JPH0963616A - Package fuel cell power generating apparatus - Google Patents

Package fuel cell power generating apparatus

Info

Publication number
JPH0963616A
JPH0963616A JP7210306A JP21030695A JPH0963616A JP H0963616 A JPH0963616 A JP H0963616A JP 7210306 A JP7210306 A JP 7210306A JP 21030695 A JP21030695 A JP 21030695A JP H0963616 A JPH0963616 A JP H0963616A
Authority
JP
Japan
Prior art keywords
fuel cell
main body
power generator
height
cell main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7210306A
Other languages
Japanese (ja)
Other versions
JP3576283B2 (en
Inventor
Genichi Ikeda
元一 池田
Nobuhiro Iwasa
信弘 岩佐
Hiroshi Kato
啓 加藤
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21030695A priority Critical patent/JP3576283B2/en
Publication of JPH0963616A publication Critical patent/JPH0963616A/en
Application granted granted Critical
Publication of JP3576283B2 publication Critical patent/JP3576283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten the reliability of a reaction gas circulating function and cooling function of a fuel cell main body and moreover make it easy to install a fuel cell power generating apparatus easily in a common building. SOLUTION: A packaged fuel cell power generating apparatus is composed of an electricity generating apparatus main body 21A and a ventilation hood 22 attached to the upper part of the main body 21A: and a fuel cell main body, a reaction gas supply system to supply reaction gases to the fuel cell main body, a cooling system to cool the fuel cell main body, and an electricity converter system are housed in the main body 21A. The height of the apparatus including the hood is set to 2.0-2.8m.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市型発電装置として
建屋の内部に設置されることの多いオンサイト用パッケ
ージ型燃料電池発電装置に関し、とくにその装置高さに
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-site package type fuel cell power generator which is often installed inside a building as an urban power generator, and more particularly to the height of the device.

【0002】[0002]

【従来の技術】都市型発電装置として建屋の内部に設置
されることの多いオンサイト用パッケージ型燃料電池発
電装置の代表例として、図3に従来の出力100kWの
パッケージ型燃料電池発電装置の外形寸法図を示す。図
に見られるように、発電装置本体21の床面はおおよそ
3.5m× 2.3mで、装置高さは約 3.2mである。本発電
装置本体21に収納されている燃料電池スタックは、所
要の出力が得られるように従来の電極面積のセルを積層
して構成されており、その全高は 2.6mに達している。
本燃料電池スタックを架台23上に据え付け、換気フー
ド22を含む屋根パネルを取り付けると装置高さは、上
記のように、約 3.2mとなる。
2. Description of the Related Art FIG. 3 shows a conventional package type fuel cell power generator having an output of 100 kW as a typical example of an on-site package fuel cell power generator which is often installed inside a building as an urban power generator. A dimensional drawing is shown. As can be seen in the figure, the floor of the power generator body 21 is roughly
It is 3.5m x 2.3m and the height of the equipment is about 3.2m. The fuel cell stack housed in the main body 21 of the present power generator is constructed by stacking cells having conventional electrode areas so as to obtain a required output, and the total height thereof reaches 2.6 m.
When the fuel cell stack is installed on the pedestal 23 and the roof panel including the ventilation hood 22 is attached, the device height becomes about 3.2 m as described above.

【0003】[0003]

【発明が解決しようとする課題】パッケージ型燃料電池
発電装置を信頼性の高い装置とするためには、数々の条
件を考慮に入れる必要がある。装置高さについても、燃
料電池スタックの内部での反応ガスの流れの挙動、燃料
電池スタックの冷却性能、燃料電池スタックの耐震性等
の基本条件を考慮するのは勿論のこと、設置場所の条
件、設置場所への搬入ルートや搬入手段を念頭におくこ
とが必要である。
In order to make the package type fuel cell power generator a highly reliable device, it is necessary to take various conditions into consideration. Regarding the height of the equipment, it is of course necessary to consider the basic conditions such as the behavior of the reaction gas flow inside the fuel cell stack, the cooling performance of the fuel cell stack, the earthquake resistance of the fuel cell stack, and the conditions of the installation site. It is necessary to keep in mind the route and means of delivery to the installation site.

