JPH0790526A - Heat treatment for beta titanium alloy weld zone - Google Patents

Heat treatment for beta titanium alloy weld zone

Info

Publication number
JPH0790526A
JPH0790526A JP23973293A JP23973293A JPH0790526A JP H0790526 A JPH0790526 A JP H0790526A JP 23973293 A JP23973293 A JP 23973293A JP 23973293 A JP23973293 A JP 23973293A JP H0790526 A JPH0790526 A JP H0790526A
Authority
JP
Japan
Prior art keywords
welding
heat treatment
type
weld zone
beta titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23973293A
Other languages
Japanese (ja)
Inventor
Hiroshige Inoue
上 裕 滋 井
Takashi Tanaka
中 隆 田
Nobutaka Yurioka
信 孝 百合岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23973293A priority Critical patent/JPH0790526A/en
Publication of JPH0790526A publication Critical patent/JPH0790526A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve mechanical properties by performing heat treatment in order to prevent deterioration in ductility in a weld zone of beta titanium alloy and also to secure a high strength weld zone. CONSTITUTION:Solution heat treatment is applied at 800-850 deg.C for 10min-1hr to a weld zone, prepared by mutually welding beta titanium alloys containing, as essential components, 14.0-16.0%, by weight, V, 2.5-3.5% Al, 2.5-3.5% Cr, and 2.5-3.5% Sn by the use of a beta titanium alloy welding material of the same metal series, or to a weld zone prepared by mutually welding the beta titanium alloys by means of fusion welding using no welding material. Subsequently, cooling is done down to <=200 deg.C at a rate of 100 deg.C/sec, followed by aging treatment at 500-550 deg.C for 8-12hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、β型Ti合金溶接部の
機械的性質の中でも特に、強度と延性を同時に改善する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously improving the strength and ductility of the mechanical properties of β-type Ti alloy welds.

【0002】[0002]

【従来の技術】β型Ti合金は、溶体化状態で優れた冷
間加工性を有し、さらに、溶体化処理後、時効処理を施
すことにより高強度が得られるため、次世代の宇宙航空
材料として注目されている。例えば、「鉄と鋼」72−
6,(1986)に示されているように、β変態点直上
の低温β域(約800〜850℃)で溶体化処理した後
急冷し、約500℃で時効処理を行うことにより、高強
度化がなされている。しかし、高強度を得るには長時間
の時効が必要であるため、最近では、「鉄と鋼」77−
1,(1991)に示されているように、溶体化処理し
たものに冷間加工を施した後、時効処理を行ったり、低
温と高温の二段階の時効処理を行い、効率化が図られて
いる。しかしながら、β型Ti合金の溶接部は、上述の
時効処理により高強度化された母材を再度溶融するた
め、溶接部の強度は母材よりも低くなり、溶接構造物と
してほとんど使用されていない。
2. Description of the Related Art Beta-type Ti alloys have excellent cold workability in the solution state, and high strength can be obtained by aging treatment after solution treatment. It is attracting attention as a material. For example, "iron and steel" 72-
6, (1986), high strength is obtained by performing solution treatment in a low temperature β region (about 800 to 850 ° C.) immediately above the β transformation point, followed by quenching and aging treatment at about 500 ° C. Has been made. However, in order to obtain high strength, long-term aging is required, so recently, "iron and steel" 77-
1, (1991), after subjecting the solution heat treated to cold working, aging treatment or two-step aging treatment of low temperature and high temperature is performed to improve efficiency. ing. However, the weld of the β-type Ti alloy remelts the base metal that has been strengthened by the above-mentioned aging treatment, so the strength of the weld becomes lower than that of the base metal, and it is hardly used as a welded structure. .

