発明の効果】本発明を適用することによって、マルエ
ージング鋼溶接継手部の機械的性質は大幅に改善され、
マルエージング鋼を使用した溶接構造物の信頼性が大い
に向上する効果が奏された。
By applying the present invention, the mechanical properties of the maraging steel welded joint are greatly improved,
The effect is that the reliability of the welded structure using maraging steel is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の熱処理方法の説明図。FIG. 1 is an explanatory diagram of a heat treatment method according to an embodiment of the present invention.

【図2】本発明の実施例1の熱処理方法による溶接継手
部の断面組織を示す光学顕微鏡写真。
FIG. 2 is an optical micrograph showing a cross-sectional structure of a welded joint portion according to the heat treatment method of Example 1 of the present invention.

【図3】従来のマルエージング鋼の熱処理方法による溶
接継手部の断面組織を示す光学顕微鏡写真。
FIG. 3 is an optical micrograph showing a cross-sectional structure of a welded joint portion obtained by a conventional heat treatment method for maraging steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 繁幸 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeyuki Aoki 1-1-1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Kobe Shipyard

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶接施工後、時効熱処理によって所定の
強度を得るマルエージング鋼材料の溶接継手において、
溶接施工後、時効熱処理前に、溶接継手部近傍のみを局
所的にオーステナイト化温度以上融点以下の温度に昇
温、保持したのち冷却した上で時効熱処理を行い、結果
的にマルテンサイト基地に析出物の析出している組織と
することを特徴とするマルエージング鋼溶接継手の熱処
理方法。
1. A welded joint of a maraging steel material, which has a predetermined strength by aging heat treatment after welding,
After welding and before aging heat treatment, only the vicinity of the welded joint is locally heated to a temperature above the austenitizing temperature and below the melting point, held and cooled, and then subjected to aging heat treatment, resulting in precipitation in the martensite matrix. A heat treatment method for a maraging steel welded joint, which is characterized in that a structure in which a substance is precipitated is formed.
【請求項2】 高密度エネルギビームを溶接継手部に照
射することにより、溶接継手部近傍のみを局所的にオー
ステナイト化温度以上融点以下の温度に昇温、保持する
ことを特徴とする請求項1記載のマルエージング鋼溶接
継手の熱処理方法。
2. The irradiation of the welded joint with a high-density energy beam locally raises and holds only the vicinity of the welded joint to a temperature not lower than the austenitizing temperature and not higher than the melting point. A method for heat treatment of a maraging steel welded joint as described.
【請求項3】 請求項1または請求項2記載のマルエー
ジング鋼溶接継手の熱処理後、時効熱処理あるいは溶体
化熱処理+時効熱処理を施工することを特徴とするマル
エージング鋼材料を使用した溶接構造物の製造方法。
3. A welded structure using a maraging steel material, characterized in that after the heat treatment of the maraging steel welded joint according to claim 1 or 2, an aging heat treatment or a solution heat treatment + aging heat treatment is applied. Manufacturing method.
JP7247068A 1995-09-01 1995-09-01 Heat treatment of welded joint of maraging steel Pending JPH0971821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7247068A JPH0971821A (en) 1995-09-01 1995-09-01 Heat treatment of welded joint of maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7247068A JPH0971821A (en) 1995-09-01 1995-09-01 Heat treatment of welded joint of maraging steel

Publications (1)

Publication Number Publication Date
JPH0971821A true JPH0971821A (en) 1997-03-18

Family

ID=17157956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7247068A Pending JPH0971821A (en) 1995-09-01 1995-09-01 Heat treatment of welded joint of maraging steel

Country Status (1)

Country Link
JP (1) JPH0971821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272147B1 (en) * 2012-03-09 2013-06-07 주식회사 파워엠엔씨 A manufacturing method of magnetic load cell
JP2013193143A (en) * 2012-03-16 2013-09-30 Toyota Motor Corp Method for manufacturing endless metal ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272147B1 (en) * 2012-03-09 2013-06-07 주식회사 파워엠엔씨 A manufacturing method of magnetic load cell
JP2013193143A (en) * 2012-03-16 2013-09-30 Toyota Motor Corp Method for manufacturing endless metal ring

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
CN107810281B (en) For suppressing the steel of hardening and the component of the compacting hardening by such steel making
KR100535828B1 (en) Metallurgical method for processing nickel- and iron-based superalloys
JP5099865B2 (en) Method for producing maraging steel product and steel product obtained by this production method
US20020185200A1 (en) Process for the improved ductility of nitinol
RU2169204C1 (en) Titanium-based alloy and method of thermal treatment of large-size semiproducts from said alloy
KR20150116632A (en) Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
EP2006398B1 (en) Process for producing steel material
JPH0971821A (en) Heat treatment of welded joint of maraging steel
JPH11256278A (en) Cobalt-free maraging steel
US4435231A (en) Cold worked ferritic alloys and components
JP2624224B2 (en) Steam turbine
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
RU2241047C2 (en) Method of thermal treatment of welded connections from maraging steels
JP3192799B2 (en) Manufacturing method of structural member
JPH02294450A (en) Die steel for molding plastics and its manufacture
JP3576017B2 (en) Method for producing steel with excellent impact penetration resistance
JP3298665B2 (en) Manufacturing method of high fatigue strength steel sheet for welded joint
SU897887A1 (en) Method of making (alpha+beta) - titanium alloydie-welded structures
RU2129166C1 (en) Method of heat treatment of structures
JPH09143554A (en) Production of locally softened steel sheet
SU779415A1 (en) Method of thermal treatment of low-carbon martensite-aged stainless steels
JPH0790526A (en) Heat treatment for beta titanium alloy weld zone
JPH05345928A (en) Post weld heat treatment for improving fatigue strength of weld joint
JPS6021322A (en) Method for providing wear resistance to high toughness bainite cast iron member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010821