【0004】図4は、リン酸型燃料電池の基本構成を示
す斜視図である。図に見られるように、燃料電池スタッ
ク1は方形平板状の単電池2を積層して直方体状に形成
されており、その4つの側面に、燃料供給用マニホール
ド3と燃料排出用マニホールド4、および空気供給用マ
ニホールド5と空気排出用マニホールド6を、それぞれ
相対して組み込み、燃料と空気とを供給して発電するも
のである。本構成では、燃料供給用マニホールド3より
供給された燃料は、積層された複数の単電池2に形成さ
れた燃料通流溝7に分配されて流れ、同様に空気供給用
マニホールド5より供給された空気は、複数の単電池2
に形成された空気通流溝8に分配されて流れることとな
る。したがって、燃料電池スタック1の高さが高すぎる
と、中央部の単電池2と上層部、下層部の単電池2で流
れる燃料や空気の流量に差が生じ、均等に流れなくなる
ので、所定の性能が得られなくなる。このため、従来の
リン酸型燃料電池では、分配される高さ、したがってマ
ニホールドの高さが 1.5mを越えると、燃料電池スタッ
クを上下2つのブロックに分割し、それぞれにマニホー
ルドを設けて、各単電池に燃料や空気を均等に流す方式
が採られているが、このように燃料電池スタックを2つ
のブロックに分割すると、マニホ─ルドやそれに付随す
る部品が2倍となるのでコストが高くなってしまうとい
う問題点がある。
FIG. 4 is a perspective view showing the basic structure of a phosphoric acid fuel cell. As shown in the figure, a fuel cell stack 1 is formed into a rectangular parallelepiped by stacking rectangular flat-shaped unit cells 2, and has a fuel supply manifold 3 and a fuel discharge manifold 4 on its four side surfaces. The air supply manifold 5 and the air discharge manifold 6 are installed opposite to each other, and fuel and air are supplied to generate electricity. In this configuration, the fuel supplied from the fuel supply manifold 3 flows while being distributed to the fuel flow grooves 7 formed in the plurality of stacked unit cells 2, and similarly supplied from the air supply manifold 5. Air is a plurality of single cells 2
The air will be distributed to the air flow grooves 8 formed in the flow path. Therefore, if the height of the fuel cell stack 1 is too high, the flow rate of fuel or air flowing between the unit cells 2 in the central portion and the unit cells 2 in the upper layer portion and the lower layer portion becomes different, and the fuel cells do not flow evenly. Performance cannot be obtained. Therefore, in the conventional phosphoric acid fuel cell, when the distribution height, that is, the height of the manifold exceeds 1.5 m, the fuel cell stack is divided into upper and lower blocks, and the manifold is provided in each of the blocks. The method of evenly flowing fuel and air into the unit cell is adopted. However, if the fuel cell stack is divided into two blocks in this way, the manifold and its accompanying components are doubled, resulting in higher cost. There is a problem that it ends up.

【0005】また、燃料電池スタック1の高さが高くな
れば、それだけ耐震性が悪くなるので、輸送の際に支持
するための構造部材を組み込む必要があり、コスト上も
不利となる。一方、燃料電池スタックの冷却性能を確保
するためには、装置の高さを所定の高さ以上とする必要
がある。図5は、リン酸型燃料電池の一般的な冷却系の
基本構成を示す系統図である。図において、燃料電池本
体11は模式的に示されており、図示しない単電池を複
数個積層する毎に、冷却管を付設した冷却板12が配設
されており、この冷却管に冷却水を通流することにより
燃料電池本体11を冷却して、一定温度に保持してい
る。この冷却水には、水蒸気分離器13の液相部より冷
却水循環ポンプ14によって吸引される水が用いられて
おり、燃料電池本体11を冷却し、加熱されて一部が蒸
気となった水と蒸気との二相流は、再び水蒸気分離器1
3の気相部へと戻される。なお、この水蒸気分離器13
では、燃料改質用の蒸気を改質器16へ供給するととも
に、外部の排熱回収設備15へ蒸気を放出して凝縮水を
受け取ることにより熱的なバランスを保っている。この
ように燃料電池本体11の冷却には、水蒸気分離器13
の液相部より冷却水循環ポンプ14によって吸引される
水が用いられるので、有効NPSH(Net Positive Suc
tion Head )が冷却水循環ポンプ14の所要NPSHを
上回るように、水蒸気分離器13の水位高を選定する必
要があり、仮に有効NPSHが所要NPSHを下回る
と、冷却水循環ポンプ14がキャビテーションを起こし
て破損したり、冷却水流量が不足して燃料電池本体11
が過熱する等の事態を生じる恐れがある。すなわち、燃
料電池本体11の冷却性能を確保するためには、この水
蒸気分離器13の水位高、したがって、水蒸気分離器1
3を一体として収納するパッケージ型燃料電池発電装置
の高さを所定値以上とすることが必須条件となる。
Further, as the height of the fuel cell stack 1 becomes higher, the seismic resistance becomes worse, so that it is necessary to incorporate a structural member for supporting during transportation, which is disadvantageous in terms of cost. On the other hand, in order to secure the cooling performance of the fuel cell stack, the height of the device needs to be equal to or higher than a predetermined height. FIG. 5 is a system diagram showing a basic configuration of a general cooling system of a phosphoric acid fuel cell. In the figure, the fuel cell main body 11 is schematically shown, and a cooling plate 12 provided with a cooling pipe is arranged every time a plurality of unit cells (not shown) are stacked, and cooling water is supplied to the cooling pipe. The fuel cell main body 11 is cooled by flowing it and is kept at a constant temperature. As this cooling water, water sucked by the cooling water circulation pump 14 from the liquid phase portion of the water vapor separator 13 is used, and the water that cools the fuel cell main body 11 and is partially heated to steam is used. The two-phase flow with steam is again steam separator 1
It is returned to the vapor phase part of 3. In addition, this steam separator 13
In this case, the thermal balance is maintained by supplying the steam for reforming the fuel to the reformer 16 and discharging the steam to the external heat recovery facility 15 to receive the condensed water. As described above, the steam separator 13 is used for cooling the fuel cell main body 11.
Since the water sucked by the cooling water circulation pump 14 from the liquid phase part of is used, the effective NPSH (Net Positive Suc
It is necessary to select the height of the water level of the steam separator 13 so that the heat head exceeds the required NPSH of the cooling water circulation pump 14. If the effective NPSH falls below the required NPSH, the cooling water circulation pump 14 causes cavitation and is damaged. Fuel cell main body 11
May cause overheating. That is, in order to ensure the cooling performance of the fuel cell main body 11, the water level of the steam separator 13 is high, and accordingly, the steam separator 1
It is an indispensable condition that the height of the package type fuel cell power generation device accommodating 3 as one is set to a predetermined value or more.