【0003】また、溶接部に再度時効処理を施すと、強
度は母材と同等まで回復するが、延性が著しく低下す
る。そこで、β型Ti合金溶接部の機械的特性の改善方
法としては、特開昭63−242489号公報に開示さ
れているように所定量のYまたはBを添加した溶接材料
で溶接する方法、特開昭63−199854号公報に開
示されているように溶接部をβ変態点以下の温度で加工
熱処理する方法、特開平2−127981号公報に開示
されているようにα+β型Ti合金成分の溶接材料で溶
接する方法、特開平2−127980号公報に開示され
ているように溶接部に時効処理を施す方法、などが示さ
れている。しかしながら、これらの方法は、溶接部の延
性あるいは靭性のみを改善する方法であり、溶接部の強
度を同時に向上させるものではない。
Further, when the welded portion is subjected to the aging treatment again, the strength is restored to the same level as that of the base metal, but the ductility is remarkably reduced. Therefore, as a method for improving the mechanical properties of a β-type Ti alloy weld, a method of welding with a welding material containing a predetermined amount of Y or B as disclosed in JP-A-63-242489, A method of thermomechanically treating a welded portion at a temperature below the β transformation point as disclosed in Japanese Laid-Open Patent Publication No. 63-199854, and welding of α + β type Ti alloy components as disclosed in Japanese Laid-Open Patent Publication No. 2-127981. A method of welding with a material, a method of aging the welded portion as disclosed in JP-A-2-127980, and the like are shown. However, these methods are methods for improving only the ductility or toughness of the welded part and not the strength of the welded part at the same time.

【0004】さらに、特開昭62−167866号公報
にはα+β型Ti合金溶接部を溶体化処理した後、時効
処理を施す方法が示されているが、これは溶接部の高硬
度化が目的であり、強度かつ延性の改善方法には適用で
きない。
Further, Japanese Patent Laid-Open No. 62-167866 discloses a method of subjecting an α + β type Ti alloy welded portion to a solution treatment and then an aging treatment, which aims at increasing the hardness of the welded portion. Therefore, it cannot be applied to a method for improving strength and ductility.

【0005】[0005]

【発明が解決しようとする課題】本発明は、β型Ti合
金溶接部において延性の低下を抑制し、かつ高強度の溶
接部を同時に確保するための熱処理による機械的特性の
改善方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for improving mechanical properties by heat treatment for suppressing a decrease in ductility in a β-type Ti alloy weld and simultaneously ensuring a high-strength weld. That is the purpose.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述の課
題を解決するために、β型Ti合金溶接部の機械的特性
に及ぼす熱処理条件の影響について系統的に検討を行っ
た。すなわち、TIG溶接によって作製した溶接部を温
度及び時間を種々変化させた条件で熱処理した後、引張
り試験を実施した。この結果、下記方法による熱処理を
行うことにより、溶接部の延性の低下を抑制し、かつ高
強度が確保されることを見出した。
In order to solve the above-mentioned problems, the present inventors systematically studied the effect of heat treatment conditions on the mechanical properties of β-type Ti alloy welds. That is, a tensile test was carried out after heat-treating the welded portion produced by TIG welding under various conditions of temperature and time. As a result, it has been found that the heat treatment by the following method suppresses the decrease in ductility of the welded portion and ensures high strength.

【0007】すなわち、本発明は、重量%で、V:1
4.0〜16.0%、Al:2.5〜3.5%、Cr:
2.5〜3.5%、Sn:2.5〜3.5%を基本成分
として含有するβ型Ti合金同士を、重量%で、V:1
4.0〜16.0%、Al:2.5〜3.5%、Cr:
2.5〜3.5%、Sn:2.5〜3.5%を基本成分
として含有する共金系のβ型Ti合金溶接材料を用いて
作製された溶接部、あるいは該β型Ti合金同士を溶接
材料を用いない溶融溶接により作製された溶接部を80
0〜850℃で10分〜1時間の溶体化処理を行った
後、100℃/sec以上で200℃以下まで冷却し、
その後500〜550℃で8〜12時間の時効処理を行
うことにより、溶接部の延性を改善し、かつ高強度が確
保されるようにしたものである。
That is, in the present invention, the weight ratio is V: 1.
4.0 to 16.0%, Al: 2.5 to 3.5%, Cr:
% Of V-type Ti alloys containing 2.5 to 3.5% and Sn: 2.5 to 3.5% as basic components in V: 1
4.0 to 16.0%, Al: 2.5 to 3.5%, Cr:
Welds made using a common metal β-type Ti alloy welding material containing 2.5 to 3.5% and Sn: 2.5 to 3.5% as basic components, or the β-type Ti alloy 80 welds made by fusion welding without welding materials
After solution treatment at 0 to 850 ° C. for 10 minutes to 1 hour, cooling is performed at 100 ° C./sec or more to 200 ° C. or less,
After that, by performing an aging treatment at 500 to 550 ° C. for 8 to 12 hours, the ductility of the welded portion is improved and high strength is ensured.

