JPH0971555A - Production of 4-methoxy-2,2',6'-trimethyldiphenylamine - Google Patents

Production of 4-methoxy-2,2',6'-trimethyldiphenylamine

Info

Publication number
JPH0971555A
JPH0971555A JP7231200A JP23120095A JPH0971555A JP H0971555 A JPH0971555 A JP H0971555A JP 7231200 A JP7231200 A JP 7231200A JP 23120095 A JP23120095 A JP 23120095A JP H0971555 A JPH0971555 A JP H0971555A
Authority
JP
Japan
Prior art keywords
methoxy
reaction
trimethyldiphenylamine
acid
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7231200A
Other languages
Japanese (ja)
Other versions
JP3177420B2 (en
Inventor
Hideaki Hashimoto
秀明 橋本
Katsuyuki Nagamatsu
勝行 永松
Hiroyuki Ito
洋之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23120095A priority Critical patent/JP3177420B2/en
Publication of JPH0971555A publication Critical patent/JPH0971555A/en
Application granted granted Critical
Publication of JP3177420B2 publication Critical patent/JP3177420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain 4-methoxy-2,2',6'-trimethyldiphenylamine useful as an intermediate of a color former using to thermosensitive recording paper, etc., at a high yield and high selectivity in an industrial scale by specifying stirring power. SOLUTION: The objective 4-methoxy-2,2',6'-trimethyldiphenylamine is obtained by heat-reacting 2,6-dimethylcyclohexanone with 2-methyl-4- methoxyaniline in the presence of a dehydrogenation catalyst such as Raney nickel at 2.1-10kw/m<3> stirring power per unit volume with discharging generated hydrogen and water outside the reaction system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、感熱記録紙及び感
圧記録紙用の発色剤製造の中間体として有用な4−メト
キシ−2,2’,6’−トリメチルジフェニルアミンの
工業的に改良された製造方法に関する。
TECHNICAL FIELD The present invention relates to an industrially improved 4-methoxy-2,2 ′, 6′-trimethyldiphenylamine useful as an intermediate for producing a color former for heat-sensitive recording paper and pressure-sensitive recording paper. Manufacturing method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】発明者
らは、4−メトキシ−2,2’,6’−トリメチルジフ
ェニルアミン(以下DMDPAと略する)を製造する方
法として2,6−ジメチルシクロヘキサノンと2−メチ
ル−4−メトキシアニリンとを反応させて製造する方法
(特開60−192949号公報)を提案し、さらにこ
の方法は4−メトキシ−2,2’,6’−トリメチルジ
フェニルアミンの選択率が悪いなどの欠点があるので発
生する水素及び水を反応系外に放出しつつ反応させるこ
とで選択率を向上させた改良方法を提案した(特願平6
−27880号)。
2. Description of the Related Art The inventors of the present invention have proposed a method for producing 4-methoxy-2,2 ', 6'-trimethyldiphenylamine (hereinafter abbreviated as DMDPA) as 2,6-dimethylcyclohexanone. And a method of reacting 2-methyl-4-methoxyaniline with each other (Japanese Patent Application Laid-Open No. 60-192949) to propose a method for selecting 4-methoxy-2,2 ′, 6′-trimethyldiphenylamine. Since there are drawbacks such as poor efficiency, we proposed an improved method in which the selectivity is improved by reacting while releasing the generated hydrogen and water to the outside of the reaction system (Japanese Patent Application No. H6-6
-27880).

【0003】しかし、この方法を工業化すべくスケール
アップの検討を行った所、期待されたDMDPAの選択
率が得られなかった。選択率の低下はDMDPAの得量
低下のみならず、DMDPAの純度低下を生じ最終製品
である感熱記録紙及び感圧記録紙用の発色剤の品質低下
をもたらす恐れがある。
However, when a scale-up study was conducted to industrialize this method, the expected DMDPA selectivity could not be obtained. The reduction in the selectivity not only lowers the yield of DMDPA, but also lowers the purity of DMDPA, which may lead to a reduction in the quality of the color developing agent for the final heat-sensitive recording paper and pressure-sensitive recording paper.