【0006】さらに、パッケージ型燃料電池発電装置は
建屋の内部に設置される場合が多く、例えば地下室に据
え付ける場合には、ドライエリアから搬入扉を通過し、
機械室または電力室へ搬入されるのが一般的である。し
たがって、パッケージ型燃料電池発電装置は、この搬入
ルートより搬入できる寸法である必要がある。この発明
は、上記のごとき問題点を考慮してなされたもので、燃
料電池本体の反応ガス通流性能および構造上の信頼性が
高く、同時に冷却性能の信頼性が高く、さらには、一般
のビルへの設置が容易なパッケージ型燃料電池発電装置
を提供することを目的とする。
Further, the packaged fuel cell power generator is often installed inside a building. For example, when it is installed in a basement, it passes through a carry-in door from a dry area,
It is generally carried into a machine room or a power room. Therefore, the packaged fuel cell power generator needs to be sized so that it can be carried in through this carrying-in route. The present invention has been made in consideration of the above problems, and has high reaction gas flow performance and structural reliability of the fuel cell main body, and at the same time, high cooling performance reliability. An object of the present invention is to provide a packaged fuel cell power generator that can be easily installed in a building.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、燃料電池本体と、燃料電池本
体に反応ガスを供給する反応ガス供給系と、燃料電池本
体を冷却し一定温度に保持する冷却水系と、燃料電池本
体より生じる電力を取り出す電力変換系とを同一の筐体
へ収納してなるパッケージ型燃料電池発電装置におい
て、装置高さを 2.0m以上でかつ 2.8m以下とすること
とする。
In order to achieve the above object, in the present invention, a fuel cell main body, a reaction gas supply system for supplying a reaction gas to the fuel cell main body, and a constant cooling of the fuel cell main body. In a packaged fuel cell power generator in which the cooling water system that maintains the temperature and the power conversion system that extracts the power generated from the fuel cell body are housed in the same housing, the device height is 2.0 m or more and 2.8 m or less. And

【0008】また、燃料電池本体と、燃料電池本体に反
応ガスを供給する反応ガス供給系と、燃料電池本体を冷
却し一定温度に保持する冷却水系と、燃料電池本体より
生じる電力を取り出す電力変換装置とを同一の筐体へ収
納してなるパッケージ型燃料電池発電装置において、搬
送時の装置高さを 2.5m以下とすることとする。さら
に、上記のパッケージ型燃料電池発電装置において、架
台と屋根パネルの少なくともいずれか一方を装置本体に
分離可能に取り付け、搬送時に分離することとする。
Further, the fuel cell main body, the reaction gas supply system for supplying the reaction gas to the fuel cell main body, the cooling water system for cooling the fuel cell main body to keep it at a constant temperature, and the power conversion for extracting the electric power generated from the fuel cell main body. In a packaged fuel cell power generator in which the equipment and the equipment are housed in the same case, the equipment height during transportation shall be 2.5 m or less. Furthermore, in the above-mentioned packaged fuel cell power generator, at least one of a pedestal and a roof panel is detachably attached to the main body of the apparatus and is separated during transportation.

【0009】[0009]

【作用】すでに図4により説明したごとく、燃料電池ス
タックにおいては、燃料供給用マニホールド3より供給
された燃料、および空気供給用マニホールド5より供給
された空気を、積層された複数の単電池2の燃料通流溝
7および空気通流溝8に分配して流す方式が採られるの
で、燃料電池スタック1の高さが高すぎると、中央部の
単電池2と上層部、下層部の単電池2で流れる燃料や空
気の流量に差が生じ、均等に流れなくなる。従来の燃料
電池スタックでは、分配して流す高さが 1.5mを越える
と、上下2つのブロックに分割する方式が採られている
が、2つのブロックに分割すると、マニホ─ルドやそれ
に付随する部品が2倍となりコスト上も割高となってし
まうので、分配して流す高さを 1.5m以下、したがって
燃料電池スタックの高さを 2.3m以下に抑えることが望
ましい。
As already described with reference to FIG. 4, in the fuel cell stack, the fuel supplied from the fuel supply manifold 3 and the air supplied from the air supply manifold 5 are stored in the plurality of stacked unit cells 2. Since a method of distributing and flowing the fuel to the fuel flow groove 7 and the air flow groove 8 is adopted, if the height of the fuel cell stack 1 is too high, the unit cell 2 in the central portion and the unit cells 2 in the upper and lower layers are provided. There is a difference in the flow rate of fuel and air flowing in, and the flow does not flow evenly. In the conventional fuel cell stack, when the distribution height exceeds 1.5 m, it is divided into two upper and lower blocks, but if it is divided into two blocks, the manifold and its accompanying parts However, the height of the fuel cell stack should be kept below 2.3 m, and therefore the height of the fuel cell stack should be kept below 2.3 m.

【0010】したがって、上記のように、パッケージ型
燃料電池発電装置の高さを 2.0m以上でかつ 2.8m以下
とすることとすれば、燃料電池スタックを搭載する架台
の高さを 0.2m、上部に配する配管、排気ダクトの所要
高さを 0.3mとして、燃料電池スタックの高さは 2.3m
以下に抑えられることとなるので、燃料電池スタックは
一体として構成しても十分な反応ガス通流性能をもつこ
ととなり、また、分割しないので必要部品点数が少なく
相対的に安価となる。
Therefore, if the height of the package type fuel cell power generator is set to 2.0 m or more and 2.8 m or less as described above, the height of the mount for mounting the fuel cell stack is 0.2 m and the height is The height of the fuel cell stack is 2.3m, with the required height of the piping and exhaust duct to be set to 0.3m.
Therefore, the fuel cell stack has sufficient reaction gas flow performance even if it is constructed as an integral unit, and since it is not divided, the number of required parts is small and the cost is relatively low.

【0011】また、このようにパッケージ型燃料電池発
電装置の高さを選定すれば、高さが低くなるばかりでな
く、燃料電池スタックも一体として構成されるので、耐
震性に優れた構造となり、輸送時においても付加する支
持部材が簡便となり、安価となる。一方、この種の燃料
電池発電装置においては、すでに図5を用いて説明した
ごとく、水蒸気分離器の飽和水を冷却水循環ポンプによ
り吸引して燃料電池本体に送り冷却する方式が用いられ
ており、本方式においては、燃料電池本体の冷却を確実
に行うには、系の有効NPSHが冷却水循環ポンプの所
要NPSH以上となるよう設定する必要がある。
When the height of the package type fuel cell power generator is selected as described above, not only the height is lowered, but also the fuel cell stack is formed integrally, so that the structure has excellent earthquake resistance, The supporting member added even during transportation becomes simple and inexpensive. On the other hand, in this type of fuel cell power generator, as already described with reference to FIG. 5, a method is used in which saturated water of the steam separator is sucked by a cooling water circulation pump and sent to the fuel cell main body to cool. In this method, in order to reliably cool the fuel cell body, it is necessary to set the effective NPSH of the system to be equal to or higher than the required NPSH of the cooling water circulation pump.

【0012】有効NPSHは、水蒸気分離器の水位高さ
H〔m〕から、ポンプの設置高さすなわちポンプ軸中心
の装置最下部からの高さh1 〔m〕、および水蒸気分離
器とポンプ間の流路抵抗相当の水頭h2 〔m〕を減じた
(H−h1 −h2 )〔m〕で表される。通常の装置で
は、出来るだけポンプを下部に設置したとしてもh1
0.3〔m〕程度、流路を太くかつ短くしてもh2 は0.15
〔m〕程度となる。また通常用いられる冷却水循環ポン
プの所要NPSHは、最低でも1〔m〕以上である。し
たがって、水蒸気分離器の水位高さHは、装置最下部か
ら1.45〔m〕以上に設定されることが必要となる。水蒸
気分離器は円滑に蒸気を放出できるだけの十分な気相空
間を上部に保有しなければならないので、この高さを加
味すると水蒸気分離器の頂部の装置最下部からの高さは
1.8〔m〕以上となる。
The effective NPSH is calculated from the water level height H [m] of the steam separator, the installation height of the pump, that is, the height h 1 [m] from the bottom of the device around the pump shaft, and the distance between the steam separator and the pump. It is represented by (H−h 1 −h 2 ) [m] obtained by subtracting the water head h 2 [m] corresponding to the flow path resistance. In normal equipment, h 1 is
About 0.3 [m], h 2 is 0.15 even if the flow path is thick and short
It becomes about [m]. Moreover, the required NPSH of the cooling water circulation pump usually used is at least 1 [m] or more. Therefore, the water level height H of the water vapor separator needs to be set to 1.45 [m] or more from the bottom of the device. The steam separator must have a sufficient vapor phase space at the top to smoothly discharge steam, so if this height is taken into consideration, the height from the bottom of the device at the top of the steam separator will be
It becomes 1.8 [m] or more.

