JPS5819665B2 - Succinyl succinate diester - Google Patents

Succinyl succinate diester

Info

Publication number
JPS5819665B2
JPS5819665B2 JP50134131A JP13413175A JPS5819665B2 JP S5819665 B2 JPS5819665 B2 JP S5819665B2 JP 50134131 A JP50134131 A JP 50134131A JP 13413175 A JP13413175 A JP 13413175A JP S5819665 B2 JPS5819665 B2 JP S5819665B2
Authority
JP
Japan
Prior art keywords
reaction
parts
succinyl
succinate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50134131A
Other languages
Japanese (ja)
Other versions
JPS5259135A (en
Inventor
伊藤昌弘
後藤勝彦
松江洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP50134131A priority Critical patent/JPS5819665B2/en
Publication of JPS5259135A publication Critical patent/JPS5259135A/en
Publication of JPS5819665B2 publication Critical patent/JPS5819665B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はサクシニルコハク酸ジアルキルエステル(シク
ロヘキサ−1,4−ジエン−2,5−ジオール−1,4
−ジカルボン酸ジアルキルエステル)の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention provides succinyl succinic acid dialkyl ester (cyclohexa-1,4-diene-2,5-diol-1,4
-Dicarboxylic acid dialkyl ester).

本発明の化合物はキナクリドン顔料等の原料として有用
な物質であり、従来よりアルカリ金属又はそのアルコラ
ード、アンモニア或いは第2級アミン等のアルカリ触媒
の存在下にコハク酸ジエステル又はハロゲン化アセチル
酢酸エステルより製造し得ることが知られており、特に
前者の方法は原料の入手が容易で経済的にも安価である
ことから種々研究がなされている。
The compound of the present invention is a substance useful as a raw material for quinacridone pigments, etc., and has been conventionally produced from succinic acid diester or halogenated acetyl acetate in the presence of an alkali catalyst such as an alkali metal or its alcoholide, ammonia, or a secondary amine. It is known that this method can be used, and various studies have been conducted on the former method in particular because raw materials are easily available and it is economically inexpensive.

即ちコハク酸ジエステルよりサクシニルコハク酸ジエス
テルを製造する方法としては、例えば、USP3024
268、Org、5ynth、45(1965)、25
〜28、Org 、 React 、 1.274〜2
75及び283〜284、有機化学ハンドブック(技報
堂、昭和47年)430、 等に示されている如く、通常はナトリウム又はナトリウ
ムエトキサイド等の存在下にエタノール又は芳香族炭化
水素等の溶媒中でコハク酸ジエチルエステルを縮合反応
させるものである。
That is, as a method for producing succinyl succinic acid diester from succinic acid diester, for example, USP 3024
268, Org, 5ynth, 45 (1965), 25
~28, Org, React, 1.274~2
75 and 283-284, Organic Chemistry Handbook (Gihodo, 1972) 430, etc., succinic acid is usually prepared in a solvent such as ethanol or an aromatic hydrocarbon in the presence of sodium or sodium ethoxide, etc. This is a condensation reaction of acid diethyl ester.

これら従来公知の特許及び一般技術文献に示されている
方法は上述のように具体的にはいずれもエチルエステル
に関するものであるが、従来よりエチルエステルとメチ
ルエステルとでは目的物の収率に可成り差があることが
知られており(Am 。
As mentioned above, the methods shown in these conventionally known patents and general technical documents all specifically relate to ethyl esters; It is known that there are differences in performance (Am.

404.287等)、事実、本発明者等の知見によれば
、例えば、前記USP3024268に記載された方法
に従ってエチルエステルとメチルエステルについて夫々
同様の反応を試みた結果、前者の場合には該特許明細書
の実施例1に示されている通り、80%近い収率で目的
とするサクシニルコハク酸ジエチルエステルが得られた
が、後者の場合にはサクシニルコハク酸ジメチルエステ
ルは50〜60%の収率でしか得られないことが認めら
れた。
404.287, etc.), in fact, according to the knowledge of the present inventors, for example, as a result of attempting the same reaction for ethyl ester and methyl ester according to the method described in the above-mentioned USP 3024268, in the case of the former, the patent As shown in Example 1 of the specification, the desired diethyl succinyl succinate was obtained with a yield of nearly 80%, but in the latter case, dimethyl succinyl succinate was obtained with a yield of 50 to 60%. It was recognized that this could only be achieved by increasing the rate.