【0008】以下に、本発明を詳細に説明する。まず、
本発明におけるβ型Ti合金の成分限定理由について述
べる。β型Ti合金(以下、「Ti−15V−3Al−
3Cr−3Sn合金」という)は、近年開発された代表
的な実用β型Ti合金の一つであり、他のβ型Ti合金
に比べて溶接高温割れ感受性が小さく、溶接性が良好な
合金である。したがって、V:14.0〜16.0%、
Al:2.5〜3.5%、Cr:2.5〜3.5%、S
n:2.5〜3.5%を基本成分として含有するβ型T
i合金と限定した。
The present invention will be described in detail below. First,
The reasons for limiting the components of the β-type Ti alloy in the present invention will be described. β-type Ti alloy (hereinafter referred to as "Ti-15V-3Al-
3Cr-3Sn alloy ”) is one of the representative practical β-type Ti alloys that have been developed in recent years, and it has a low sensitivity to hot cracking compared to other β-type Ti alloys and has good weldability. is there. Therefore, V: 14.0 to 16.0%,
Al: 2.5-3.5%, Cr: 2.5-3.5%, S
n: β-type T containing 2.5 to 3.5% as a basic component
Limited to i alloy.

【0009】次いで、本発明の合金の熱処理条件につい
て述べる。 (1)800〜850℃で10分〜1時間保定の後、1
00℃/sec以上で200℃以下まで冷却する溶体化
処理 Ti−15V−3Al−3Cr−3Sn合金に対して共
金系溶接材料を用いて溶接した場合、あるいは溶接材料
を用いないで溶融溶接した場合の両者とも、溶接のまま
の溶接金属組織はβ粒が粗大化し、さらに、β粒内では
溶接凝固時のデンドライト状の凝固組織と凝固時の偏析
がそのまま残存している。すなわち、デンドライト境界
にはV,Cr,Feが濃化し、Al,Snが減少してい
る。このような凝固偏析が残存した状態で時効処理を施
すと、微細α粒が不均一に析出するため、延性が低下す
る。
Next, the heat treatment conditions for the alloy of the present invention will be described. (1) After holding for 10 minutes to 1 hour at 800 to 850 ° C, 1
Solution treatment for cooling to 200 ° C. or lower at a rate of 00 ° C./sec or more When welded to a Ti-15V-3Al-3Cr-3Sn alloy using a common metal welding material, or melt welding without using a welding material In both cases, the β-grains in the as-welded weld metal structure become coarse, and further, the dendrite-like solidification structure during welding solidification and the segregation during solidification remain in the β-grains. That is, V, Cr and Fe are concentrated and Al and Sn are reduced at the dendrite boundary. When the aging treatment is performed in the state where such solidification segregation remains, fine α-grains are nonuniformly deposited, so that the ductility decreases.

【0010】そこで、β変態点以上のβ単相域で保定
し、その後急冷する溶体化処理を行うことにより、溶質
元素の拡散を促進させ、凝固偏析を消滅させる。この場
合、溶体化温度はTi−15V−3Al−3Cr−3S
n合金のβ変態点(約760〜780℃)直上の800
℃以上とし、さらに、850℃を超えるとβ粒が粗大化
し、また大気雰囲気熱処理の場合、高温酸化が促進され
機械的特性が劣化する。したがって、溶体化温度を80
0〜850℃に限定した。
Therefore, a solution treatment is carried out by holding in the β single-phase region above the β transformation point and then quenching to promote diffusion of solute elements and eliminate solidification segregation. In this case, the solution temperature is Ti-15V-3Al-3Cr-3S.
800 immediately above the β transformation point (about 760-780 ° C) of the n alloy
If the temperature is higher than or equal to ℃, and if it exceeds 850 ° C., β grains are coarsened, and in the case of heat treatment in an air atmosphere, high temperature oxidation is accelerated and mechanical properties are deteriorated. Therefore, the solutionizing temperature should be 80
It was limited to 0 to 850 ° C.