【0013】したがって、上記のようにパッケージ型燃
料電池発電装置の高さを 2.0m以上でかつ 2.8m以下と
することとすれば、上部に配置する弁や配管のスペース
を加味しても、水蒸気分離器の頂部の装置最下部からの
高さを 1.8〔m〕以上とすることができるので、燃料電
池本体の冷却を確実に行うことができる。つぎに、パッ
ケージ型燃料電池発電装置の設置対象として想定される
既存の電気通信用ビルでは、地下室に据え付ける場合が
多く、ドライエリアから搬入扉を通過し、機械室または
電力室へ搬入されるのが一般的である。全国の 2000 を
越える電気通信ビルの中から、契約電力が 600kW以上
で、かつ首都圏に存在するものを抽出し、搬入条件を調
査した結果によれば、幅が 3.0mで高さが 3.5mの装置
では、ドライエリアの寸法、形状の制約によって搬入可
能率は約50%に制限される。なお本数値は、搬入扉に
ついては搬入用の架台やスペーサ分のスペースを考慮し
て、幅、高さとも 0.2mの余裕をとることとして算定し
たものである。これに対して、幅は同一とし、高さのみ
変えた場合の搬入可能率をみると、高さが 3.1mのとき
70%であり、さらに高さが 2.7mでは85%と大幅に
向上する。
Therefore, if the height of the packaged fuel cell power generator is set to 2.0 m or more and 2.8 m or less as described above, even if the space of the valve and the pipe arranged at the top is taken into consideration, Since the height of the top of the separator from the lowermost part of the device can be 1.8 [m] or more, the fuel cell main body can be reliably cooled. Next, in the existing telecommunications buildings that are supposed to be installed with packaged fuel cell power generators, they are often installed in the basement, and they are transported from the dry area through the entrance door to the machinery room or power room. Is common. From over 2000 telecommunications buildings nationwide, contract electric power of 600 kW or more and existing in the Tokyo metropolitan area were extracted, and according to the result of the investigation of the carry-in condition, the width is 3.0 m and the height is 3.5 m. In this device, the carry-on rate is limited to about 50% due to the restrictions on the size and shape of the dry area. This value is calculated assuming that the carry-in door has a margin of 0.2 m in width and height, taking into account the space for the gantry and spacers for carry-in. On the other hand, considering the carry-in ratio when the width is the same and only the height is changed, it is 70% when the height is 3.1 m, and it significantly improves to 85% when the height is 2.7 m. .

【0014】したがって、上記のように、パッケージ型
燃料電池発電装置において、例えば架台と屋根パネルの
少なくともいずれか一方を装置本体に分離可能に取り付
け、搬送時に分離する等の手段を加味して、装置の高さ
を 2.5m以下とすることとすれば、搬入扉のみならず搬
入路の他の制約条件も緩和され、搬入可能率が飛躍的に
高くなり、ほぼすべての電気通信ビルに搬入、据え付け
が可能となるものと期待される。
Therefore, as described above, in the package type fuel cell power generator, for example, at least one of a pedestal and a roof panel is detachably attached to the main body of the apparatus, and the means for separating at the time of transportation is taken into consideration. If the height is set to 2.5m or less, not only the loading door but also other restrictions on the loading path will be relaxed, and the loading rate will dramatically increase, and loading and installation in almost all telecommunications buildings will be possible. Is expected to be possible.

【0015】[0015]

【実施例】図1は、本発明のパッケージ型燃料電池発電
装置の第1の実施例を示す外形図である。本装置は出力
100kWのパッケージ型燃料電池発電装置で、発電装
置本体21Aとその上部の換気フード22とによる装置
の高さは、 2.0〜2.8 mと幅を持って表示されている
が、電極面積を増大させ、これに対応して所定出力を得
るに必要な燃料電池スタックの単電池の積層数を減じ
て、燃料電池スタックの高さを低くすることによって得
られるものである。
1 is an external view showing a first embodiment of a packaged fuel cell power generator according to the present invention. This device is a packaged fuel cell power generator with an output of 100 kW, and the height of the device consisting of the power generator main body 21A and the ventilation hood 22 above it is displayed with a width of 2.0 to 2.8 m. Is increased, and the number of stacked unit cells of the fuel cell stack required to obtain a predetermined output is correspondingly reduced to lower the height of the fuel cell stack.

【0016】本パッケージ型燃料電池発電装置は、装置
の高さが 2.0〜2.8 mになっているので、燃料電池スタ
ックの高さは最大でも 2.3m以下に抑えられることとな
り、燃料電池スタックは一体として構成しても十分な反
応ガス通流性能をもつこととなる。また、分割しないの
で必要部品点数が少なく相対的に安価となる。また、水
蒸気分離器の飽和水を冷却水循環ポンプにより吸引して
燃料電池本体に送り冷却する冷却系の水蒸気分離器の水
位高さが、最低でも装置最下部から1.45〔m〕以上に設
定することができるので、系の有効NPSHが冷却水循
環ポンプの所要NPSHを確実に上回り、燃料電池本体
の冷却が確実に行われることとなるので、信頼性の高い
パッケージ型燃料電池発電装置となる。
Since the height of the packaged fuel cell power generator is 2.0 to 2.8 m, the height of the fuel cell stack can be suppressed to 2.3 m or less at the maximum, and the fuel cell stack is integrated. Even if it is configured as, it will have sufficient reaction gas flow performance. Further, since it is not divided, the number of required parts is small and the cost is relatively low. In addition, the water level of the steam separator in the cooling system, which sucks saturated water from the steam separator by the cooling water circulation pump and sends it to the fuel cell body, should be set at least 1.45 [m] from the bottom of the device. Therefore, the effective NPSH of the system surely exceeds the required NPSH of the cooling water circulation pump, and the fuel cell main body is reliably cooled, so that the package fuel cell power generator with high reliability is obtained.

【0017】図2は、本発明のパッケージ型燃料電池発
電装置の第2の実施例を示す外形図である。本装置も出
力100kWのパッケージ型燃料電池発電装置で、高さ
2.5mの発電装置本体21Bの上部に高さ 0.5mの着脱
式換気フード22Aが備えられている。本実施例のパッ
ケージ型燃料電池発電装置は、上記の実施例1の装置と
同様に十分な反応ガス通流性能と冷却性能をもった信頼
性の高い装置であるばかりでなく、さらに着脱式換気フ
ード22Aが発電装置本体21Bと分離可能に組み込ま
れているので、ビルの設置場所に搬送し搬入する際に
は、着脱式換気フード22Aを取り外し、発電装置本体
21Bを単体として搬送することができる。このとき装
置の高さは 2.5mに抑えられるので、前述のごとく、ほ
とんどの電気通信ビルの設置場所に容易に搬入できるこ
ととなる。
FIG. 2 is an outline view showing a second embodiment of the packaged fuel cell power generator of the present invention. This device is also a packaged fuel cell power generator with an output of 100 kW and a height of
A detachable ventilation hood 22A with a height of 0.5 m is provided on the upper part of the power generator main body 21B of 2.5 m. The packaged fuel cell power generator of the present embodiment is not only a highly reliable device having sufficient reaction gas flow performance and cooling performance as in the device of the first embodiment described above, but also removable ventilation. Since the hood 22A is separably incorporated from the power generator body 21B, the removable ventilation hood 22A can be removed and the power generator body 21B can be transported as a single unit when it is transported to and installed in a building installation location. . At this time, the height of the equipment can be suppressed to 2.5 m, and as mentioned above, it can be easily carried into the installation place of most telecommunication buildings.

【0018】[0018]

【発明の効果】上述のように、本発明によれば、燃料電
池本体と、燃料電池本体に反応ガスを供給する反応ガス
供給系と、燃料電池本体を冷却し一定温度に保持する冷
却水系と、燃料電池本体より生じる電力を取り出す電力
変換系とを同一の筐体へ収納してなるパッケージ型燃料
電池発電装置において、装置高さを 2.0m以上でかつ
2.8m以下とすることとしたので、反応ガス通流性能お
よび構造上の信頼性が高く、同時に冷却性能の信頼性が
高いパッケージ型燃料電池発電装置が得られることとな
った。
As described above, according to the present invention, the fuel cell main body, the reaction gas supply system for supplying the reaction gas to the fuel cell main body, and the cooling water system for cooling the fuel cell main body and keeping it at a constant temperature. In a packaged fuel cell power generator in which the power conversion system for extracting the electric power generated from the fuel cell main body is housed in the same housing, the height of the device is 2.0 m or more and
Since the length is set to 2.8 m or less, it is possible to obtain a packaged fuel cell power generator having high reaction gas flow performance and structural reliability, and at the same time high cooling performance reliability.