本発明はかかるサクシニルコハク酸ジアルキルエステル
の製造法の改良に関し、特にアルカリ金属アルコラード
の存在下に芳香族若しくは脂肪族炭化水素又は脂肪族低
級アルコールとジメチルスルホキサイド(DMSO)か
ら成る溶媒中でコハク酸ジアルキルエステルを縮合反応
させた後中和することを特徴とする。
The present invention relates to an improvement in the method for producing such dialkyl succinyl succinates, and in particular to the production of succinic acid dialkyl esters in a solvent consisting of aromatic or aliphatic hydrocarbons or aliphatic lower alcohols and dimethyl sulfoxide (DMSO) in the presence of an alkali metal alcoholade. It is characterized in that the acid dialkyl ester is subjected to a condensation reaction and then neutralized.

本発明の方法によれば目的とするサクシニルコハク酸ジ
エステルが高い収率で得られ経済的に有利な実施を可能
とする。
According to the method of the present invention, the desired succinyl succinic acid diester can be obtained in high yield, making it possible to carry out the process economically.

以下、更に詳細に説明すれば、出発原料としてのコハク
酸ジアルキルエステルとしては一般に低級アルキルエス
テルが用いられ、夫々対応するサクシニルコハク酸ジア
ルキルエステルを得ることができるが、一方これをキナ
クリドン合成の原料とする場合、その合成途中に於いて
エステル基を力計水分解してカルボキシル基に変換する
必要があり結果的にはアルコール残基は不要なものとな
るため、経済的な見地からは工業的に安価なメチルエス
テル又はエチルエステルが好ましく、特に前者が最も有
利である。
To explain in more detail below, lower alkyl esters are generally used as dialkyl succinates as starting materials, and the corresponding dialkyl succinyl succinates can be obtained. In this case, it is necessary to convert the ester group into a carboxyl group by dynamic hydrolysis during the synthesis, and as a result, the alcohol residue becomes unnecessary, so from an economical point of view, it is not suitable for industrial use. Cheap methyl or ethyl esters are preferred, with the former being the most advantageous.

また、アルカリ金属アルコラードとしてはナトリウム又
はカリウムのアルキルアルコラートカ用いられ、通常は
原料コハク酸ジアルキルエステルのアルキル基に対応す
るアルコラード例えば、メチルエステルの場合にはメチ
ラートが用いられる。
Further, as the alkali metal alcoholade, a sodium or potassium alkyl alcoholate is used, and the alcoholade corresponding to the alkyl group of the raw material dialkyl succinate is usually used, for example, in the case of methyl ester, methylate is used.

このアルカリ金属アルコラードは別途調製したものを反
応系に添加しても或いは縮合反応に先立ち予めアルカリ
金属とアルコールを反応させて調製したものをそのまま
用いても良く、更には特別な場合として反応当初はアル
カリ金属のみを用い反応中生成するアルコールとの反応
により生成するものであっても良い。
This alkali metal alcoholade may be separately prepared and added to the reaction system, or may be used as it is by reacting the alkali metal and alcohol prior to the condensation reaction. It may also be produced by reaction with alcohol produced during the reaction using only an alkali metal.

アルカリ金属アルコラードの使用量は従来公知の方法で
は一般に原料コハク酸ジエステル1モルに対し少くとも
2モル以上は必要とされたが、本発明の方法に於いては
1.0〜16モル程度で充分な効果が得られる。
Conventionally known methods generally required at least 2 mol or more of the alkali metal alcoholide to be used per 1 mol of raw diester succinate, but in the method of the present invention, about 1.0 to 16 mol is sufficient. You can get the following effect.

勿論、1.0モル比以下或いは1.6モル比以上であっ
ても別設差支えはないが、少な過ぎる場合には反応速度
が遅く収率も充分でない欠点があり、一方、多量に用い
ても相応の効果は得られず不経済である。
Of course, there is no problem if the molar ratio is less than 1.0 or more than 1.6, but if it is too small, the reaction rate will be slow and the yield will not be sufficient. However, the corresponding effect cannot be obtained and it is uneconomical.

従って、通常は0.8〜3モル比程度が適当であり、好
ましくは上記の如<1.0〜1.6モル比で使用される
Therefore, a molar ratio of about 0.8 to 3 is usually appropriate, preferably a molar ratio of <1.0 to 1.6 as described above.