【0011】また、保定時間は、10分より短くなると
凝固偏析は完全に消滅せず、1時間超の熱処理をしても
凝固偏析を均一化する効果は10分〜1時間熱処理と同
等であるので、10分〜1時間に限定した。さらに、冷
却速度は、100℃/secより小さくなると、冷却中
にα粒が不均一析出し、延性が低下するため、100℃
/sec以上が必要である。また、200℃を超える温
度で冷却を停止すると、表面酸化が起こり機械的特性が
劣化するため、200℃以下まで冷却することとした。
When the holding time is shorter than 10 minutes, the solidification segregation does not completely disappear, and the effect of homogenizing the solidification segregation even after the heat treatment for more than 1 hour is equivalent to that of the heat treatment for 10 minutes to 1 hour. Therefore, it was limited to 10 minutes to 1 hour. Further, if the cooling rate is lower than 100 ° C./sec, α grains are non-uniformly precipitated during cooling and the ductility is reduced, so that the temperature is 100 ° C.
/ Sec or more is required. Further, if cooling is stopped at a temperature higher than 200 ° C., surface oxidation will occur and mechanical properties will deteriorate, so it was decided to cool down to 200 ° C. or lower.

【0012】(2)500〜550℃で8〜12時間保
定の時効処理 時効温度が500℃より低いと微細α粒の他にω相が析
出して硬さが著しく高くなり、延性も低下する。また、
550℃を超えるとα粒が針状になり、かつ粗大化する
ため高強度が得られない。したがって、時効温度を50
0〜550℃に限定した。また、保定時間が8時間より
短いと微細α粒の析出が十分ではないため、高強度が得
られず、かつ延性が低下する。一方、12時間を超えて
も、微細α粒の析出が飽和するため、強度および延性は
8〜12時間熱処理と同等であるので、保定時間を8〜
12時間に限定した。
(2) Aging treatment held at 500 to 550 ° C. for 8 to 12 hours When the aging temperature is lower than 500 ° C., the ω phase precipitates in addition to the fine α grains, the hardness becomes extremely high, and the ductility also deteriorates. . Also,
If the temperature exceeds 550 ° C, the α-grains become needle-shaped and coarsen, so that high strength cannot be obtained. Therefore, the aging temperature is 50
It was limited to 0 to 550 ° C. Further, if the holding time is shorter than 8 hours, the precipitation of fine α-grains is not sufficient, so that high strength cannot be obtained and ductility decreases. On the other hand, even if it exceeds 12 hours, the precipitation of fine α-grains is saturated, and the strength and ductility are the same as the heat treatment for 8 to 12 hours.
Limited to 12 hours.

【0013】[0013]

【実施例】本発明を実施例に基いてさらに説明する。実
施例を用いた本発明のβ型Ti合金板および共金系溶接
材料の化学組成を表1に示す。また、表2に溶接材料を
使用した場合と使用しない場合のTIG溶接の溶接条件
を示す。β型Ti合金板に図1(a)に示すV開先(開
先角度θ:60゜、ルート間隔d:1〜2mm、板厚
t)を設け、共金系溶接材料で、表2に示す条件でTI
G溶接して作製した溶接継手を図1(b)に示す。ま
た、β型Ti合金板に図2(a)に示すI開先(ルート
間隔d:1〜2mm、板厚t)を設け、溶接材料を用い
ないでTIG溶接した溶接継手を図2(b)に示す。
EXAMPLES The present invention will be further described based on examples. Table 1 shows the chemical compositions of the β-type Ti alloy plate and the common metal welding material of the present invention using the examples. In addition, Table 2 shows welding conditions of TIG welding with and without using a welding material. V-grooves (groove angle θ: 60 °, root interval d: 1 to 2 mm, plate thickness t) shown in FIG. 1 (a) are provided on the β-type Ti alloy plate, and the common metal welding material is shown in Table 2. TI under the conditions shown
A welded joint produced by G welding is shown in FIG. In addition, a β type Ti alloy plate is provided with an I groove (root interval d: 1 to 2 mm, plate thickness t) shown in FIG. 2A, and a welded joint obtained by TIG welding without using a welding material is shown in FIG. ).

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】これらの溶接継手を800℃で30分の溶
体化処理を行った後、300℃/secで室温まで冷却
し、その後450〜600℃で2〜24時間の時効処理
を施したもの(溶体化処理あり)と、溶接のままの溶接
継手を450〜600℃で2〜24時間の時効処理を施
したもの(溶体化処理なし)について、ひずみ速度1.
04×10-4/secで引張り試験を実施した。その結
果を、表3に示す。
These welded joints were subjected to solution treatment at 800 ° C. for 30 minutes, cooled to room temperature at 300 ° C./sec, and then subjected to aging treatment at 450 to 600 ° C. for 2 to 24 hours ( Strain rate of 1.) and the welded joint as-welded at 450 to 600 ° C. for 2 to 24 hours (without solution treatment).
A tensile test was carried out at 04 × 10 −4 / sec. The results are shown in Table 3.

【0017】[0017]

【表3】 [Table 3]

【0018】表3から分るように、溶接材料の使用の有
無にかかわらず、450℃の時効処理では溶体化処理の
有無に関係なく、破断伸びはほとんどなく延性は著しく
低下している。また、600℃の時効処理では溶体化処
理の有無に関係なく、引張り強度は溶接のままとほぼ同
程度で高強度を得ることはできない。一方,500〜5
50℃時効では、溶体化処理の有無に関係なく、強度は
上昇しているが、溶体化処理を施さないものは破断伸び
がほとんどなく、延性は低下している。しかし、溶体化
処理を施したものは破断伸びが8時間以上の時効処理で
大きくなり、延性が改善されている。
As can be seen from Table 3, regardless of whether or not the welding material is used, the aging treatment at 450 ° C. shows almost no breaking elongation and the ductility is remarkably lowered regardless of the presence or absence of the solution treatment. Further, the aging treatment at 600 ° C. does not allow high strength to be obtained because the tensile strength is almost the same as that of the as-welded state regardless of the presence or absence of solution treatment. On the other hand, 500-5
In the case of aging at 50 ° C., the strength is increased regardless of the presence or absence of the solution treatment, but the one not subjected to the solution treatment shows almost no elongation at break and the ductility is lowered. However, those subjected to the solution heat treatment have a large elongation at break after aging treatment for 8 hours or more, and the ductility is improved.

【0019】[0019]

【発明の効果】本発明により、β型Ti合金溶接部の延
性を改善し、かつ高強度の溶接部を得ることができる。
According to the present invention, it is possible to improve the ductility of a β-type Ti alloy weld and to obtain a high-strength weld.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における溶接材料を用いた場合の溶接部
の断面図で(a)は開先形状、(b)は溶接後の状態を
示す。
FIG. 1 is a cross-sectional view of a welded portion when a welding material according to the present invention is used, where (a) shows a groove shape and (b) shows a state after welding.

【図2】本発明における溶接材料を用いない場合の溶接
部の断面図で(a)は開先形状、(b)は溶接後の状態
を示す。
FIG. 2 is a cross-sectional view of a welded portion in the case where no welding material is used in the present invention, (a) shows a groove shape, and (b) shows a state after welding.

【符号の説明】[Explanation of symbols]

1,2 Ti合金板 3,4,5,6,7 ビード 1, 2 Ti alloy plate 3, 4, 5, 6, 7 beads

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 14/00 Z // B23K 103:14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 14/00 Z // B23K 103: 14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、V:14.0〜16.0%、A
l:2.5〜3.5%、Cr:2.5〜3.5%、S
n:2.5〜3.5%を基本成分として含有するβ型T
i合金同士を、重量%で、V:14.0〜16.0%、
Al:2.5〜3.5%、Cr:2.5〜3.5%、S
n:2.5〜3.5%を基本成分として含有する共金系
のβ型Ti合金溶接材料を用いて作製された溶接部を8
00〜850℃で10分〜1時間の溶体化処理を行った
後、100℃/sec以上で200℃以下まで冷却し、
その後500〜550℃で8〜12時間の時効処理を行
うことを特徴とするβ型Ti合金溶接部の熱処理方法。
1. V: 14.0 to 16.0% by weight, A
1: 2.5-3.5%, Cr: 2.5-3.5%, S
n: β-type T containing 2.5 to 3.5% as a basic component
i alloys, by weight%, V: 14.0 to 16.0%,
Al: 2.5-3.5%, Cr: 2.5-3.5%, S
n: 8 welds made using a common metal β-type Ti alloy welding material containing 2.5 to 3.5% as a basic component
After performing solution treatment for 10 minutes to 1 hour at 00 to 850 ° C., cooling to 100 ° C./sec or more and 200 ° C. or less,
After that, an aging treatment is performed at 500 to 550 ° C. for 8 to 12 hours, which is a heat treatment method for a β-type Ti alloy weld.
【請求項2】重量%で、V:14.0〜16.0%、A
l:2.5〜3.5%、Cr:2.5〜3.5%、S
n:2.5〜3.5%を基本成分として含有するβ型T
i合金同士を、溶接材料を用いない溶融溶接により作製
された溶接部を800〜850℃で10分〜1時間の溶
体化処理を行った後、100℃/sec以上で200℃
以下まで冷却し、その後500〜550℃で8〜12時
間の時効処理を行うことを特徴とするβ型Ti合金溶接
部の熱処理方法。
2. V: 14.0 to 16.0% by weight, A
1: 2.5-3.5%, Cr: 2.5-3.5%, S
n: β-type T containing 2.5 to 3.5% as a basic component
The i-alloys are subjected to solution treatment at 800 to 850 ° C. for 10 minutes to 1 hour at a welded portion produced by fusion welding without using a welding material, and then 200 ° C. at 100 ° C./sec or more.
A heat treatment method for a β-type Ti alloy weld, which is characterized by cooling to the following and then performing an aging treatment at 500 to 550 ° C for 8 to 12 hours.
JP23973293A 1993-09-27 1993-09-27 Heat treatment for beta titanium alloy weld zone Withdrawn JPH0790526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23973293A JPH0790526A (en) 1993-09-27 1993-09-27 Heat treatment for beta titanium alloy weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23973293A JPH0790526A (en) 1993-09-27 1993-09-27 Heat treatment for beta titanium alloy weld zone

Publications (1)

Publication Number Publication Date
JPH0790526A true JPH0790526A (en) 1995-04-04

Family

ID=17049112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23973293A Withdrawn JPH0790526A (en) 1993-09-27 1993-09-27 Heat treatment for beta titanium alloy weld zone

Country Status (1)

Country Link
JP (1) JPH0790526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106695064A (en) * 2015-11-13 2017-05-24 中国科学院金属研究所 Method for optimizing strength and toughness matching of metastable-state titanium alloy
CN110551956A (en) * 2019-07-03 2019-12-10 西北工业大学 Processing method of TC4 titanium alloy
CN112872644A (en) * 2021-02-24 2021-06-01 沈阳中钛装备制造有限公司 Beta type titanium alloy welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106695064A (en) * 2015-11-13 2017-05-24 中国科学院金属研究所 Method for optimizing strength and toughness matching of metastable-state titanium alloy
CN110551956A (en) * 2019-07-03 2019-12-10 西北工业大学 Processing method of TC4 titanium alloy
CN112872644A (en) * 2021-02-24 2021-06-01 沈阳中钛装备制造有限公司 Beta type titanium alloy welding method

Similar Documents

Publication Publication Date Title
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
KR100535828B1 (en) Metallurgical method for processing nickel- and iron-based superalloys
JP2000160313A (en) Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy
KR101593299B1 (en) Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
JPH03166350A (en) Method for heat treating titanium alloy material for cold working
JPS6128746B2 (en)
JPH0790526A (en) Heat treatment for beta titanium alloy weld zone
Abedi et al. Enhanced resistance to gas tungsten arc weld heat-affected zone cracking in a newly developed Co-based superalloy
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
Greenfield et al. Welding of an advanced high strength titanium alloy
US3663217A (en) Brazing alloy for elevated temperature service
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JP3533548B2 (en) Ferritic stainless steel pipe for heat resistance with excellent workability
US4737200A (en) Method of manufacturing brazable super alloys
JP3426036B2 (en) Martensitic stainless steel excellent in strength and toughness and method for producing the same
JPH0114991B2 (en)
Hirose et al. Microstructure and mechanical properties of laser beam welded Inconel 718
JPH08239739A (en) Heat tratment for ni-base alloy excellent in corrosion resistance
JP2797981B2 (en) High strength austenitic steel welding material and method for producing the same
JP4418115B2 (en) High-strength steel with excellent toughness of laser welds
JP2881846B2 (en) Manufacturing method of high strength wire rod
JPS63145752A (en) Austenitic iron alloy having strength and toughness
JPH0774383B2 (en) Method for producing steel sheet with excellent resistance to hydrogen-induced cracking
JP3562979B2 (en) Automotive frame structural material for bending and arc welding made of extruded Al-Mg-Si alloy
JP2536712B2 (en) Diffusion bonding method for dissimilar metals

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128