【0019】また、燃料電池本体と、燃料電池本体に反
応ガスを供給する反応ガス供給系と、燃料電池本体を冷
却し一定温度に保持する冷却水系と、燃料電池本体より
生じる電力を取り出す電力変換装置とを同一の筐体へ収
納してなるパッケージ型燃料電池発電装置において、例
えば架台と屋根パネルの少なくともいずれか一方を装置
本体に分離可能に取り付け、搬送時に分離する手段を付
加する等により搬送時の装置高さを 2.5m以下とするこ
ととすれば、反応ガス通流性能および構造上の信頼性が
高く、同時に冷却性能の信頼性が高く、さらには、一般
のビルへの設置が容易となるので、パッケージ型燃料電
池発電装置として好適である。
Further, the fuel cell main body, the reaction gas supply system for supplying the reaction gas to the fuel cell main body, the cooling water system for cooling the fuel cell main body to keep it at a constant temperature, and the power conversion for extracting the electric power generated from the fuel cell main body. In a packaged fuel cell power generator in which the device and the device are housed in the same casing, for example, at least one of a pedestal and a roof panel is detachably attached to the device main body, and a means for separating at the time of transportation is added. If the height of the equipment is 2.5 m or less, the reaction gas flow performance and structural reliability are high, and at the same time the cooling performance is high, and it is easy to install in a general building. Therefore, it is suitable as a packaged fuel cell power generator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による出力100kWのパッケージ型燃
料電池発電装置の第1の実施例を示す外形図
FIG. 1 is an outline view showing a first embodiment of a packaged fuel cell power generator having an output of 100 kW according to the present invention.

【図2】本発明による出力100kWのパッケージ型燃
料電池発電装置の第2の実施例を示す外形図
FIG. 2 is an outline view showing a second embodiment of a packaged fuel cell power generator having an output of 100 kW according to the present invention.

【図3】従来の出力100kWのパッケージ型燃料電池
発電装置の外形寸法図
FIG. 3 is an external dimension diagram of a conventional package type fuel cell power generator having an output of 100 kW.

【図4】リン酸型燃料電池の基本構成を示す斜視図FIG. 4 is a perspective view showing the basic configuration of a phosphoric acid fuel cell.

【図5】リン酸型燃料電池の一般的な冷却系の基本構成
を示す系統図
FIG. 5 is a system diagram showing the basic configuration of a general cooling system of a phosphoric acid fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 2 単電池 3 燃料供給用マニホールド 4 燃料排出用マニホールド 5 空気供給用マニホールド 6 空気排出用マニホールド 7 燃料通流溝 8 空気通流溝 11 燃料電池本体 12 冷却板 13 水蒸気分離器 14 冷却水循環ポンプ 15 排熱回収設備 21 発電装置本体 21A 発電装置本体 21B 発電装置本体 22 換気フード 22A 着脱式換気フード 1 Fuel Cell Stack 2 Single Cell 3 Fuel Supply Manifold 4 Fuel Discharge Manifold 5 Air Supply Manifold 6 Air Discharge Manifold 7 Fuel Flow Groove 8 Air Flow Groove 11 Fuel Cell Main Body 12 Cooling Plate 13 Water Vapor Separator 14 Cooling Water circulation pump 15 Exhaust heat recovery facility 21 Power generator body 21A Power generator body 21B Power generator body 22 Ventilation hood 22A Removable ventilation hood