溶媒は芳香族若しくは脂肪族炭化水素又は脂肪族低級ア
ルコールの少なくとも1種とDMSOから成る混合溶媒
が用いられるが、該炭化水素としては、例えば、ベンゼ
ン、トルエン、エチルベンゼン、キシレン等の芳香族、
ヘキサン、ヘプタノ、オクタン等の鎖状若しくはシクロ
ペンクン、シクロヘキサン、メチルシクロヘキザン等の
環状の脂肪族炭化水素が用いられ、また、アルコールと
しては原料コハク酸ジアルキルエステルに対応した、例
えばメタノール、エタノール等が用いられる。
The solvent used is a mixed solvent consisting of DMSO and at least one of aromatic or aliphatic hydrocarbons or aliphatic lower alcohols. Examples of the hydrocarbon include aromatic compounds such as benzene, toluene, ethylbenzene, xylene, etc.
Chain-like aliphatic hydrocarbons such as hexane, heptano, and octane or cyclic aliphatic hydrocarbons such as cyclopenkune, cyclohexane, and methylcyclohexane are used, and as the alcohol, methanol, ethanol, etc. corresponding to the raw material dialkyl succinate are used. It will be done.

就中、常圧下に100〜150°Cの沸点を有し、更に
は反応中生成するアルコールと共沸混合物を殆んど形成
しない化合物、例えばキシレン、エチルベンゼン等の芳
香族炭化水素が最も実用的である。
Among these, compounds that have a boiling point of 100 to 150°C under normal pressure and that hardly form an azeotrope with the alcohol produced during the reaction, such as aromatic hydrocarbons such as xylene and ethylbenzene, are the most practical. It is.

これらとDMSOとの混合溶媒中のDMSOの含有量は
通常数%程度で充分な効果が得られると共に多量に用い
ても目的・物の収率上は顕著な差異は見られない。
The content of DMSO in the mixed solvent of these and DMSO is usually about several percent to obtain a sufficient effect, and even if a large amount is used, there is no noticeable difference in the yield of the desired product.

むしろ、含有量が多い程反応終了後の反応液の取扱いに
困難を生じ、また不経済でもあるため実用的ではなく、
従って、通常は5〜20重量%の範囲で用いるのが望ま
しいと言える。
On the contrary, the higher the content, the more difficult it becomes to handle the reaction solution after the reaction is completed, and it is also uneconomical, so it is not practical.
Therefore, it can be said that it is usually desirable to use it in a range of 5 to 20% by weight.

尚、本発明の方法に於いては後記実施例に示す如く、D
MSOの混合による目的物の収率の向上が著しく特にメ
チルエステルの場合には従来公知の方法では達成し得な
かった値が得られるが、一方、溶媒としてDMSOのみ
を用いた場合には炭化水素のみを用いた場合と同じく充
分な収率は得られない。
In addition, in the method of the present invention, as shown in the examples below, D
Mixing MSO significantly improves the yield of the target product, especially in the case of methyl esters, which could not be achieved with conventional methods, but on the other hand, when only DMSO is used as a solvent, it is possible to obtain A sufficient yield cannot be obtained as in the case of using only

反応は一般に撹拌下、60〜130°C1好ましくは1
00〜120℃に加熱することにより実施され、1〜4
時間程度で充分な収率が得られる。
The reaction is generally carried out under stirring at 60-130°C, preferably at 1
It is carried out by heating to 00-120℃, 1-4
A sufficient yield can be obtained in about hours.

かくて得られる生成物はジアルカリ金属塩となっている
ため、上記縮合反応に次いで中和処理を含む後処理が行
われる。
Since the product thus obtained is a dialkali metal salt, a post-treatment including a neutralization treatment is performed subsequent to the above condensation reaction.

この縮合反応後の後処理については特別な制限はな〈従
来公知の方法により容易に実施し得る。
There are no particular restrictions on the post-treatment after the condensation reaction (it can be easily carried out by conventionally known methods).

例えば、網側反応により得られるサクシニルコハク酸ジ
アルキルエステルのジアルカリ金属塩の沈澱を濾取して
これを水に溶解し、次いで酸を添カロして中和し析出す
るサクシニルコハク酸ジアルカリエステルの結晶を分離
する方法、或いは縮合反応後生酸したスラリーに多量の
水を加え、サクシニルコハク酸ジアルキルエステルのジ
アルカリ金属塩を水層中に移行溶解させ、この水層を有
機層から分離し、次いで酸を添加、中和して析出するサ
クシニルコハク酸ジアルキルエステルの結晶を分離する
方法、更には、縮合反応後、反応液に直接酸を加えて中
和し、生成するサクシニルコハク酸ジエステルを有機溶
媒層に移行溶解せしめ、この有機溶液を水層から分離し
て濃縮し、晶出、分離する方法等いずれの方法でも良い
For example, the precipitate of the dialkyl metal salt of succinyl succinate obtained by the net side reaction is collected by filtration, dissolved in water, and then neutralized by adding acid to precipitate the dialkyl succinate dialkyl ester. A method of separating crystals, or by adding a large amount of water to the slurry of the raw acid after the condensation reaction, transferring and dissolving the dialkali metal salt of succinyl succinic acid dialkyl ester into the aqueous layer, separating this aqueous layer from the organic layer, and then adding the acid to the slurry resulting from the condensation reaction. In addition, after the condensation reaction, an acid is directly added to the reaction solution to neutralize it, and the resulting succinyl succinic acid diester is separated into an organic solvent layer. Any method may be used, such as transferring and dissolving the organic solution, separating this organic solution from the aqueous layer, concentrating it, crystallizing it, and separating it.

又、中和処理に於いては通常硫酸、塩酸、炭酸、リン酸
等の無機塩、ギ酸、酢酸、蓚酸等の有機酸或いはこれら
の酸性塩等の酸性物質が用いられる。
Further, in the neutralization treatment, acidic substances such as inorganic salts such as sulfuric acid, hydrochloric acid, carbonic acid, and phosphoric acid, organic acids such as formic acid, acetic acid, and oxalic acid, or acidic salts thereof are usually used.

尚、縮合反応後の反応液に直接酸を加えてサクシニルコ
ハク酸ジエステルのジアルカリ金属塩を中和シてサクシ
ニルコハク酸ジエステルを遊離させるため、酸性物質と
して特に硫酸、塩酸等の無機強酸を用いた場合は、縮合
反応の除土じる若干の副生物も共に有機酸性物質として
有機溶媒中に移行する。
In addition, in order to neutralize the dialkali metal salt of succinyl succinic acid diester by adding an acid directly to the reaction solution after the condensation reaction and liberate the succinyl succinic acid diester, a strong inorganic acid such as sulfuric acid or hydrochloric acid was used as the acidic substance. In this case, some by-products of the condensation reaction are also transferred into the organic solvent as organic acidic substances.

これを除くためには更にアルカリ注物質をカロえて中和
する必要があるが、副生物のみをアルカリ塩として水相
中に移行させるためには炭酸アルカリ等の弱アルカリ性
物質を用いることが好ましい。
In order to remove this, it is necessary to further neutralize the alkali injection material, but in order to transfer only the by-products into the aqueous phase as an alkali salt, it is preferable to use a weakly alkaline material such as an alkali carbonate.

尚、前記中和処理の除用いる酸性物質として重炭酸ソー
ダ、重炭酸カリの如き酸性塩を用いた場合にはサクシニ
ルコハク酸ジエステルのジアルカリ金属塩はサクシニル
コハク酸ジエステルに遊離されると共に副生物はアルカ
リ金属塩となるため両者を有機相及び水相として夫々分
離することができ、上記の如き繁雑な手数を省くことが
できるため非常に有利であり、場合によっては、例えば
、得られたサクシニルコハク酸ジエステルをキナクリド
ンの合成に用いる場合に於いては該有機相より晶出分離
することなくそのまま次工程の反応液とすることも可能
である。
In addition, when an acid salt such as sodium bicarbonate or potassium bicarbonate is used as the acidic substance to be removed in the neutralization treatment, the dialkali metal salt of succinyl succinic acid diester is liberated into succinyl succinic acid diester, and the by-product is an alkali metal. It is very advantageous because it becomes a salt and can be separated as an organic phase and an aqueous phase, respectively, and the complicated steps described above can be omitted. When used in the synthesis of quinacridone, it is possible to use the reaction solution for the next step as it is without crystallizing and separating it from the organic phase.

以下、本発明の方法について代表的な例を挙げ、比較の
ための試験と併せ更に具体的に説明する。
Hereinafter, representative examples of the method of the present invention will be given and more specifically explained along with comparative tests.

勿論、本発明はこれらの例によって何ら制限され得ない
ことは言うまでもない。
Of course, it goes without saying that the present invention cannot be limited in any way by these examples.

尚、実施例中〃部〃とは重量部を表わすものである。In the examples, "parts" represent parts by weight.

実施例 1 撹拌機、蒸溜装置及び温度計を備えた反応器にキシレン
176部、DMS025部、ナトリウムメチラート30
部及びコハク酸ジメチルエステル58.4部を入れ、窒
素気流中撹拌下に105〜110℃に昇温し、反応中副
生するメチルアルコールを蒸溜装置を通して留去しつつ
、2時間反応させた。
Example 1 176 parts of xylene, 025 parts of DMS, and 30 parts of sodium methylate were placed in a reactor equipped with a stirrer, a distillation device, and a thermometer.
and 58.4 parts of dimethyl succinate were added, and the temperature was raised to 105 to 110° C. under stirring in a nitrogen stream, and the reaction was allowed to proceed for 2 hours while methyl alcohol by-produced during the reaction was distilled off through a distillation apparatus.

反応終了後、反応液を50〜60℃に冷却し、減圧下に
メチルアルコールを留去した後、キシレン350部を新
たに添加し次いで15%硫酸水溶液200部を徐々に加
えて約10分間激しく撹拌した後静置した。
After the reaction was completed, the reaction solution was cooled to 50 to 60°C, and the methyl alcohol was distilled off under reduced pressure. Then, 350 parts of xylene was newly added, and then 200 parts of a 15% sulfuric acid aqueous solution was gradually added, and the mixture was stirred vigorously for about 10 minutes. After stirring, the mixture was allowed to stand still.

約10〜20分間の静置後下層に分離した水層を除去し
、残ったキシレン層に10%炭酸ソーダ水溶液50部を
徐々に加えて同様の分液操作、水洗を繰返した後、最終
的に得られるキシレン層より減圧下にキシレンを留去せ
しめサクシニルコハク酸ジメチルエステルを晶出させた
After standing still for about 10 to 20 minutes, remove the aqueous layer that separated into the lower layer, gradually add 50 parts of a 10% sodium carbonate aqueous solution to the remaining xylene layer, repeat the same liquid separation operation and wash with water, and then make the final layer. The xylene was distilled off from the xylene layer obtained under reduced pressure to crystallize dimethyl succinyl succinate.

これを濾取し少量のメチルアルコールにて洗浄した後乾
燥した処、融点153〜154℃の結晶36gを得た(
対理論量収率79%)。
This was collected by filtration, washed with a small amount of methyl alcohol, and then dried to obtain 36 g of crystals with a melting point of 153-154°C (
yield of 79% of theory).

尚、縮合反応の反応時間を1時間に短縮して行った場合
でも収率78%の結果を得た。
Note that even when the reaction time of the condensation reaction was shortened to 1 hour, a yield of 78% was obtained.

実施例 2 混合溶媒中のDMSOの含有率を変えた他は実施例1と
同様な方法により縮合反応及び中和処理を行った結果、
サクシニルコハク酸ジメチルエステルの収率(対理論量
、以下同じ)は以下の通りであった。
Example 2 The condensation reaction and neutralization treatment were performed in the same manner as in Example 1 except that the content of DMSO in the mixed solvent was changed.
The yield of succinyl succinic acid dimethyl ester (relative to theoretical amount, hereinafter the same) was as follows.

尚、/161及び//67は夫々キシレンのみの場合及
びDMSOのみの場合を表わす。
Note that /161 and //67 represent the case of using only xylene and the case of only DMSO, respectively.

実施例 3 ナトリウムメチラートの使用量(コハク酸ジメチルエス
テルに対するモル比)を変えた他は実施例1と同様な方
法により縮合反応及び中和処理を行った結果、サクシニ
ルコハク酸ジメチルエステルの収率は以下の通りであっ
た。
Example 3 The condensation reaction and neutralization treatment were carried out in the same manner as in Example 1 except that the amount of sodium methylate used (molar ratio to dimethyl succinate) was changed. As a result, the yield of dimethyl succinyl succinate was was as follows.

実施例 4 溶媒の1部であるキシレンをn−ヘキサン、メチルシク
ロヘキサン、ベンゼン又はエチルベンゼンに代え、反応
条件を変えた他は実施例1と同様に行った結果を以下に
示す。
Example 4 The same procedure as in Example 1 was performed except that xylene, which was part of the solvent, was replaced with n-hexane, methylcyclohexane, benzene, or ethylbenzene, and the reaction conditions were changed. The results are shown below.

実施例 5 実施例1と同じ反応器を用いてキシレン88部、金属ナ
トリウム12部を入れ、少量の窒素ガスを流通して大気
との接触をしゃ断しつつ、暖かに撹拌しながらメチルア
ルコール120部を徐々に加え、約1時間反応させ、金
属ナトリウムが完全に消失した後過剰のメチルアルコー
ルを留去した。
Example 5 Using the same reactor as in Example 1, add 88 parts of xylene and 12 parts of metallic sodium, and add 120 parts of methyl alcohol while stirring warmly while passing a small amount of nitrogen gas to cut off contact with the atmosphere. was gradually added, and the reaction was allowed to proceed for about 1 hour. After the metallic sodium completely disappeared, excess methyl alcohol was distilled off.

次にこの液を60℃に冷却した後、DMS025部キシ
レン88部及びコハク酸ジメチルエステル58.4部を
加えて以下実施例1と同様に反応を行い、後処理を行っ
たところサクシニルコハク酸ジメチルエステル35.8
部(収率78.5%)を得た。
Next, after cooling this liquid to 60°C, 025 parts of DMS, 88 parts of xylene, and 58.4 parts of dimethyl succinate were added, and the reaction was carried out in the same manner as in Example 1. After post-treatment, dimethyl succinyl succinate was added. Ester 35.8
(yield 78.5%).

実施例 6 メチルアルコールの代ワリにエチルアルコールを、コハ
ク酸ジメチルエステル58.4部の代わりに、コハク酸
ジエチルエステル70部を用いた他は実施例5と同様に
反応、後処理を行なったとこ口、サクシニルコハク酸ジ
エチルエステルmP126−7°C41,2部(対理論
収率80.5%)を得た。
Example 6 The reaction and post-treatment were carried out in the same manner as in Example 5, except that ethyl alcohol was used instead of methyl alcohol and 70 parts of diethyl succinate was used instead of 58.4 parts of dimethyl succinate. 1.2 parts of succinyl succinic acid diethyl ester mP126-7°C (theoretical yield 80.5%) was obtained.

実施例 7 撹拌機、蒸溜装置、及び温度計を備えた反応器にメチル
アルコール158部、DMSO25部、ナトリウムメチ
ラート30部及びコハク酸ジメチルエステル584部を
入れ、窒素気流中撹拌下、昇温して、還流下8.0時間
反応させた。
Example 7 158 parts of methyl alcohol, 25 parts of DMSO, 30 parts of sodium methylate, and 584 parts of dimethyl succinate were placed in a reactor equipped with a stirrer, a distillation device, and a thermometer, and the temperature was raised under stirring in a nitrogen stream. The mixture was reacted under reflux for 8.0 hours.

反応終了後、キシレン500部を新たに添加し、減圧下
にメチルアルコールを留去せしめた後、反応液を50〜
60℃として、15%硫酸水溶液200部を徐々に加え
て約10分間激しく撹拌した後静置した。
After the reaction was completed, 500 parts of xylene was newly added, and the methyl alcohol was distilled off under reduced pressure.
At 60° C., 200 parts of a 15% sulfuric acid aqueous solution was gradually added, and the mixture was vigorously stirred for about 10 minutes and then allowed to stand.

約10〜20分間の静置後下層に分離した水層を除去し
残ったキシレン層に10%炭酸ナトリウム水溶液50部
を徐々に加えて同様の分液操作水洗を繰返した後、最終
的に得られるキシレン層より減圧下にキシレンを留去せ
しめサクシニルコハク酸ジメチルエステルを晶出させた
After standing still for about 10 to 20 minutes, the aqueous layer separated into the lower layer was removed, and 50 parts of a 10% aqueous sodium carbonate solution was gradually added to the remaining xylene layer. After repeating the same separation operation and washing with water, the final product was obtained. The xylene layer was distilled off under reduced pressure to crystallize dimethyl succinyl succinate.

これを濾取し、少量のメチルアルコールにて洗浄した後
、乾燥した。
This was collected by filtration, washed with a small amount of methyl alcohol, and then dried.

収率(対理論量)53.7%のサクシニルコハク酸ジメ
チルエステルを得た。
Dimethyl succinyl succinate was obtained in a yield (based on theory) of 53.7%.

一方、DMS025部を加えない他は上記と同様な方法
により反応及び中和、分離処理を行ったところサクシニ
ルコハク酸ジメチルエステルは収率(対理論量)は12
%であった。
On the other hand, when reaction, neutralization, and separation were carried out in the same manner as above except that 025 parts of DMS was not added, the yield (relative to theoretical amount) of succinyl succinic acid dimethyl ester was 12
%Met.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属アルコラードの存在下に芳香族若しく
は脂肪族炭化水素又は脂肪族低級アルコールとジメチル
スルホキサイドから成る溶媒中でコハク酸ジアルキルエ
ステルを縮合反応させた後中和することを特徴とするサ
クシニルコハク酸ジアルキルエステルの製造法。
1. Succinyl succinate, which is characterized by subjecting dialkyl succinate to a condensation reaction in a solvent consisting of an aromatic or aliphatic hydrocarbon or aliphatic lower alcohol and dimethyl sulfoxide in the presence of an alkali metal alcoholade, followed by neutralization. Method for producing acid dialkyl ester.
JP50134131A 1975-11-10 1975-11-10 Succinyl succinate diester Expired JPS5819665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50134131A JPS5819665B2 (en) 1975-11-10 1975-11-10 Succinyl succinate diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50134131A JPS5819665B2 (en) 1975-11-10 1975-11-10 Succinyl succinate diester

Publications (2)

Publication Number Publication Date
JPS5259135A JPS5259135A (en) 1977-05-16
JPS5819665B2 true JPS5819665B2 (en) 1983-04-19

Family

ID=15121179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50134131A Expired JPS5819665B2 (en) 1975-11-10 1975-11-10 Succinyl succinate diester

Country Status (1)

Country Link
JP (1) JPS5819665B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244842A (en) * 1978-02-21 1981-01-13 Ciba-Geigy Corporation Nickel and cobalt chelate complexes and their use
DE3104644A1 (en) * 1981-02-10 1982-08-19 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING DIMETHYLSUCCINYLOSUCCINATE, ITS DIATILIUM SALTS, DIANILINODIHYDROTEREPHTHALIC ACIDS, THEIR DIMETHYL ESTERS AND SALTS, AND DIANILINOTEREPHTHALIC ACIDS, THEIR DIMETHYLS
JPS5885843A (en) * 1981-11-17 1983-05-23 Mitsui Toatsu Chem Inc Preparation of succinylsuccinic diester
DE3423548A1 (en) * 1984-06-26 1986-01-02 Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München METHOD FOR PRODUCING SUCCINYL AMBERSTONE ACIDED CYLESTERS

Also Published As

Publication number Publication date
JPS5259135A (en) 1977-05-16

Similar Documents

Publication Publication Date Title
JPS5819665B2 (en) Succinyl succinate diester
EP0270724A1 (en) Preparation of alkyl trifluoroacetoacetate
WO1993002046A1 (en) Process for producing nitrile
US6630595B2 (en) Method for producing maleimides
JPS6155902B2 (en)
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JP4086982B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP3319007B2 (en) Method for producing N- (α-alkoxyethyl) formamide
US6087499A (en) Process for producing 5-perfluoroalkyluracil derivatives
JPH0665149A (en) Production of usable compound from michael reactional adduct of acrylic acid ester
JPH029576B2 (en)
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one
JP3175334B2 (en) Method for producing N- (α-alkoxyethyl) -carboxylic acid amide
EP0889040B1 (en) Process for producing 2,4-oxazolidinedione
JPS6013015B2 (en) Method for producing tetrakis[3-(3,5-dibutyl-4-hydroxyphenyl)propionyloxymethyl]methane
JPH0115504B2 (en)
JPH06298713A (en) Production of n-(alpha-hydroxyethyl)formamide and n-(alpha-alkoxyethyl)formamide
JPH0321538B2 (en)
JP2756373B2 (en) Method for producing 1,1,1-trifluoro-3-nitro-2-propene
JP4216042B2 (en) Method for producing cyclopropylacetonitrile
JP4453247B2 (en) Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride
JPS59137431A (en) Production of trimethylolheptane
JPS647982B2 (en)
JPH07196610A (en) Production of 5-chloro-2-oxyindole
JPS5924142B2 (en) Method for producing acid amide