【0004】特に、主要副生物の4−メトキシ−2,
2’−ジメチルジフェニルアニリン(以下、K体と略す
る)はDMDPAと沸点が近似しており、蒸留によるD
MDPAとの分離は困難であるのでK体生成は直接DM
DPAの品質低下につながる。そこで工業化した場合に
予想される選択率の低下に対応する手段を確立する必要
がある。
In particular, the major by-product 4-methoxy-2,
The boiling point of 2'-dimethyldiphenylaniline (hereinafter abbreviated as K form) is similar to that of DMDPA, and D
Since it is difficult to separate it from MDPA, the K-form is directly produced by DM.
This leads to a deterioration in the quality of DPA. Therefore, it is necessary to establish means for dealing with the expected reduction in selectivity when industrialized.

【0005】[0005]

【課題を解決するための手段】本発明者らは先に提案し
た特願平6−27880号の方法のスケールアップにつ
いて検討を行い攪拌の影響が大きいことを見いだし本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention studied the scale-up of the method of Japanese Patent Application No. 6-27880 previously proposed, found that the effect of stirring was great, and completed the present invention. .

【0006】即ち、本発明は脱水素触媒の存在下、2,
6−ジメチルシクロへキサノンと2−メチル−4−メト
キシアニリンとを発生する水素及び水を反応系外に放出
しつつ加熱反応させるDMDPAの製造方法において、
単位体積当りの攪拌動力を2.1〜10kw/m3で反
応を行うことを特徴とする方法である。
That is, according to the present invention, in the presence of a dehydrogenation catalyst,
In the method for producing DMDPA, which is carried out by heating while releasing hydrogen and water generating 6-dimethylcyclohexanone and 2-methyl-4-methoxyaniline to the outside of the reaction system,
The method is characterized in that the reaction is carried out at a stirring power of 2.1 to 10 kw / m 3 per unit volume.

【0007】[0007]

【発明の実施の形態】本発明方法は、酸触媒存在下、2
−メチル−4−メトキシアニリンと2,6−ジメチルシ
クロヘキサノンとの脱水反応により中間体であるシッフ
塩基が生成し、続いて、中間体を脱水素触媒により接触
的に脱水素し、それにより生成した水素をシッフ塩基生
成時に副成した水とともに反応系外に放出しながら目的
生成物である4−メトキシ−2,2’,6’−トリメチ
ルジフェニルアミンを得るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention is carried out in the presence of an acid catalyst, 2
-Methyl-4-methoxyaniline and 2,6-dimethylcyclohexanone were dehydrated to produce an intermediate Schiff base, which was subsequently catalytically dehydrogenated with a dehydrogenation catalyst to produce it. The target product, 4-methoxy-2,2 ', 6'-trimethyldiphenylamine, is obtained by releasing hydrogen together with water, which is a by-product during the formation of the Schiff base, out of the reaction system.

【0008】本発明方法に使用される2,6−ジメチル
シクロヘキサノンは公知の水素化触媒を用いて2,6−
ジメチルフェノールを水素化することにより容易に製造
できる。
The 2,6-dimethylcyclohexanone used in the process of the present invention is 2,6-dimethylcyclohexanone using a known hydrogenation catalyst.
It can be easily produced by hydrogenating dimethylphenol.

【0009】本発明に使用される2−メチル−4−メト
キシアニリンは公知の水素化触媒を用いてo−ニトロト
ルエンを酸性条件下、メタノールを溶媒として用いて水
素化することにより容易に製造できる。
The 2-methyl-4-methoxyaniline used in the present invention can be easily produced by hydrogenating o-nitrotoluene under acidic conditions with methanol as a solvent using a known hydrogenation catalyst.

【0010】本発明方法に使用される2,6−ジメチル
シクロヘキサノンと2−メチル−4−メトキシアニリン
のモル比については、2,6−ジメチルシクロヘキサノ
ンと2−メチル−4−メトキシアニリンのモル比が2:
1〜1:2の間にあれば良いが、好ましくは2:1〜
1:1、さらに好ましくは1.1:1〜1.5:1が良
く、これ以下でもこれ以上でも選択率が低下し好ましく
ない。
Regarding the molar ratio of 2,6-dimethylcyclohexanone and 2-methyl-4-methoxyaniline used in the method of the present invention, the molar ratio of 2,6-dimethylcyclohexanone and 2-methyl-4-methoxyaniline is 2:
It may be between 1 and 1: 2, but is preferably between 2: 1 and
The ratio is preferably 1: 1, more preferably 1.1: 1 to 1.5: 1, and a ratio lower than 1: 1 or higher is not preferable because the selectivity is lowered.