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 元一 神奈川県逗子市久木2丁目6番B9号 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910番55号 (72)発明者 加藤 啓 愛知県名古屋市天白区天白町植田焼山16番 3号 (72)発明者 大賀 俊輔 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Motoichi Ikeda 2-6 B9, Hisagi, Zushi City, Kanagawa Prefecture (72) Nobuhiro Iwasa 910-55, Katsuragi Town, Kishiwada City, Osaka Prefecture (72) Kei Kei Kato 16-3 Ueda Yakiyama, Tenpaku-cho, Tenpaku-ku, Aichi Prefecture (72) Inventor Shunsuke Oga 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料電池本体と、燃料電池本体に反応ガス
を供給する反応ガス供給系と、燃料電池本体を冷却し一
定温度に保持する冷却水系と、燃料電池本体より生じる
電力を取り出す電力変換系とを同一の筐体へ収納してな
るパッケージ型燃料電池発電装置において、装置高さが
2.0m以上でかつ 2.8m以下であることを特徴とするパ
ッケージ型燃料電池発電装置。
1. A fuel cell main body, a reaction gas supply system for supplying a reaction gas to the fuel cell main body, a cooling water system for cooling the fuel cell main body to maintain a constant temperature, and a power conversion for extracting electric power generated from the fuel cell main body. In a packaged fuel cell power generator that houses the system in the same housing,
A packaged fuel cell power generator characterized by having a length of 2.0 m or more and 2.8 m or less.
【請求項2】燃料電池本体と、燃料電池本体に反応ガス
を供給する反応ガス供給系と、燃料電池本体を冷却し一
定温度に保持する冷却水系と、燃料電池本体より生じる
電力を取り出す電力変換装置とを同一の筐体へ収納して
なるパッケージ型燃料電池発電装置において、搬送時の
装置高さが 2.5m以下であることを特徴とするパッケー
ジ型燃料電池発電装置。
2. A fuel cell main body, a reaction gas supply system for supplying a reaction gas to the fuel cell main body, a cooling water system for cooling the fuel cell main body to maintain a constant temperature, and a power conversion for extracting electric power generated from the fuel cell main body. A packaged fuel cell power generator in which the device and a device are housed in the same housing, and the height of the device during transportation is 2.5 m or less.
【請求項3】パッケージ型燃料電池発電装置の架台と屋
根パネルの少なくともいずれか一方が装置本体に分離可
能に取り付けられてなり、搬送時に分離されることを特
徴とする請求項2に記載のパッケージ型燃料電池発電装
置。
3. The package according to claim 2, wherein at least one of a pedestal and a roof panel of the packaged fuel cell power generator is detachably attached to the main body of the apparatus and is separated during transportation. Type fuel cell power generator.
JP21030695A 1995-08-18 1995-08-18 Package type fuel cell power generator Expired - Fee Related JP3576283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21030695A JP3576283B2 (en) 1995-08-18 1995-08-18 Package type fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21030695A JP3576283B2 (en) 1995-08-18 1995-08-18 Package type fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH0963616A true JPH0963616A (en) 1997-03-07
JP3576283B2 JP3576283B2 (en) 2004-10-13

Family

ID=16587232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21030695A Expired - Fee Related JP3576283B2 (en) 1995-08-18 1995-08-18 Package type fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3576283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367647A (en) * 2001-06-06 2002-12-20 Toyota Motor Corp Case for fuel cell
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JPH0521084A (en) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd Unit assembly fuel cell power generation system
JPH06203859A (en) * 1993-01-11 1994-07-22 Fuji Electric Co Ltd Packaged fuel cell power generator set
JPH06275307A (en) * 1993-03-17 1994-09-30 Toshiba Corp Fuel cell
JPH08293316A (en) * 1995-04-21 1996-11-05 Tokyo Gas Co Ltd Method for releasing exhaust gas of fuel cell generating device, and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JPH0521084A (en) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd Unit assembly fuel cell power generation system
JPH06203859A (en) * 1993-01-11 1994-07-22 Fuji Electric Co Ltd Packaged fuel cell power generator set
JPH06275307A (en) * 1993-03-17 1994-09-30 Toshiba Corp Fuel cell
JPH08293316A (en) * 1995-04-21 1996-11-05 Tokyo Gas Co Ltd Method for releasing exhaust gas of fuel cell generating device, and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367647A (en) * 2001-06-06 2002-12-20 Toyota Motor Corp Case for fuel cell
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell
JP4602056B2 (en) * 2004-11-26 2010-12-22 本田技研工業株式会社 Fuel cell cooling system

Also Published As

Publication number Publication date
JP3576283B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US9945142B2 (en) Modular data center
US10779441B2 (en) Energy saving system and method for cooling computer data center and telecom equipment
US8498114B2 (en) Energy saving system and method for cooling computer data center and telecom equipment
US9462724B2 (en) Convergent energized IT apparatus for commercial use
JP2003297409A (en) Fuel cell power supply device
KR102134786B1 (en) Energy recycling apparatus and method of fuel cell system
US10697367B2 (en) Engine generator set with a more compact, modular design and improved cooling characteristics
JP2005523568A (en) Method and apparatus for supplying module power
JPH09199152A (en) Ventilating method for package type fuel cell power plant
JP3750394B2 (en) Uninterruptible power system
WO2019163348A1 (en) Compressed air energy storage and power generation device
JPH0963616A (en) Package fuel cell power generating apparatus
EP4209622A2 (en) Modular electrolyzer system
JP4272965B2 (en) Power supply
JP5361227B2 (en) Fuel cell device
JP5398214B2 (en) Fuel cell device
JP6296303B2 (en) Semiconductor power converter
JP2000056071A (en) Spent fuel storage module, auxiliary block and spent fuel storage facility
CN220041945U (en) Battery system and energy storage container
Barroso et al. Data center basics: Building, power, and cooling
JP5305705B2 (en) Fuel cell device
JPH08330149A (en) Gas cooled stationary electric induction machine
JP2008206355A (en) High pressure inverter apparatus
JP2006317093A (en) Outdoor casing
CN101604883A (en) Multiphase generator with frequency adaptation unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees