JPH05345928A - Post weld heat treatment for improving fatigue strength of weld joint - Google Patents

Post weld heat treatment for improving fatigue strength of weld joint

Info

Publication number
JPH05345928A
JPH05345928A JP15392592A JP15392592A JPH05345928A JP H05345928 A JPH05345928 A JP H05345928A JP 15392592 A JP15392592 A JP 15392592A JP 15392592 A JP15392592 A JP 15392592A JP H05345928 A JPH05345928 A JP H05345928A
Authority
JP
Japan
Prior art keywords
heat treatment
fatigue
fatigue strength
weld
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15392592A
Other languages
Japanese (ja)
Inventor
Shuji Aihara
周二 粟飯原
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15392592A priority Critical patent/JPH05345928A/en
Publication of JPH05345928A publication Critical patent/JPH05345928A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve joint fatigue strength by changing the structure of the toe of a low alloy steel weld joint by heat treatment. CONSTITUTION:Steels having Ac1 and Ac3 transformation points are welded, and the weld zone is heated up to a temp. in the intermediate temp. region between the Ac1 and the Ac3 transformation points and further cooled down to <=300 deg.C at >=10 deg.C/sec average cooling rate to undergo heat treatment. By the above heat treatment, a large amount of island martensite is formed in the weld zone, by which the propagation of fatigue crack is inhibited. By this method, the fatigue strength of the weld joint can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変態を有する鋼、特に引
張り強さが80kgf/mm2 級以下の溶接用低合金鋼におい
て、その溶接部の微視組織を熱処理により改変し、溶接
継手の疲労強度を改善する熱処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a transformed steel, especially a low alloy steel for welding having a tensile strength of 80 kgf / mm 2 or less, by modifying the microstructure of the welded portion by heat treatment to obtain a welded joint. The present invention relates to a heat treatment method for improving fatigue strength.

【0002】[0002]

【従来の技術】溶接構造物の大型化にともない、構造物
の重量低減が必要となり、このために構造物に使用され
る鋼の高張力化が進んでいる。一方、船舶や機械のよう
に使用中に繰り返し荷重を受ける構造物においては疲労
破壊を防止するための配慮が必要である。特に、溶接部
は応力集中が高くなりやすく、しかも、溶接残留応力が
残存した状態で使用されることが多いため、疲労き裂が
最も頻繁に発生しやすい部位である。ところが、母材の
強度を上昇させても溶接部の疲労強度はほとんど変わら
ないために、母材の強度上昇にともなって、設計応力を
高めると、溶接部から疲労き裂が発生しやすくなる。こ
のために、母材の強度の上昇にみあって設計応力を高め
ることが困難となる。
2. Description of the Related Art With the increase in size of welded structures, it is necessary to reduce the weight of the structure, and for this reason, the tensile strength of steel used for the structure is being advanced. On the other hand, in structures such as ships and machines that are subjected to repeated loads during use, consideration must be given to prevent fatigue fracture. In particular, the welded portion is apt to cause fatigue cracks most frequently because the stress concentration is likely to be high and the welded residual stress is often used. However, even if the strength of the base metal is increased, the fatigue strength of the welded portion hardly changes. Therefore, if the design stress is increased with the increase of the strength of the base metal, a fatigue crack easily occurs in the welded portion. For this reason, it becomes difficult to increase the design stress due to the increase in the strength of the base material.

【0003】従来の疲労破壊の研究によれば、溶接部の
疲労強度に及ぼす材質要因はほとんどなく、応力集中度
や溶接残留応力を低減するなどの力学的な要因を改善す
ることにより溶接部の疲労強度改善がはかられてきた。
すなわち、溶接止端部の研削や、TIG溶接により止端
部の形状を滑らかにして応力集中度を低減することによ
り、疲労強度を改善し、母材強度上昇にともなった設計
応力の上昇を可能としているのが現状である。
According to the conventional research on fatigue fracture, there is almost no material factor affecting the fatigue strength of the welded portion, and the mechanical strength of the welded portion is improved by improving the mechanical factors such as reduction of stress concentration and welding residual stress. Fatigue strength has been improved.
That is, by grinding the weld toe and smoothing the shape of the toe by TIG welding to reduce the stress concentration, fatigue strength can be improved and the design stress can be increased as the base metal strength increases. It is the current situation.

【0004】[0004]

【発明が解決しようとする課題】本発明者らが解決しよ
うとする問題点は、応力集中度の低減や溶接残留応力の
低減を通じた疲労強度改善ではなく、溶接部の微視組織
を熱処理により改変することにより、溶接部の疲労強度
の改善をはかる方法を実現することである。
The problem to be solved by the present inventors is not to improve the fatigue strength by reducing the stress concentration and the residual welding stress, but by heat treating the microstructure of the welded part. The modification is to realize a method for improving the fatigue strength of the welded portion.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記問題に
鑑み、変態を有する低合金鋼の溶接部の疲労強度と微視
組織の関係について詳細に調査・検討した結果、以下の
ような実用上重要な事実を知見した。溶接構造物で最も
多用される継手形状は突き合わせ溶接および隅肉溶接で
ある。図1はこれらの継手における溶接金属、溶接熱影
響部(以下HAZと記す)、および母材部の位置関係を
模式的に示したものである。疲労き裂は最も応力集中の
厳しい溶接止端部から発生し、伝播することは一般によ
く知られた事実である。図1から明らかなように、この
止端部は微視組織的には溶接金属に接近したHAZであ
る。したがって、止端部からの疲労き裂発生、およびき
裂の進展の初期段階はHAZを再現した再現熱サイクル
材を疲労試験に供することにより再現できることは明白
である。一方、疲労強度は応力集中度によって大きく変
化することはよく知られた事実である。溶接止端部から
の疲労き裂発生、進展を再現するためには微視組織の再
現と同時に溶接止端部における応力集中の再現も必要で
ある。このような考察から、溶接再現熱サイクル材から
図2に示す形状の小型疲労試験片を加工し、微視組織と
疲労強度の関係について系統的に検討した。図2に示し
た小型3点曲げ疲労試験片についても止端部における応
力集中度とほぼ等しい応力集中を与えた。
In view of the above problems, the present inventors have made detailed investigations and studies on the relationship between the fatigue strength and microstructure of welded portions of low alloy steel having transformation, and as a result, We have found facts that are important for practical use. The most frequently used joint shapes in welded structures are butt welding and fillet welding. FIG. 1 schematically shows the positional relationship between the weld metal, the weld heat affected zone (hereinafter referred to as HAZ), and the base metal portion in these joints. It is a well known fact that fatigue cracks originate and propagate from the weld toe where stress concentration is most severe. As is apparent from FIG. 1, this toe is a HAZ microscopically close to the weld metal. Therefore, it is clear that the fatigue crack initiation from the toe and the initial stage of crack growth can be reproduced by subjecting the reproduced thermal cycle material that reproduces HAZ to the fatigue test. On the other hand, it is a well known fact that fatigue strength changes greatly depending on the stress concentration. In order to reproduce the fatigue crack initiation and propagation from the weld toe, it is necessary to reproduce the microstructure and also the stress concentration at the weld toe. From such a consideration, a small fatigue test piece having the shape shown in FIG. 2 was machined from the welded thermal cycle material, and the relationship between the microstructure and the fatigue strength was systematically examined. The small 3-point bending fatigue test piece shown in FIG. 2 was also subjected to stress concentration almost equal to the stress concentration at the toe.

【0006】表1に化学成分と機械的性質を示す引張り
強さが50kgf/mm2 級の高張力鋼に対して溶接HAZ再
現熱サイクルを付与した後、熱処理を付与して、図2に
示す小型3点曲げ疲労試験片を加工し、疲労試験に供し
た。ここで、溶接HAZ再現熱サイクルは高周波誘導加
熱装置を用いて付与した。最高加熱温度を1400℃と
し、800℃から500℃の冷却時間を8秒とした。ま
た、溶接後熱処理条件は、加熱温度を600℃から10
00℃の間で変化させ、加熱後の冷却は水焼入れとし
た。図3は、横軸に熱処理温度をとり、小型3点曲げ疲
労試験で得られた疲労限応力範囲をプロットしたもので
ある。本供試鋼のAc1 およびAc3 温度はそれぞれ約
720℃、850℃である。同図から、熱処理温度がA
1 とAc 3 の中間温度域で、熱サイクルまま材と比較
して疲労限が著しく上昇することが分かる。
Table 1 shows the tensile properties of chemical components and mechanical properties.
Strength is 50kgf / mm2Weld HAZ for high grade high strength steel
After applying the current heat cycle, and then applying heat treatment,
The small 3-point bending fatigue test piece shown below was processed and subjected to the fatigue test.
It was Here, the welding HAZ reproduction thermal cycle is a high frequency induction
It was applied using a thermal device. Maximum heating temperature is 1400 ℃
Then, the cooling time from 800 ° C. to 500 ° C. was set to 8 seconds. Well
In addition, the heat treatment conditions after welding include heating temperature from 600 ° C to 10
Change between 00 ° C, cooling after heating is water quenching
It was In Fig. 3, the heat treatment temperature is plotted on the horizontal axis, and the small 3-point bending fatigue
It is a plot of the fatigue limit stress range obtained in the labor test.
is there. Ac of this test steel1And Ac3The temperature is about
720 ° C and 850 ° C. From the figure, the heat treatment temperature is A
c1And Ac 3In the intermediate temperature range of
It can be seen that the fatigue limit is significantly increased.

【0007】溶接再現熱サイクルにより粗粒のベイナイ
ト組織が生成するが、これに引き続くAc1 とAc3
中間温度域への加熱により、部分的にオーステナイトが
生成し、オーステナイト中に炭素が濃化する。炭素濃度
が上昇したオーステナイトは焼入れ性が上昇し、少なく
ともこの一部が冷却途上でマルテンサイト変態すること
は容易に推察される。この島状マルテンサイトが粗粒H
AZ組織の応力集中下における疲労強度向上に顕著な効
果を示すことが確かめられた。図4は、最も高い疲労強
度を示した条件である溶接後熱処理温度が750℃での
加熱・冷却した試験片について、疲労限直下の応力範囲
で疲労試験を行い、疲労破壊しなかった試験片の切欠底
を走査型電顕で観察した結果、発見された微視き裂の例
を示したものである。ベイナイト中に繰り返し荷重によ
り微視疲労き裂が発生しているが、発生したき裂が硬質
の島状マルテンサイトによりき裂進展を阻止されている
ことが明瞭に分かる。同図で白く観察される組織が島状
マルテンサイトである。
Coarse-grained bainite structure is produced by the simulated welding heat cycle, but the subsequent heating of Ac 1 and Ac 3 to an intermediate temperature region partially produces austenite, and carbon is concentrated in the austenite. To do. It is easily inferred that the hardenability of austenite with an increased carbon concentration increases, and at least a part of this undergoes martensitic transformation during cooling. This island-shaped martensite is coarse grain H
It was confirmed that the AZ structure has a remarkable effect on improving the fatigue strength under stress concentration. FIG. 4 is a test piece that was not fatigue-fractured by performing a fatigue test in a stress range just below the fatigue limit for a test piece that was heated and cooled at a post-welding heat treatment temperature of 750 ° C., which is the condition showing the highest fatigue strength. As a result of observing the notched bottom of the specimen with a scanning electron microscope, an example of a microscopic crack found is shown. Microfatigue cracks are generated in bainite by repeated loading, but it is clearly seen that the cracks are prevented by the hard island martensite. The structure observed in white in the figure is island martensite.

【0008】図3に示した実験において、時間強度、す
なわち一定の負荷応力範囲における破断までの繰り返し
数もAc1 とAc3 の中間温度域への加熱・冷却熱処理
により上昇する結果が得られている。すなわち、この加
熱・冷却熱処理により、疲労き裂の進展も遅延される。
従って、島状マルテンサイトは上記のような微視き裂の
進展防止効果に加えて、疲労限応力範囲以上の応力範囲
レベルにおいてき裂進展を遅延させる効果も有すること
は明らかである。
In the experiment shown in FIG. 3, it was found that the time strength, that is, the number of repetitions until rupture in a constant load stress range was also increased by the heating / cooling heat treatment in the intermediate temperature range between Ac 1 and Ac 3. There is. That is, this heating / cooling heat treatment also delays the propagation of fatigue cracks.
Therefore, it is clear that the island martensite has an effect of delaying the crack growth at a stress range level higher than the fatigue limit stress range, in addition to the effect of preventing the microscopic crack growth as described above.

【0009】すなわち、本発明の骨子とするところは溶
接後熱処理によりHAZの粗粒組織中に島状マルテンサ
イトを生成させることにより、応力集中部において微視
疲労き裂が発生しても、これを硬質の島状マルテンサイ
トによりき裂進展を阻止するか、または遅延させること
により、実効的に疲労強度を向上させるものである。次
に、島状マルテンサイトを生成させるための熱処理後の
冷却速度の適正範囲について検討を加えた。図5は溶接
再現熱サイクル後の熱処理温度を750℃一定とし、加
熱後の冷却における冷却速度を変化させた場合の疲労限
応力範囲の変化を調査した結果である。供試鋼、溶接H
AZ再現熱サイクル条件、および試験片形状は図3にお
ける条件と同一とした。ただし、溶接HAZ再現熱サイ
クル後の熱処理は高周波誘導加熱装置により再現した。
同図から、熱処理加熱後の平均冷却速度が10℃/秒以
上であれば、島状マルテンサイトが生成し、疲労限を向
上させる効果が現れる。従って、熱処理後の平均冷却速
度を10℃/秒以上とすることが疲労強度を向上させる
ための必須条件である。ただし、冷却速度が大であるほ
ど島状マルテンサイトが多量に生成し、疲労限を向上さ
せる効果はより顕著となる。なお、通常の低合金鋼を対
象とする場合、マルテンサイト変態は約300℃までに
ほとんど終了する。従って、熱処理後の冷却は300℃
までが重要であり、これより低い温度における冷却速度
は任意でよい。
That is, the essence of the present invention is that even if a microscopic fatigue crack occurs in the stress concentrated portion by generating island martensite in the coarse grain structure of the HAZ by post-welding heat treatment, The hard island martensite is used to prevent or delay the crack growth, thereby effectively improving the fatigue strength. Next, the appropriate range of the cooling rate after the heat treatment for forming island martensite was examined. FIG. 5 shows the results of an investigation of changes in the fatigue limit stress range when the heat treatment temperature after the simulated welding heat cycle was kept constant at 750 ° C. and the cooling rate during cooling after heating was changed. Test steel, welding H
The AZ reproduction heat cycle condition and the test piece shape were the same as those in FIG. However, the heat treatment after the welding HAZ reproduction thermal cycle was reproduced by a high frequency induction heating device.
From the figure, when the average cooling rate after heating by heat treatment is 10 ° C./sec or more, island martensite is generated, and the effect of improving the fatigue limit appears. Therefore, setting the average cooling rate after the heat treatment to 10 ° C./sec or more is an essential condition for improving the fatigue strength. However, the larger the cooling rate, the more island-like martensite is generated, and the effect of improving the fatigue limit becomes more remarkable. When ordinary low alloy steel is targeted, the martensitic transformation is almost completed by about 300 ° C. Therefore, cooling after heat treatment is 300 ℃
Is important, and the cooling rate at lower temperatures may be arbitrary.

【0010】以上の知見に基づいて構成された本発明を
以下のようにまとめて説明する。溶接継手において最も
疲労き裂が発生、伝播しやすいのは止端部におけるHA
Z組織である。溶接時の熱サイクルにより、止端部近傍
は粗粒HAZ組織となる。溶接後に、Ac1 とAc3
中間温度域へ加熱し、その後、10℃/秒以上の平均冷
却速度で300℃以下まで冷却することにより粗粒HA
Z組織中に島状にマルテンサイトが生成する。疲労荷重
下において微視き裂が生成しても硬質の島状マルテンサ
イトが微視き裂の進展を阻止するか、または進展を遅延
させることにより疲労限応力範囲と時間強度をともに向
上させることができる。島状マルテンサイトによる微視
き裂の進展阻止、遅延効果は強く、溶接止端部のような
応力集中を有する部位においてもこの効果が現れる。上
記の検討結果から明らかなように、Ac1 とAc3 変態
温度を有し、Ac1 とAc3 の中間温度域において部分
的にオーステナイトが生成し、適正な冷却速度の冷却に
よりこのオーステナイトが少なくとも部分的にマルテン
サイト変態する鋼であれば、本発明による疲労強度向上
が達成できる。
The present invention constructed on the basis of the above findings will be summarized as follows. HA at the toe is the most prone to fatigue crack initiation and propagation in welded joints.
It is a Z organization. Due to the heat cycle during welding, a coarse-grained HAZ structure is formed near the toe. After welding, it is heated to an intermediate temperature range between Ac 1 and Ac 3 , and then cooled to 300 ° C or less at an average cooling rate of 10 ° C / sec or more to obtain coarse-grained HA.
Martensite is formed like islands in the Z structure. Even if a microcrack is generated under fatigue loading, the hard island martensite prevents the microcrack from propagating or delays the propagation to improve both the fatigue limit stress range and time strength. You can The island-like martensite has a strong effect of preventing and delaying the growth of microscopic cracks, and this effect also appears in a portion having stress concentration such as a weld toe. As is clear from the above-mentioned examination results, the austenite has Ac 1 and Ac 3 transformation temperatures, and austenite is partially generated in the intermediate temperature range of Ac 1 and Ac 3 , and at least austenite is cooled by cooling at an appropriate cooling rate. If the steel is partially martensitic transformed, the improvement in fatigue strength according to the present invention can be achieved.

【0011】本発明の原理からも明らかなように、溶接
後の熱処理方法は本発明の加熱温度と冷却速度を実現で
きるものであれば任意でよい。具体的には、加熱炉挿入
による加熱、高周波誘導加熱による加熱、あるいは、ガ
スバーナーによる加熱などが考えられる。また、Ac1
とAc3 の中間温度域においてオーステナイト中に炭素
が濃縮するが、炭素の拡散は極めて速いため、これに要
する時間は短い。このため、Ac1 とAc3 の中間温度
域における保持時間は数秒程度で充分であり、実用上保
持時間は任意でよい。また、疲労き裂の発生が問題とな
るのは溶接止端部であり、溶接継手全体を加熱する必要
はなく、止端部のみを所定の温度に加熱すれば本発明の
効果が得られる。また、加熱後の冷却方法も300℃ま
で10℃/秒以上の平均冷却速度が得られるものであれ
ば任意でよい。
As is clear from the principle of the present invention, the heat treatment method after welding may be any as long as it can realize the heating temperature and cooling rate of the present invention. Specifically, heating by inserting a heating furnace, heating by high-frequency induction heating, heating by a gas burner, or the like can be considered. Also, Ac 1
Carbon concentrates in austenite in the intermediate temperature range between and Ac 3 , but the time required for this is short because the diffusion of carbon is extremely fast. Therefore, the holding time in the intermediate temperature range between Ac 1 and Ac 3 is about several seconds, and the holding time may be arbitrary for practical use. The occurrence of fatigue cracks is a problem at the weld toe, and it is not necessary to heat the entire weld joint, and the effect of the present invention can be obtained by heating only the toe to a predetermined temperature. Further, the cooling method after heating may be arbitrary as long as an average cooling rate of 10 ° C./second or more can be obtained up to 300 ° C.

【0012】一方、溶接部の疲労強度は溶接残留応力に
大きく依存し、溶接残留応力の低減により疲労強度が向
上することは一般に広く知られている事実である。通常
広く行われているAc1 以下の溶接後熱処理により溶接
残留応力が低下するため、この溶接後熱処理により疲労
強度は向上する。しかし、上記の検討結果からも明らか
なように、本発明は疲労き裂が発生、進展する粗粒HA
Z組織を溶接後熱処理により改変することにより疲労強
度を改善するものであり、従来の溶接後熱処理による疲
労強度向上方法とはまったく原理が異なったものである
ことは言うまでもない。また、本発明の熱処理温度は溶
接残留応力低減を目的とした従来の溶接後熱処理温度と
異なる。
On the other hand, it is a widely known fact that the fatigue strength of a welded portion largely depends on the residual welding stress and that the reduction of the residual welding stress improves the fatigue strength. Since the post-weld heat treatment of Ac 1 or less, which is generally widely performed, reduces the welding residual stress, the post-weld heat treatment improves the fatigue strength. However, as is clear from the above-mentioned examination results, the present invention provides coarse-grained HA in which fatigue cracks occur and propagate.
It is needless to say that the Z-structure is modified by heat treatment after welding to improve the fatigue strength, which is completely different in principle from the conventional method for improving fatigue strength by heat treatment after welding. Further, the heat treatment temperature of the present invention is different from the conventional post-weld heat treatment temperature for the purpose of reducing the residual welding stress.

【0013】[0013]

【実施例】以下に、本発明の実施例を述べる。表2に引
張り強さが50kgf/mm2 級の供試鋼の化学成分と機械的
性質を示す。表3に示す条件で炭酸ガス溶接を行い、T
字隅肉溶接継手を作成した。この溶接継手から図6に示
す形状の3点曲げ疲労試験片を加工した。
EXAMPLES Examples of the present invention will be described below. Table 2 shows the chemical composition and mechanical properties of the test steels with a tensile strength of 50 kgf / mm 2 . Carbon dioxide welding was performed under the conditions shown in Table 3, and T
A fillet welded joint was created. From this welded joint, a three-point bending fatigue test piece having the shape shown in FIG. 6 was processed.

【0014】表4に溶接後熱処理条件と疲労試験の結果
得られた疲労限応力範囲値を示す。実施例aは溶接まま
の結果である。実施例bおよびcは本発明の溶接後熱処
理を施した結果であり、溶接ままに比べて顕著な疲労限
の向上が認められる。実施例dは加熱温度がAc1 未満
であり、本発明範囲外である。溶接残留応力の低減によ
り溶接まま材より疲労限は向上するが、その効果は本発
明の場合より小さい。実施例eは溶接後熱処理後の冷却
が大気中放冷のため冷却速度が本発明範囲外となり、疲
労強度向上は溶接残留応力低減のみによるもので、その
効果は本発明の場合より小さい。
Table 4 shows the heat treatment conditions after welding and the fatigue limit stress range values obtained as a result of the fatigue test. Example a is the as-welded result. Examples b and c are the results of the heat treatment after welding according to the present invention, and a remarkable improvement in the fatigue limit is recognized as compared with the as-welded state. In Example d, the heating temperature is less than Ac 1, which is outside the scope of the present invention. Although the fatigue limit of the as-welded material is improved by reducing the welding residual stress, the effect is smaller than that of the present invention. In Example e, the cooling rate after the heat treatment after welding was allowed to cool in the atmosphere, so the cooling rate was out of the range of the present invention, and the improvement in fatigue strength was due only to the reduction of welding residual stress, and the effect was smaller than that of the present invention.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【発明の効果】以上説明したように、本発明による溶接
後熱処理を行うことにより、溶接熱影響部の微視組織を
改変し、溶接継手の疲労強度を向上させることができ
る。
As described above, by performing the post-weld heat treatment according to the present invention, the microstructure of the weld heat affected zone can be modified and the fatigue strength of the welded joint can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶接部の模式図である。FIG. 1 is a schematic view of a welded portion.

【図2】溶接部再現熱サイクル材の小型3点曲げ疲労試
験片の形状を示す図である。
FIG. 2 is a diagram showing the shape of a small-sized three-point bending fatigue test piece of a welded section heat cycle material.

【図3】再現熱サイクル材疲労限の溶接後熱処理温度依
存性を調査した結果を示す図である。
FIG. 3 is a diagram showing a result of an examination of post-welding heat treatment temperature dependency of a fatigue limit of a reproduced heat cycle material.

【図4】再現熱サイクル材をAc1 とAc3 の中間温度
域へ加熱後、水冷し、疲労限直下の応力での疲労試験に
供した試験片の切欠底に観察される微視き裂が島状マル
テンサイトにより進展阻止されている様子を示す走査型
電顕による金属組織写真図である。
FIG. 4 is a microscopic crack observed at the notch bottom of a test piece subjected to a fatigue test under stress just below the fatigue limit after heating the reproduced heat cycle material to an intermediate temperature range between Ac 1 and Ac 3 and then water cooling. FIG. 4 is a photograph of a metallographic structure by scanning electron microscopy showing the state in which is prevented from progressing by island martensite.

【図5】再現熱サイクル材疲労限の溶接後熱処理の冷却
速度依存性を調査した結果を示す図である。
FIG. 5 is a diagram showing the results of an investigation of the cooling rate dependence of the post-welding heat treatment of the fatigue limit of the reproduced heat cycle material.

【図6】T字隅肉溶接継手の疲労試験片形状を示す図で
ある。
FIG. 6 is a view showing a fatigue test piece shape of a T-shaped fillet welded joint.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月4日[Submission date] February 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ac1 およびAc3 変態点を有する鋼を
溶接した後、溶接部をAc1 およびAc3 変態点の中間
温度域に加熱し、さらに10℃/秒以上の平均冷却速度
で300℃以下まで冷却することを特徴とする溶接継手
の疲労強度を向上させる溶接後熱処理方法。
1. After welding steel having Ac 1 and Ac 3 transformation points, the welded portion is heated to an intermediate temperature range between the Ac 1 and Ac 3 transformation points, and further 300 at an average cooling rate of 10 ° C./sec or more. A post-welding heat treatment method for improving the fatigue strength of a welded joint, which is characterized by cooling to below ℃.
JP15392592A 1992-06-12 1992-06-12 Post weld heat treatment for improving fatigue strength of weld joint Withdrawn JPH05345928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15392592A JPH05345928A (en) 1992-06-12 1992-06-12 Post weld heat treatment for improving fatigue strength of weld joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15392592A JPH05345928A (en) 1992-06-12 1992-06-12 Post weld heat treatment for improving fatigue strength of weld joint

Publications (1)

Publication Number Publication Date
JPH05345928A true JPH05345928A (en) 1993-12-27

Family

ID=15573084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15392592A Withdrawn JPH05345928A (en) 1992-06-12 1992-06-12 Post weld heat treatment for improving fatigue strength of weld joint

Country Status (1)

Country Link
JP (1) JPH05345928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927223A1 (en) * 1978-07-05 1980-01-17 Sony Corp DEVICE FOR CONTROLLING THE ELECTRON BEAM IN A COLOR TELEVISION RECEIVER WITH BEAM INDEX CONTROL
JP2018169253A (en) * 2017-03-29 2018-11-01 三菱日立パワーシステムズ株式会社 Destruction reproduction method of weld joint, life prediction method of weld joint, destruction reproduction device of weld joint, and life prediction device of weld joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927223A1 (en) * 1978-07-05 1980-01-17 Sony Corp DEVICE FOR CONTROLLING THE ELECTRON BEAM IN A COLOR TELEVISION RECEIVER WITH BEAM INDEX CONTROL
JP2018169253A (en) * 2017-03-29 2018-11-01 三菱日立パワーシステムズ株式会社 Destruction reproduction method of weld joint, life prediction method of weld joint, destruction reproduction device of weld joint, and life prediction device of weld joint

Similar Documents

Publication Publication Date Title
Akselsen et al. Structure–property relationships in intercritical heat affected zone of low-carbon microalloyed steels
JP3860763B2 (en) Thick steel plate with excellent fatigue strength and its manufacturing method
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
Mostaan et al. Laser welding of dual-phase steels with different silicon contents: Phase evolutions, microstructural observations, mechanical properties, and fracture behavior
JP2005232513A (en) High strength steel sheet and manufacturing method
JP4173957B2 (en) Lamination fillet welding method for steel sheets with excellent fatigue strength of welds
JPH05345928A (en) Post weld heat treatment for improving fatigue strength of weld joint
CN109789505B (en) Method for manufacturing ferritic heat-resistant steel welded structure, and ferritic heat-resistant steel welded structure
JP4267183B2 (en) Structures with laser or electron beam welded joints with excellent fatigue strength characteristics and methods for manufacturing them
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
Pinto et al. Microstructure and residual stress formation in induction‐assisted laser welding of the steel S690QL
Suresh et al. Study of welding characteristics of 0.3 C–CrMoV (ESR) ultrahigh strength steel
JP2003129178A (en) High-strength pc steel bar superior in delayed fracture characteristic
Huda Effect of martensite-austenite (MA) on mechanical properties of X80 Linepipe Steel
JP2005048271A (en) Method for welding high-carbon steel material
JPH08309428A (en) Production of welded steel tube
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JP3468828B2 (en) Manufacturing method of high strength PC steel rod
JP4806887B2 (en) Steel material excellent in fatigue crack propagation characteristics and method for producing the same
KR100387595B1 (en) Laser Welding Method In Martensitic Stainless Steel Of High Carbon
JPH0774383B2 (en) Method for producing steel sheet with excellent resistance to hydrogen-induced cracking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831