【0011】本発明の方法において使用される触媒は、
通常好適な水素化還元反応触媒は脱水素反応にも適する
ためこれらの水素化還元反応触媒を使用する。具体的に
は、ラネーニッケル、還元ニッケルもしくはニッケル担
体触媒、ラネーコバルト、還元コバルトもしくはコバル
ト担体触媒、ラネー銅、還元銅もしくは銅担体触媒、周
期律表第8族の貴金属触媒もしくはその貴金属が担体と
して、炭素、アルミナ、炭酸バリウム等に担持された触
媒、レニウム−炭素等のレニウム触媒、銅−クロム酸化
物触媒等が挙げられる。これらの触媒のうち、好ましく
はパラジウムであり、特に炭素、アルミナ及びマグネシ
ア等の担体に担持されたパラジウム担持触媒が好まし
い。その使用量は2−メチル−4−メトキシアニリン1
グラム原子に対し金属原子として通常0.001〜0.
2グラム原子、好ましくは0.004〜0.1グラム原
子が良い。
The catalyst used in the process of the invention is
Usually, suitable hydrogenation reduction reaction catalysts are also suitable for the dehydrogenation reaction, and thus these hydrogenation reduction reaction catalysts are used. Specifically, Raney nickel, reduced nickel or nickel-supported catalyst, Raney cobalt, reduced cobalt or cobalt-supported catalyst, Raney copper, reduced copper or copper-supported catalyst, noble metal catalyst of Group 8 of the Periodic Table or its noble metal as a carrier, Examples include catalysts supported on carbon, alumina, barium carbonate, rhenium catalysts such as rhenium-carbon, and copper-chromium oxide catalysts. Of these catalysts, palladium is preferable, and a palladium-supported catalyst supported on a carrier such as carbon, alumina and magnesia is particularly preferable. The amount used is 2-methyl-4-methoxyaniline 1
It is usually 0.001 to 0.
2 grams atom, preferably 0.004 to 0.1 grams atom.

【0012】本発明方法では、有機アミン化合物、アル
カリ金属化合物、アルカリ土類金属化合物を助触媒とし
て添加するのが好ましい。有機アミン化合物としては、
ジエチレントリアミン、ペンタメチルジエチレントリア
ミン、トリブチルアミン、ジアミルアミン、トリアミル
アミン、テトラエチレンペンタミン、トリエタノールア
ミン、アミノエチルエタノールアミン等が挙げられる
が、中でもペンタメチルジエチレントリアミンが好まし
い。アルカリ金属化合物、アルカリ土類金属化合物とし
ては、アルカリ金属、アルカリ土類金属の水酸化物、炭
酸塩、重炭酸塩等が使用できる。具体的には、水酸化リ
チウム、水酸化ナトリウム、水酸化ナトリウム、水酸化
カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭
酸カリウム、炭酸水素ナトリウム等が挙げられるが、中
でも水酸化ナトリウム及び水酸化カリウムが好ましい。
これら助触媒は1種又は2種以上を混合して用いる。こ
れら助触媒は前記脱水素触媒とは別に反応系へ添加して
も良く、又貴金属担持触媒を製造した後、溶液から追加
担持することによって調整した触媒を使用しても良い。
この助触媒の使用量は触媒金属に対し、2重量%以上あ
れば良く、好ましくは5〜150重量%である。これよ
り多くなると反応速度が低下傾向にあり、逆に少ない場
合は収率が悪化する傾向にある。特に、これら塩基は2
−メチル−4−メトキシアニリンの脱アンモニア反応の
抑制効果が認められる。
In the method of the present invention, it is preferable to add an organic amine compound, an alkali metal compound or an alkaline earth metal compound as a cocatalyst. As the organic amine compound,
Examples include diethylenetriamine, pentamethyldiethylenetriamine, tributylamine, diamylamine, triamylamine, tetraethylenepentamine, triethanolamine, aminoethylethanolamine, and among them, pentamethyldiethylenetriamine is preferable. As the alkali metal compound and the alkaline earth metal compound, alkali metal, hydroxides, carbonates, bicarbonates and the like of the alkaline earth metal can be used. Specific examples include lithium hydroxide, sodium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and the like, among which sodium hydroxide and potassium hydroxide are preferred. .
These cocatalysts are used alone or in combination of two or more. These cocatalysts may be added to the reaction system separately from the dehydrogenation catalyst, or a catalyst prepared by additionally supporting from a solution after producing a noble metal-supported catalyst may be used.
The amount of the co-catalyst used may be 2% by weight or more, preferably 5 to 150% by weight, based on the catalyst metal. If it is more than this, the reaction rate tends to decrease, and conversely, if it is less, the yield tends to deteriorate. In particular, these bases are 2
-The effect of suppressing the deammonification reaction of methyl-4-methoxyaniline is recognized.

【0013】本発明方法において、2−メチル−4−メ
トキシアニリンの装入方法は、一括装入でも滴下装入で
も特に問題はないが、好ましくは滴下装入であり、滴下
することで、高選択率、高収率で4−メトキシ−2,
2’,6’−トリメチルジフェニルアミンが得られる。
その際、2,6−ジメチルシクロヘキサノンとの混合液
として滴下するのが収率及び操作性の面からも有利であ
る。
In the method of the present invention, the charging method of 2-methyl-4-methoxyaniline may be either batch charging or drop charging, but there is no particular problem, but drop charging is preferable, and high charging is possible by dropping. Selectivity, high yield of 4-methoxy-2,
2 ', 6'-Trimethyldiphenylamine is obtained.
In that case, it is advantageous to add dropwise as a mixed solution with 2,6-dimethylcyclohexanone from the viewpoint of yield and operability.

【0014】反応温度は通常150〜300℃で、好ま
しくは180〜250℃の範囲で選ばれる。これ以下だ
と反応速度が遅くなり、これ以上だと選択率が悪くなり
好ましくない。
The reaction temperature is usually 150 to 300 ° C., preferably 180 to 250 ° C. If it is less than this, the reaction rate becomes slow, and if it is more than this, the selectivity becomes poor, which is not preferable.

【0015】本発明方法において反応圧は特に限定され
るものではないが、常圧〜4.0kg/cm2Gが好ま
しい。これ以上の反応圧では生成物の選択率が低下し、
好ましくない。加圧下においては、その反応圧は、その
反応に不活性な気体を封入しても良いし、基質、溶媒の
蒸気圧をもってしても良い。
In the method of the present invention, the reaction pressure is not particularly limited, but it is preferably atmospheric pressure to 4.0 kg / cm 2 G. When the reaction pressure is higher than this, the selectivity of the product decreases,
Not preferred. Under pressure, the reaction pressure may be a gas that is inert to the reaction, or may be the vapor pressure of the substrate or solvent.

【0016】本発明の方法に使用される反応溶媒は、技
術上公知の溶媒であれば特に問題はないが、2,6−ジ
メチルフェノールを使用すればその一部を2,6−ジメ
チルシクロヘキサノンに変換させてから2,6−ジメチ
ルシクロヘキサノンの2,6−ジメチルフェノール溶液
としてそのまま本発明方法に使用できるので特に好まし
い。
The reaction solvent used in the method of the present invention is not particularly limited as long as it is a solvent known in the art, but if 2,6-dimethylphenol is used, a part thereof is converted to 2,6-dimethylcyclohexanone. It is particularly preferable because it can be used as it is in the method of the present invention as a 2,6-dimethylphenol solution of 2,6-dimethylcyclohexanone after conversion.

【0017】本発明方法において、脱水反応時に生成す
る水は、ベンゼン、トルエン等の非水系の共沸脱水剤を
用いて生成水を反応系外へ取り除くと脱水速度が大きく
なり、且つ、高収率で目的物が得られ好ましい。その
際、系内含水量を1%以下とすればよいが、好ましくは
0.3%以下、特に好ましくは0.1%以下に保ちなが
ら反応することにより高収率で目的物を得ることができ
る。
In the method of the present invention, the water produced during the dehydration reaction has a high dehydration rate when the produced water is removed from the reaction system using a non-aqueous azeotropic dehydrating agent such as benzene or toluene, and the water yield is high. The desired product can be obtained at a rate, which is preferable. At that time, the water content in the system may be set to 1% or less, but it is possible to obtain the target product in a high yield by performing the reaction while keeping it at 0.3% or less, particularly preferably 0.1% or less. it can.

【0018】本発明方法において、脱水反応の触媒とし
て酸を使用しなくても本発明は効果を発揮するので特に
問題はないが、酸を使用すると脱水速度が大きくなるの
で好ましい。酸触媒の具体的な例としては、塩酸、硫
酸、硝酸、燐酸などの無機酸、酢酸、フェニル酢酸、ト
リフロロ酢酸、プロピオン酸、酪酸、オクチル酸、ラウ
リン酸、蟻酸、安息香酸及びその核置換体、フェニルス
ルホン酸及びその核置換体、シュウ酸、フタル酸(o
−,m−,p−)、トリメリット酸、ピロメリット酸な
どの有機酸が挙げられるが特に限定されるものではな
い。好ましくは安息香酸、オクチル酸、トリフロロ酢
酸、フタル酸、ピロメリット酸等の有機酸が好ましい。
その使用量は4−メトキシ−2−メチルアニリンに対し
0.5〜20重量%、好ましくは1〜10重量%であ
る。
In the method of the present invention, the present invention exerts its effect even if an acid is not used as a catalyst for the dehydration reaction, so that there is no particular problem. However, use of an acid is preferable because the dehydration rate increases. Specific examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, acetic acid, phenylacetic acid, trifluoroacetic acid, propionic acid, butyric acid, octylic acid, lauric acid, formic acid, benzoic acid and their nuclear substitution products. , Phenylsulfonic acid and its nuclear substitutes, oxalic acid, phthalic acid (o
-, M-, p-), trimellitic acid, pyromellitic acid, and other organic acids are mentioned, but not limited thereto. Organic acids such as benzoic acid, octylic acid, trifluoroacetic acid, phthalic acid and pyromellitic acid are preferred.
The amount used is 0.5 to 20% by weight, preferably 1 to 10% by weight, based on 4-methoxy-2-methylaniline.

【0019】生成した4−メトキシ−2,2’,6’−
トリメチルジフェニルアミンは反応終了後の混合物を蒸
留、晶析、抽出等の常法に従って処理することにより得
られる。例えば反応終了液をろ過し、触媒を分離、回収
する。この回収触媒は再使用できる。ろ液を濃縮し、溶
媒を回収する。その溶媒はそのまま反応系へ戻す。釜内
の4−メトキシ−2,2’,6’−トリメチルジフェニ
ルアミンは蒸留、晶析等により精製分離する。
The produced 4-methoxy-2,2 ', 6'-
Trimethyldiphenylamine can be obtained by treating the mixture after the reaction according to a conventional method such as distillation, crystallization and extraction. For example, the reaction completed liquid is filtered to separate and recover the catalyst. This recovered catalyst can be reused. The filtrate is concentrated and the solvent is recovered. The solvent is returned to the reaction system as it is. 4-Methoxy-2,2 ', 6'-trimethyldiphenylamine in the kettle is purified and separated by distillation, crystallization and the like.

【0020】本発明において攪拌動力は、2.1〜10
kw/m3であればよいが好ましくは3.1〜10kw
/m3、さらに好ましくは6.0〜10kw/m3で反応
することにより高収率で目的物を得ることができる。
In the present invention, the stirring power is 2.1 to 10.
kw / m 3 may be used, but preferably 3.1 to 10 kw
/ M 3 , more preferably 6.0 to 10 kw / m 3 to obtain the desired product in a high yield.

【0021】本発明における攪拌の影響は次のように推
察される。攪拌動力が2.1kw/m3より少ない場合
には反応中に発生する水素及び水の系外への放出される
速度が遅くなり、反応系内に生成した水素が滞留される
状態になり、この水素により中間体である2,6−ジメ
チルシクロヘキサノンと2−メチル−4−メトキシアニ
リンとのシッフ塩基が接触的に水素化され、目的物以外
の副生成物ができ、その結果、DMDPAの選択率が低
下することになる。つまり、生成する水素及び水を速や
かに反応系外に放出するように攪拌動力を2.1kw/
3以上に上げる必要があった。攪拌動力は大きい程そ
の効果は上がるが10kw/m3を越えると効果の差は
少なく、経済性の面から好ましくない。
The influence of stirring in the present invention is presumed as follows. When the stirring power is less than 2.1 kw / m 3 , the release rate of hydrogen and water generated during the reaction to the outside of the system becomes slow, and the generated hydrogen is retained in the reaction system. This hydrogen catalytically hydrogenates the Schiff bases of the intermediate 2,6-dimethylcyclohexanone and 2-methyl-4-methoxyaniline to form a by-product other than the intended product, and as a result, DMDPA selection The rate will decrease. That is, the stirring power is 2.1 kw / so that the produced hydrogen and water are quickly released to the outside of the reaction system.
It was necessary to raise it to m 3 or more. The larger the stirring power is, the higher the effect is. However, if it exceeds 10 kw / m 3 , the difference in the effect is small and it is not preferable from the economical aspect.

【0022】[0022]

【実施例】以下、本発明の方法を実施例、及び比較例に
よって具体的に説明する。 実施例1 脱水精留塔2、凝縮器3、分液槽4、及び圧力調整弁5
を備えたステンレス製200リットル反応機1を反応装
置として準備した。反応機1内で生成した蒸気を脱水精
留塔2を経て凝縮器3で凝縮させ、分液槽4に受入れ
後、分液された上層部の一部を反応機内1に戻す仕組み
となっている。また、反応系内の圧力を一定に保つため
に分液槽上部に圧力調整弁5を取り付けてある。この反
応機1に予め2,6−ジメチルフェノール44.0k
g、イソフタル酸0.48kg、日本エヌ・イー・ケム
キャット社製5%Pd/C(含水率50重量%)5.2
7kg、トルエン8.0kgを仕込み、分液槽(50リ
ットル)4にはトルエンを反応機に戻す管7まで装入し
た。系内のガス相を窒素で置換し、内圧を1.0kg/
cm2Gにした後、攪拌350rpm(攪拌動力2.1
kw/m3)を始め、徐々に昇温した。圧力1.0kg
/cm2Gでは反応液の沸点が200℃であった。20
0℃まで反応液温度を上げ、圧力を1.0kg/cm2
Gに保ったところに滴下装置6内の4−メトキシ−2−
メチルアニリン32.9kg(0.24mol)、2,
6−ジメチルシクロヘキサノン37.0kg(0.26
mol)の混合溶液を15時間かけて滴下した。4−メ
トキシ−2−メチルアニリンの滴下開始と共に生成した
水蒸気は脱水精留塔2よりトルエンと共に留出を始め、
凝縮器3で冷却され、分液槽4でトルエンと水とを分離
した。分液槽4では水は下層側に、トルエンは上層側に
ためられ、上層部のトルエンの一部は分液槽4よりオー
バーフローして反応器1内に戻る。同時に発生した水素
は内圧が1.0kg/cm2Gに保たれるように圧力調
整弁5を用いて反応系外へ連続的に放出した。滴下終了
後、さらにこの温度及び内圧を保ったまま2時間攪拌を
続けた。次いで反応機1を冷却し、反応混合液より5%
Pd/Cをろ別した。ろ液の一部を採取しガスクロマト
グラフィーにより分析したところ、4−メトキシ−2−
メチルアニリンの転化率は100%、DMDPAの選択
率は90.0%、K体の選択率は1.7%であった。
EXAMPLES The method of the present invention will be specifically described below with reference to Examples and Comparative Examples. Example 1 Dewatering rectification column 2, condenser 3, liquid separating tank 4, and pressure adjusting valve 5
A 200 liter reactor 1 made of stainless steel equipped with was prepared as a reactor. The vapor generated in the reactor 1 is condensed in the condenser 3 via the dehydration rectification column 2 and received in the liquid separation tank 4, and then a part of the separated upper layer is returned to the reactor 1. There is. Further, in order to keep the pressure in the reaction system constant, a pressure adjusting valve 5 is attached to the upper part of the liquid separation tank. 2,6-dimethylphenol 44.0k was previously added to this reactor 1.
g, 0.48 kg of isophthalic acid, 5% Pd / C (water content 50% by weight) made by Japan NE Chemcat Ltd. 5.2
7 kg and 8.0 kg of toluene were charged, and the separating tank (50 liters) 4 was charged up to a pipe 7 for returning toluene to the reactor. The gas phase in the system was replaced with nitrogen and the internal pressure was 1.0 kg /
After setting to cm 2 G, stirring 350 rpm (stirring power 2.1.
kw / m 3 ) and the temperature was gradually raised. Pressure 1.0kg
/ Cm 2 G, the boiling point of the reaction solution was 200 ° C. 20
Raise the temperature of the reaction solution to 0 ° C and increase the pressure to 1.0 kg / cm 2.
While keeping the temperature at G, 4-methoxy-2-
Methylaniline 32.9 kg (0.24 mol), 2,
6-Dimethylcyclohexanone 37.0 kg (0.26
(mol) mixed solution was added dropwise over 15 hours. The steam generated when 4-methoxy-2-methylaniline is added dropwise starts to distill with toluene from the dehydration rectification column 2,
After being cooled in the condenser 3, the toluene and water were separated in the separation tank 4. In the liquid separation tank 4, water is stored in the lower layer side and toluene is stored in the upper layer side, and part of the upper layer toluene overflows from the liquid separation tank 4 and returns to the reactor 1. The hydrogen generated at the same time was continuously discharged to the outside of the reaction system using the pressure control valve 5 so that the internal pressure was maintained at 1.0 kg / cm 2 G. After completion of dropping, stirring was continued for 2 hours while maintaining this temperature and internal pressure. Next, the reactor 1 is cooled, and the reaction mixture is 5%
Pd / C was filtered off. A part of the filtrate was collected and analyzed by gas chromatography to find that 4-methoxy-2-
The conversion of methylaniline was 100%, the selectivity of DMDPA was 90.0%, and the selectivity of K-form was 1.7%.

【0023】実施例2 攪拌を400rpm(攪拌動力3.1kw/m3)にし
て実施例1と同様に反応、処理した。実施例1と同様に
分析したところDMDPAの選択率は93.0%、K体
の選択率は痕跡量であった。
Example 2 Reaction and treatment were carried out in the same manner as in Example 1 with stirring at 400 rpm (stirring power 3.1 kw / m 3 ). When analyzed in the same manner as in Example 1, the selectivity of DMDPA was 93.0% and the selectivity of K-form was a trace amount.

【0024】実施例3 攪拌を500rpm(攪拌動力6.0kw/m3)にし
て実施例1と同様に反応、処理した。実施例1と同様に
分析したところDMDPAの選択率は95.0%、K体
の選択率は痕跡量であった。
Example 3 The reaction and treatment were carried out in the same manner as in Example 1 with stirring at 500 rpm (stirring power 6.0 kw / m 3 ). When analyzed in the same manner as in Example 1, the selectivity of DMDPA was 95.0%, and the selectivity of K-form was a trace amount.

【0025】比較例1 攪拌を300rpm(攪拌動力1.3kw/m3)にし
て実施例1と同様に反応、処理した。実施例1と同様に
分析したところDMDPAの選択率は85.0%、K体
の選択率は6.8%であった。
Comparative Example 1 Reaction and treatment were carried out in the same manner as in Example 1 with stirring at 300 rpm (stirring power 1.3 kw / m 3 ). When analyzed in the same manner as in Example 1, the selectivity of DMDPA was 85.0% and the selectivity of K-form was 6.8%.

【0026】比較例2 攪拌を250rpm(攪拌動力0.8kw/m3)にし
て実施例1と同様に反応、処理した。実施例1と同様に
分析したところDMDPAの選択率は79.0%、K体
の選択率は11.6%であった。これらの実施例及び比
較例の結果を表1に示す。
Comparative Example 2 Reaction and treatment were carried out in the same manner as in Example 1 with stirring at 250 rpm (stirring power 0.8 kw / m 3 ). When analyzed in the same manner as in Example 1, the selectivity of DMDPA was 79.0% and the selectivity of K-form was 11.6%. The results of these Examples and Comparative Examples are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、従来技術では達成され
なかった工業化スケールにおける4−メトキシ−2,
2’,6’−トリメチルジフェニルアミンの高収率、高
選択率での製造ができるようになり本発明の意義は大き
い。
According to the present invention, 4-methoxy-2, on an industrial scale, which was not achieved by the prior art,
The production of 2 ', 6'-trimethyldiphenylamine in a high yield and a high selectivity can be carried out, and the significance of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を行うための設備の模式図である。FIG. 1 is a schematic view of equipment for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1.反応機 2.脱水精留塔 3.凝縮器 4.分液槽 5.圧力調整弁 6.滴下槽 7.トルエンの戻し管 1. Reactor 2. Dewatering rectification tower 3. Condenser 4. Separation tank 5. Pressure control valve 6. Drip tank 7. Toluene return pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脱水素触媒の存在下、2,6−ジメチル
シクロへキサノンと2−メチル−4−メトキシアニリン
とを発生する水素及び水を反応系外に放出しつつ加熱反
応させる4−メトキシ−2,2’,6’−トリメチルジ
フェニルアミンの製造方法において、単位体積当たりの
攪拌動力を2.1〜10kw/m3で反応を行うことを
特徴とする4−メトキシ−2,2’,6’−トリメチル
ジフェニルアミンの製造方法。
1. 4-methoxy which reacts with heating in the presence of a dehydrogenation catalyst while releasing hydrogen and water generating 2,6-dimethylcyclohexanone and 2-methyl-4-methoxyaniline to the outside of the reaction system. In the method for producing -2,2 ', 6'-trimethyldiphenylamine, 4-methoxy-2,2', 6 is characterized in that the reaction is carried out at a stirring power per unit volume of 2.1 to 10 kw / m 3. Method for producing'-trimethyldiphenylamine.
JP23120095A 1995-09-08 1995-09-08 Method for producing 4-methoxy-2,2 ', 6'-trimethyldiphenylamine Expired - Fee Related JP3177420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23120095A JP3177420B2 (en) 1995-09-08 1995-09-08 Method for producing 4-methoxy-2,2 ', 6'-trimethyldiphenylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23120095A JP3177420B2 (en) 1995-09-08 1995-09-08 Method for producing 4-methoxy-2,2 ', 6'-trimethyldiphenylamine

Publications (2)

Publication Number Publication Date
JPH0971555A true JPH0971555A (en) 1997-03-18
JP3177420B2 JP3177420B2 (en) 2001-06-18

Family

ID=16919919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23120095A Expired - Fee Related JP3177420B2 (en) 1995-09-08 1995-09-08 Method for producing 4-methoxy-2,2 ', 6'-trimethyldiphenylamine

Country Status (1)

Country Link
JP (1) JP3177420B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106709A (en) * 2005-10-14 2007-04-26 Mitsui Chemicals Inc Method for desalting from neutralized acid-cleaved product of alkylarylhydroperoxide
JP2021084897A (en) * 2019-11-29 2021-06-03 国立研究開発法人産業技術総合研究所 Method for Producing Aromatic Amine Compounds from Phenols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106709A (en) * 2005-10-14 2007-04-26 Mitsui Chemicals Inc Method for desalting from neutralized acid-cleaved product of alkylarylhydroperoxide
JP2021084897A (en) * 2019-11-29 2021-06-03 国立研究開発法人産業技術総合研究所 Method for Producing Aromatic Amine Compounds from Phenols

Also Published As

Publication number Publication date
JP3177420B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
EP1047666B1 (en) Process for preparing a ketimine
JP2003512917A (en) Hydrogenation of phthalic acid
JPH0971555A (en) Production of 4-methoxy-2,2&#39;,6&#39;-trimethyldiphenylamine
JP4817527B2 (en) Method for producing piperidine
CN110655462A (en) Preparation method of p-acetoxystyrene
JP3177421B2 (en) Method for producing 4-methoxy-2,2 &#39;, 6&#39;-trimethyldiphenylamine
JP3177393B2 (en) Method for producing 4-methoxy-2,2 &#39;, 6&#39;-trimethyldiphenylamine
EP0190667B1 (en) Process for the preparation of methyl n-methylanthranilate
JP2002179622A (en) Method for producing 4-acetoxystyrene
WO2002090315A1 (en) Process for preparation of 1,5-diaminonaphthalenes
EP0659736B1 (en) Process for the preparation of 4-methoxy-2,2&#39;,6&#39;-trimethyldiphenylamine
JP3177351B2 (en) Method for producing tris (diarylamino) benzenes
JPS5819665B2 (en) Succinyl succinate diester
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JPH10139712A (en) Production of naphthylbutanone
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
JP3213502B2 (en) Method for producing triphenylamines
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
CN115124409A (en) Preparation method of propafenone hydrochloride intermediate
JP4000278B2 (en) Process for producing ω-bromoalkylmalonic acid and ω-bromoalkylcarboxylic acid
JP2523140B2 (en) Method for producing (4-hydroxyphenyl) -cyclohexanecarboxylic acid
JPS61221157A (en) Production of diaminodiphenyl ether
JP4212466B2 (en) Method for producing aralkylamine derivative
JPH0517217B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees